Interference between cues in human contingency learning: A review, new data and a potential general explanation based on propositional models

David Luque, Joaquín Morís, & María J. Gutiérrez
University of Málaga
Biomedical Research Institute of Málaga (IBIMA)
Interference between cues (IbC)

Design

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Test</th>
</tr>
</thead>
</table>
| **Same Outcome (Experimental)**| $A \rightarrow O_1$
 $C \rightarrow O_3$ | $B \rightarrow O_1$
 $C \rightarrow O_3$ | $A \rightarrow ?$ |
| **Different Outcome (Control)**| $A \rightarrow O_1$
 $C \rightarrow O_3$ | $B \rightarrow O_2$
 $C \rightarrow O_3$ | $A \rightarrow ?$ |

IbC: Number of responses to O_1 lower in the Experimental than in the Control Group.
A potential general explanation based on top-down processes

- Priors and beliefs can top-down modulate bottom-up HCL (e.g., Waldmann, Hagmayer & Blaisdell, 2006).

- Obtaining IbC would requires:

- Univocity of the inverse correspondence between the set of cues and the set of outcomes, that is...

 ➢ **outcome-cue univocity**

- If new data is inconsistent with this belief, cognizers try to incorporate the new knowledge without changing the **outcome-cue univocity** prior. For this...

 ➢ *participants can use the context as logic gate*
A potential general explanation based on top-down processes

If we apply these assumptions to a Ibc design…

- In the first learning phase [Cue A \(\rightarrow\) O1]
 1. Given an Outcome O1, then Cue A must be true.

- In the second learning phase [Cue B \(\rightarrow\) O1]
 2. Given an Outcome O1, then Cue B must be true.

3. In Context X: Given an Outcome O1, then Cue A must be true
 In context Y: Given an Outcome O1, then Cue B must be true
Outcome-cue univocity: Previous clues

- Previous experiments have shown that IbC is easier to obtain in diagnostic causal learning task (from Effects to Causes, Cobos et al., 2007; Luque et al., 2008).

- Previous experiments have shown that IbC is easier to obtain in tasks with multiple response options easily distinguishable from each other (Luque et al., 2008; 2009; 2012).
Outcome-cue univocity: Previous clues

- Diagnostic task effect

- Previous experiments have shown that IbC is easier to obtain in diagnostic causal learning task (from Effects to Causes, Cobos et al., 2007; Luque et al., 2008).

- In this task, priors about how causal relations work facilitate outcome-cue univocity (Waldmann & Holyoak, 1992):

 ➢ All other things held constant, given a Cause the Effect must be true.

... In the first learning phase [Effect A → Cause1]

 • Given the Cause O1, then Effect A must be true.

- In the second learning phase [Effect B → Cause1]

 • Given the Cause O1, then Effect B must be true.
Outcome-cue univocality: Previous clues - Multiple response options effect

In the trial 1 the color is:

YOCCA

Total points
0

3 response options

Go/No Go

NO CAUSAL COVER STORY

You win 48 points

Total points
48
Outcome-cue univocality: Previous clues

- Multiple response options effect

![Graph showing mean number of responses for Experimental and Control groups with multiple response options and Go/No Go conditions.]

A→O1; B→O1; A?
A→O1; B→O2; A?
Outcome-cue univocity: Previous clues

- Multiple response options effect

- It would be easier to assume that the cues do not share the outcome when outcomes are easily distinguishable.
Outcome-cue univocity: Previous clues

- Multiple response options effect

- It would be easier to assume that the cues do not share the outcome when outcomes are easily distinguishable.
New data

- Overview

- First experiment: To test the effect of the outcome-cue univocity belief in the IbC.
- Second experiment: To test whether the top-down process engage in IbC is
In the ‘Biunivocity group’, we introduced trials that contradicted the outcome-cue univocality belief, in a non separable way: they could not use the context as a logic gate.

<table>
<thead>
<tr>
<th>Group</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biunivocity</td>
<td>D→O3 (x10)</td>
<td>A→O1 (x10)</td>
<td>B→O1 (x10)</td>
<td>A?</td>
</tr>
<tr>
<td>group</td>
<td>F→O3 (x10)</td>
<td>C→O2 (x10)</td>
<td>C→O2 (x10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C→O2 (x10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Univocality</td>
<td>D→O3 (x20)</td>
<td>A→O1 (x10)</td>
<td>B→O1 (x10)</td>
<td>A?</td>
</tr>
<tr>
<td>group</td>
<td>C→O2 (x10)</td>
<td>C→O2 (x10)</td>
<td>C→O2 (x10)</td>
<td></td>
</tr>
</tbody>
</table>

New data - Experiment 1. Univocality belief
New data

- **Experiment 1. Univocity belief**

In the ‘Biunivocity group’, we introduced trials that contradicted the outcome-cue univocity belief, *in a non separable way: they could not use the context as a logic gate.*

<table>
<thead>
<tr>
<th>Group</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biunivocity</td>
<td>D→O3 (x10)</td>
<td>A→O1 (x10)</td>
<td>B→O1 (x10)</td>
<td>A?</td>
</tr>
<tr>
<td></td>
<td>F→O3 (x10)</td>
<td>C→O2 (x10)</td>
<td>C→O2 (x10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C→O2 (x10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Univocity</td>
<td>D→O3 (x20)</td>
<td>A→O1 (x10)</td>
<td>B→O1 (x10)</td>
<td>A?</td>
</tr>
<tr>
<td></td>
<td>C→O2 (x10)</td>
<td>C→O2 (x10)</td>
<td>C→O2 (x10)</td>
<td></td>
</tr>
</tbody>
</table>

It is not possible to keep the outcome-cue univocity belief
New data

- Experiment 1. Univocity belief

Univocity $N = 32$
Biunivocity $N = 29$

$DV = O_1 - (O_2 + O_3)$
$t(59) = 2.1; p = 0.038$

$DV = O_1$ (correct responses)
Univocity (Mean) = 54
Biunivocity (Mean) = 69
$t(59) = 1.8; p = 0.076$

$DV = O_2$
Univocity (Mean) = 21
Biunivocity (Mean) = 6
$t(59) = 2.2; p = 0.034$

$DV = O_3$
t(59) = 0.5; $p > 0.5$
New data

- Experiment 1. Univocity belief

- The ‘Univocity’ treatment produces:
 - Less correct responses in the Univocity than in the Biunivocity group.
 - More incorrect responses in the Univocity than in the Biunivocity group.

Why was the differences in the O2 number of responses (and not in O3)?

Outcome-cue univocity: The O3 had a related Cue (Cue C) and this relation was valid in the test context. Thus, the only ‘free’ outcome in the test context was O2.

<table>
<thead>
<tr>
<th>Univocity group</th>
<th>D → O3 (x20)</th>
<th>A → O1 (x10)</th>
<th>B → O1 (x10)</th>
<th>C → O2 (x10)</th>
<th>C → O2 (x10)</th>
<th>C → O2 (x10)</th>
<th>O1?</th>
<th>O2?</th>
<th>O3?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New data

- Experiment 2. Propositional processes

- IbC as a consequence of
 1. To assume a prior (univocity)....and
 2. To change this prior (context-dependency).

- What kind of cognitive process is computing these operations?

- Propositional reasoning: A good candidate.
 - Top-down.
 - Flexible: Priors can be assumed/changed via instructions (Cobos et al., 2007) or via feedback-driven learning.
New data

- **Experiment 2. Propositional processes**

 - Propositional reasoning: A good candidate.
 - Top-down.
 - Flexible: Priors can be assumed via instructions (Cobos et al., 2007). Also, these priors can changed via feedback-driven learning (Experiment 1).

 - Experiment 2’s aim: To directly assess the propositional processes’ engagement in the IboC effect.
- **Experiment 2. Propositional processes**

Experiment 2’s aim: To directly assess the propositional processes’ engagement in the Ibc effect.

- **Ibc**, second learning stage: Instructional vs. Trial-by-trial experienced.
New data

- Experiment 2. Propositional processes

➤ Experiment 2’s aim: To directly assess the propositional processes’ engagement in the IbC effect.
 - IbC, second learning stage: Instructional vs. Trial-by-trial experienced.

▪ Predictions:
 - Associative models: More IbC in the Trial-by-trial condition (associative models are silent about instructions, though).
 - Propositional theory: The same or more IbC in the Instructional condition.
New data

- Experiment 2. Propositional processes

<table>
<thead>
<tr>
<th>Group</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>A→O₁ (x10)</td>
<td>‘Hereafter, given the Cue B, respond O₁’</td>
<td>A?</td>
</tr>
<tr>
<td></td>
<td>C→O₃ (x10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>A→O₁ (x10)</td>
<td>‘Hereafter, given the Cue B, respond O₂’</td>
<td>A?</td>
</tr>
<tr>
<td></td>
<td>C→O₃ (x10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trial-by-trial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>A→O₁ (x10)</td>
<td>B→O₁ (x10)</td>
<td>A?</td>
</tr>
<tr>
<td></td>
<td>C→O₃ (x10)</td>
<td>C→O₃ (x10)</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>A→O₁ (x10)</td>
<td>B→O₂ (x10)</td>
<td>A?</td>
</tr>
<tr>
<td></td>
<td>C→O₃ (x10)</td>
<td>C→O₃ (x10)</td>
<td></td>
</tr>
</tbody>
</table>
New data

- Experiment 2. Propositional processes

- In addition to the usual test (Time for responding = 5 s; unwarned), we an additional test without time pressure (Time for responding = ∞) and with a previous instruction warned that a test was next.

- This test included three trials one per each Cue.

- This test had to be very sensitive measuring the outputs of propositional reasoning processes.

Two different measures: Test-5s and Test-∞
New data
- Experiment 2. Results Test-5s

<table>
<thead>
<tr>
<th>T-b-T</th>
<th>Exp N = 14</th>
<th>Con N = 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instr</td>
<td>Exp N = 12</td>
<td>Con N = 11</td>
</tr>
</tbody>
</table>

DV = O1 - (O2+O3)
IbC: $F(1, 45) = 22; p<.001^*$
Instr: $F(1, 45) = 3.6; p=.06$
IbC * Instr: $F(1, 45) = 1; ns.$

![Bar chart showing mean effect of IbC (Exp vs. Control)](chart.png)
New data

- Experiment 2. Results Test-5s

<table>
<thead>
<tr>
<th>T-b-T</th>
<th>Exp N = 14</th>
<th>Con N = 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instr</td>
<td>Exp N = 12</td>
<td>Con N = 11</td>
</tr>
</tbody>
</table>

DV = O1 (correct responses)
IbC: F(1, 45) = 22; p<.001*
Instr: F(1, 45) = 3.6; p=.04*
IbC * Instr: F(1, 45) = 2.5; p=.12

DV = O2
IbC: F(1, 45) = 7; p=.01*
Instr: F(1, 45) = 1.5; p=.22
IbC * Instr: F(1, 45) < 1

DV = O3
Nothing significant (means < 2)
New data

- Experiment 2. Results Test∞

<table>
<thead>
<tr>
<th>T-b-T</th>
<th>Exp N = 14</th>
<th>Con N = 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instr</td>
<td>Exp N = 12</td>
<td>Con N = 11</td>
</tr>
</tbody>
</table>

DV = O1 - (O2+O3)
IbC: F(1, 45) = 18; p < .001*
Instr: F(1, 45) < 1
IbC * Instr: F(1, 45) = 2.9; p = .09

Mean effect of IbC (Exp vs. Control)
New data

- **Experiment 2. Results Test∞**

<table>
<thead>
<tr>
<th>T-b-T</th>
<th>Exp N = 14</th>
<th>Con N = 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instr</td>
<td>Exp N = 12</td>
<td>Con N = 11</td>
</tr>
</tbody>
</table>

DV = O1 (correct responses)
- IbC: $F(1, 45) = 30; p<.001^*$
- Instr: $F(1, 45) = 2.5; p=.12$
- IbC * Instr: $F(1, 45) = 5.8; p=.02^*$

DV = O2
- IbC: $F(1, 45) = 6.9; p=.01^*$
- Instr: $F(1, 45) < 1$
- IbC * Instr: $F(1, 45) < 1$

DV = O3
- Nothing significant (means < 2)
New data

- Experiment 2. Discussion

- Manipulation of the format of the interfering information (second learning stage).

- IbC in both conditions (Trial-by-trial and Instructions).
 - Additionally, a main effect of IbC in the number of responses to O2: more responses in the Experimental groups.

- The IbC was larger in the Instructions group.

- Compatible with a propositional account of IbC.
New data

General discussion

- **Experiment 1.** Previously to the beginning of the IbC design, we taught our participants that outcome-cue univocity was not a valid belief. As a result we obtained less interference.
 - Top-down modulation produces the IbC effect.

- **Experiment 2.** The IbC effect was larger when the interfering information is provided via instructions than the usual trial-by-trial treatment.
 - Top-down modulation, that is compatible with a propositional account, produces the IbC effect.
A (mini)review

- Main effects related with lbC:
 1. The lbC itself.
 2. Contextual effects.
 3. Diagnostic causal learning effect.
 4. Number of response options effect.

1.- E.g. Matute & Pineño (1998a,b).
2.- Luque et al. (2010); Matute & Pineño (1998a,b); Ortega y Matute (2000); Pineño et al. (2000); Pineño y Matute (2000).
3.- Cobos et al. (2007); Luque et al. (2008).
4.- Luque et al. (in preparation).
A (mini)review

- Main effects related with IbC:
 1. The IbC itself.
 2. Contextual effects.
 3. Diagnostic causal learning effect.
 4. Number of response options effect.

The explanation of IbC defended in this presentation could account all these effects.
A (mini)review

- Main effects related with IbC:
 1. The IbC itself.
 2. Contextual effects.
 3. Diagnostic causal learning effect.
 4. Number of response options effect.

- ...and the responses to O2 in the experimental group!

The explanation of IbC defended in this presentation could account all these effects.
Many thanks!
The plants learning task explained
Diagnostic causal learning task

Diagnostic causal learning task:
LEARNING FROM EFFECTS (cues) to CAUSES (outcomes).

- The “plants” learning task
 - Cues: Rectangles of color
 - Outcomes: Different plants

Litmus paper color → Plant
Response - Medicine Dose

- Poisonous: Gain points
- Strange: Lose points
- Harmless: Points don’t change
Diagnostic causal learning task

- Poisoned plants cover history

The participants had to learn the origin of a series of poisoning after eating different plants and had to decide if an antidote should be administered.

- Each plant caused a particular pH in the patients’ saliva.

- There were three types of plants: a POISONOUS plant for which an antidote was effective; a STRANGE plant for which the antidote was in fact poisoning and a HARMLESS plant for which the antidote had no effect.

- On each trial, then, the participants had to decide the dose of antidote administered.

LEARNING FROM EFFECTS (cues) to CAUSES (outcomes).

- Poisonous: Gain points
- Strange: Lose points
- Harmless: Points don’t change
The “Plants” learning task

Points were the amount of antidote provided to the patient...

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same Outcome (Interference)</td>
<td>A → O1</td>
<td>B → O1</td>
<td>A → ?</td>
</tr>
<tr>
<td></td>
<td>C → O3</td>
<td>C → O3</td>
<td></td>
</tr>
<tr>
<td>Different Outcome (Control)</td>
<td>A → O1</td>
<td>B → O2</td>
<td>A → ?</td>
</tr>
<tr>
<td></td>
<td>C → O3</td>
<td>C → O3</td>
<td></td>
</tr>
</tbody>
</table>

O1: **POISONOUS** plant for which an antidote was effective. Participants gained the points.
O2: **HARMLESS** plant for which the antidote had no effect. Participants didn’t gain or lose.
O3: **STRANGE** plant for which the antidote was in fact poisoning. Participants lost the points.

It was expected that participants pressed the space bar as much as possible in the Test Phase.
The “Plants” learning task

For the patient 1 the litmus paper was:

Total points
0

48
The “Plants” learning task

For the patient 1 the litmus paper was: [Yellow]

Total points 0

Cue
The “Plants” learning task

For the patient 1 the litmus paper was:

Total points 0

Number of responses by pressing the space bar e.i., The Antidote dose
The “Plants” learning task

The Outcome, in this case indicating that the participant gain all the points (poisoned plant).