
EVOLVING UNDER SMALL DISRUPTION

Jürgen Dassow1, Gema M. Mart́ın2 and Francisco J. Vico2

1Fakultät für Informatik, Otto-von-Guericke-Universität Magdeburg
PSF 4120; D-39016 Magdeburg; Germany

Email: dassow@iws.cs.uni-magdeburg.de
2Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga

Severo Ochoa, 4, Parque Tecnológico de Andalućıa,
E-29590 Campanillas - Málaga; Spain

Email: gema,fjv@geb.uma.es

Abstract
We extend the edit operators of substitution, deletion, and insertion of a symbol over a word
by introducing two new operators (partial copy and partial elimination) inspired by biological
gene duplication. We define a disruption measure for an operator over a word and prove that
whereas the traditional edit operators are disruptive, partial copy and partial elimination are
non-disruptive. Moreover, we show that the application of only edit operators does not generate
(with low disruption) all the words over a binary alphabet, but this can indeed be done by
combining partial copy and partial elimination with the substitution operator.

1. Introduction

Edit operators of substitution, deletion, and insertion of a symbol over a word have been
extensively studied in literature and have been applied to many different kinds of problems.
These are biologically inspired operators that are also known as point mutation operators [2, 3].

They have been applied to the problem of transforming a word of finite length into another
word. Moreover, this very case has been studied expanding the set of edit operators. For
example, in [10], the set of edit operators is extended to include the squashing and expansion
operators. Whereas in the squashing operator two (or more) contiguous symbols of the first
word can be transformed into a single symbol of the second word, in the expansion operator
a single symbol in the first word may be expanded into two or more contiguous symbols of
the second word. In [11], the edit operators together with the straightforward transposition
of adjacent symbols are used in pattern recognition. The theory of error-correcting codes of
variable lengths treats errors that can be modelled as substitutions, insertions or deletions of
symbols ([7, 5]).

Furthermore, there are many studies that endeavour to explain a number of bioinspired evo-
lutionary processes using edit operators. In [3], the concept of an evolutionary system is
introduced. This is a language generating device inspired by the evolution of cell populations,
and it is based on edit operators and string divisions. The purpose of this system is to model

2 J. Dassow, G. M. Mart́ın, F. J. Vico

some properties of evolving cell communities at the syntactical level. In [2], a computational
device called network of evolutionary processors is proposed. It is based on evolutionary rules
and communication within a network. Such evolutionary rules are substitution, deletion, and
insertion rules. The generative power of evolutionary networks where only two types of such
rules are allowed is discussed in [1]. There have been several studies of molecular evolution
models that incorporate base substitutions, insertions, and deletions ([13, 8]).

However, to our knowledge, there are not many studies that analyze the disruptive effects of
the edit operators. Since non-random search methods benefits from a low disruption in the
application of operators to refine solutions, an analysis of how disruptive these operators are,
and the proposal of new low disruptive operators is necessary.

In this paper, such a study of disruption of the edit operators is done. In order to be able
to use the edit operators, we need to use devices that can be represented as words. One
of the simplest devices that can be represented in this way is the cyclic unary deterministic
finite automata (CUDFAs, for short). With the purpose of studying the disruption of the edit
operators, we define a disruptive measure by using the similarity measure for CUDFAs that has
been introduced in [4]. A CUDFA will be given directly from its graphical expression (Figure 1),
and represented as a binary word, w ∈ {0, 1}+, where the zeros represent the non-accepting
states of the automaton, and the ones represent the accepting states of the automaton. We
define the disruption of an operator over a CUDFA w as the portion of words that are accepted
by the initial CUDFA and are not accepted by the resultant CUDFA after applying an operator
and vice versa. We show that by iterative application of edit operators we cannot generate all
words if we require that any operator is accompanied by small disruption. We define two new
non-disruptive bioinspired operators. If we combine them with the substitution operator, then
starting from any w ∈ {0, 1}+, we obtain all the words v ∈ {0, 1}+ that accept a non-empty
language where each step has low disruption.

The proposed non-disruptive operators have been inspired by gene duplication, an important
genetic mechanism that plays an important role in evolution [9, 14]. Considering the binary
word as a genome, duplication simply adds redundant information (in our case, to w ∈ {0, 1}+),
keeping the associated phenotype (the language accepted by w) unchanged. The genomic por-
tion gained after gene duplication provides a substrate for coding new functions (proteins, in
biology) by future alterations: mutations, additions, deletions, or even being totally or partially
copied/eliminated again. In particular, partial copy/elimination may introduce significant dif-
ferences in the genome, but keeping the fitting level of the phenotype.

2. Cyclic unary deterministic automata

The reader is assumed to be familiar with the basic concepts of formal language theory. For
further information the reader is referred to [12]. Here, only some notations used in this paper
will be recalled.

In the sequel, we will consider that 0 ∈ N. For the cases in which zero is not included, we will

Evolving under Small Disruption 3

write N+. Throughout the paper, V = {0, 1} and h is the mapping V → V with h(1) = 0 and
h(0) = 1. For w ∈ V ∗ and x ∈ V , we denote the length of w and the number of occurrences of
x in w by |w| and |w|x.

In this paper we work with languages over a unary alphabet. Let A be a deterministic finite
automaton over a unary alphabet (for short, UDFA) that represents an infinite regular language.
As the alphabet is unary, each UDFA will have the structure that is shown in Figure 1. Its
states are divided into two groups, the first one, that we call initial phase, will contain the
states from the first state to the i− 1 state, the second one, that we call loop, will contain the
rest of the states. The initial phase can be empty in those automata, whose last state transits
to its initial state. A UDFA can be represented as a vector (v, w) where v ∈ {0, 1}∗ describes

//WVUTPQRS0 //WVUTPQRS1 // . . . //WVUTPQRSi // WVUTPQRSi+ 1 // . . . //WVUTPQRSn

ww

Figure 1: Structure of a UDFA

the initial phase and w ∈ {0, 1}+ describes the loop. The zeros represent the non-accepting
states of the automaton, and the ones represent the accepting states of the automaton.

A UDFA is cyclic (for short CUDFA) if its initial phase is empty. Then, instead of (λ,w), we
represent the CUDFA as a word w ∈ {0, 1}+. A language accepted by some CUDFA will be
called a cyclic unary regular language (for short CURL).

For a word w = x1x2 . . . xn ∈ {0, 1}+, we set B(w) = {i | xi = 1}. Let w describe a CUDFA,
and let B(w) = {b1, b2, . . . , bm}. It is clear that bi < |w| for 1 ≤ i ≤ m, and the regular set
accepted by the CUDFA is

M = {bi + |w|k | 1 ≤ i ≤ m, k ∈ N}.

That is, M is union of a finite set of disjoint successions of natural numbers. In the sequel we
use the notation

M = {{bi + |w|k}k∈N}i=1,...,m. (1)

If M is the union of the successions A1, A2, . . . , Am, then we also say that Ai is an element
of M . In this paper we consider a CUDFA as a genotype, and its accepted language as the
corresponding phenotype.

3. Definitions

We first define some operators over CUDFAs which are inspired by mutations, insertions,
deletions and copying of molecules which occur in the evolution of biological systems.

For any natural numbers m, p > 0, we set

T (m, p) = {w | w = (x1x2 . . . xm)p, xi ∈ V for 1 ≤ i ≤ m}.

4 J. Dassow, G. M. Mart́ın, F. J. Vico

Definition 1. For any natural numbers n,m, p > 0, i with 1 ≤ i ≤ n, q > 1, and y ∈ V we
define

• the addition operator Ai,y : V n −→ V n+1 as

Ai,y(x1x2 . . . xn) = x1x2 . . . xiyxi+1 . . . xn,

• the partial copy operator PCp : T (m, p) −→ T (m, p+ 1) as

PCp((x1x2 . . . xm)p) = (x1x2 . . . xm)p+1,

• the elimination operator Ei : V n −→ V n−1 as

Ei(x1x2 . . . xn) = x1x2 . . . xi−1xi+1 . . . xn,

• the partial elimination operator PEq : T (m, q) −→ T (m, q − 1) as

PEq((x1x2 . . . xm)q) = (x1x2 . . . xm)q−1,

• the mutation operator Mi : V n −→ V n as

Mi(x1x2 . . . xn) = x1x2 . . . h(xi) . . . xn.

Let A, E ,M, PC, and PE , be the sets of all addition, elimination, mutation, partial copy, and
partial elimination operators, respectively. The operators in A, E and M are called the edit
operators.

We mention that all these operators are defined on the genotype. In nature, the rate of fixation
of those low-disruption mutations is higher than the rate of fixation of those mutations that
change the original phenotype too much. Therefore, we need a measure for the similarity of
CURLs which represent the phenotypes.

In order to define the disruption of an operator over an automaton, we use the measure of
similarity for CURLs defined in [4]. According to this measure, the disruptiveness of applying
an operation to an automaton A to obtain an automaton B will be described by two rational
numbers. The first one represents the portion of the words accepted by A but not by B, and
the second one represents the portion of words accepted by B but not by A. This is analogous
to the concepts of Recall and Precision in Information Retrieval. The precision is the fraction
of the documents retrieved that are relevant to the user’s information needs, while the recall is
the fraction of the documents that are relevant to the query and are successfully retrieved.

Definition 2. For two successions A = {a+ bn}n∈N and B = {c+ dk}k∈N, the overlap ISOA,B

of A and B (for Infinite Successions Overlap) is defined as:

ISOA,B =

{
gcd(b, d)

d
if A ∩B 6= ∅

0 in other case
.

Evolving under Small Disruption 5

Given two CURLs M and N , we have that M ∩N 6= ∅ if and only if there exist at least A ∈M
and B ∈ N such that A ∩B 6= ∅.
Definition 3. Let M and N be two CURLs, and let n be the number of successions of M . We
define the overlap URLOM,N of M with N (for Unary Regular Languages Overlap) as

URLOM,N =

1

n

∑
A∈M
B∈N

ISOA,B if M ∩N 6= ∅

0 in other case

.

Then, we can say that the measure ISOM,N between CURLs gives the portion of strings in
M which also belong to N . In [4], it is proven that the previous definition is independent on
the choice of the successions used to represents languages M and N and also [4] includes the
following statement.

Lemma 1. Let M and N be CURLs. URLOM,N = 1 if and only if M ⊆ N .

Now we are in the position to define a notion which measures the change of the phenotypes
obtained though the application of an operator.

Definition 4. Let w ∈ V + be a CUDFA and O ∈ M∪A ∪ E ∪ PC ∪ PE be an operator such
that O(w) is defined. Let L and L′ be the CURLs represented by w and O(w), respectively. We
define the disruption D(O,w) of the operator O over w as

D(O,w) = (1− URLOL,L′ , 1− URLOL′,L).

That is, the disruption of an operator O over w is a pair (a, b) with a, b ∈ R, where a is the
portion of words that are accepted by w and are not accepted by O(w) and b is the portion of
words that are accepted by O(w) and are not accepted by w.

When D(O,w) = (0, 0) for a given operator O and all w, we will say that the operator O is
not disruptive or not destructive.

4. Determination of the disruption of the operators

In this section, we study the disruption of the operators that have been defined in the previous
section. First of all, let us see a result that we will use in the sequel.

Lemma 2. Let w ∈ V + be a CUDFA. The CURLs represented by w and by wn, with n ∈ N
and n > 1, are the same.

Proof. Let C = {{ai+|w|k}k∈N}i=1,...,m be the CURL represented by w, where ai{0, . . . , |w|−1}
for any 1 ≤ i ≤ m. Therefore, the CURL represented by wn is

C ′ =
n−1⋃
j=0

{{(ai + j|w|) + n|w|k}k∈N}i=1,...,m.

6 J. Dassow, G. M. Mart́ın, F. J. Vico

Since URLOC,C′ = 1 and URLOC′,C = 1, by Lemma 1, C = C ′.

Note 1. A string with length s is accepted by a CUDFA w = x0 . . . xk−1 with xi ∈ {0, 1} for
any i = 0, . . . , k − 1 if and only if xs (mod k) is an accepting state. If w′ = wn for some natural
number n > 1, then the acceptance is given by xs (mod kn) = x(s (mod kn)) (mod k) = xs (mod k).

The next corollaries follow immediately.

Corollary 1. Let w ∈ V + be a CUDFA. The regular languages represented by wn and by wm,
n,m ∈ N and n,m > 1, coincide.

Corollary 2. For any p ≥ 1 and q > 1, PCp and PEq are not disruptive operators.

Let us study the disruption of the remaining operators.

Lemma 3. Let w ∈ V + be a CUDFA and i a natural number with 1 ≤ i ≤ |w|. If |w|1 = m,
then

• D(Mi, w) = (0,
1

m+ 1
) if we mutate a zero into a one,

• D(Mi, w) = (
1

m+ 1
, 0) if we mutate a one into a zero.

Proof. Let C = {{ai+|w|k}k∈N}i=1,...,m be the CURL represented by w, where ai ∈ {0, . . . , |w|−
1} for any 1 ≤ i ≤ m.

If we mutate a zero in the position i, the CURL represented by Mi(w) is

C ′ = {{ai + |w|k}k∈N}i=1,...,m ∪ {b+ |w|k}k∈N

with 0 ≤ b ≤ |w| − 1. In this case, since a non-accepting state has been changed into an

accepting state in w, a portion of new words has been added to C. Since, URLOC′,C =
m

m+ 1
(because gcd(|w|, |w|) = |w| and C has only m subsuccessions of the m + 1 that C ′ has) and
URLOC,C′ = 1 (because gcd(|w|, |w|) = |w| and C ′ has m subsuccessions of the m that C has),

D(Mi, w) = (0,
1

m+ 1
).

If we mutate a one in the position i, the CURL represented by Mi(w) is

C ′ = {a1 + |w|k}k∈N ∪ · · · ∪ {ai−1 + |w|k}k∈N

∪ {ai+1 + |w|k}k∈N ∪ · · · ∪ {am + |w|k}k∈N.

Evolving under Small Disruption 7

In this case, since an accepting state has been changed into a non-accepting state in w, a portion

of words has been removed from C. Since, URLOC,C′ =
m

m+ 1
and URLOC′,C = 1,

D(Mi, w)) = (
1

m+ 1
, 0).

Lemma 4. For any CUDFA w ∈ V + with |w|1 = m, any natural number i with 1 ≤ i ≤ |w|,
and any y ∈ V , D(Ai,y, w) = (1− m+ y

|w|+ 1
, 1− m

|w|
).

Proof. Let C = {{ai + |w|k}k∈N}i=1,...,s ∪ {{bj + |w|k}k∈N}j=1,...,r be the CURL represented by
w, where ai ∈ {0, . . . , i − 1} for any 1 ≤ i ≤ s and bj ∈ {i, . . . , |w| − 1} for any 1 ≤ j ≤ r.
Then, m = s+ r.

Case y = 1. The CURL represented by Ai,1(w) is

C ′ = {{ai + (|w|+ 1)k}k∈N}i=1,...,s ∪ {i+ (|w|+ 1)k}k∈N

∪ {{(bj + 1) + (|w|+ 1)k}k∈N}j=1,2,...,r.

Let us compute that portion of words accepted by w that are still accepted by Ai,1(w). We get

URLOC,C′ =
m+ 1

|w|+ 1
(because gcd(|w|, |w|+ 1) = 1, A∩B 6= ∅ for any A ∈ C and any B ∈ C ′

and C ′ has m+ 1 subsuccessions).

Let us compute that portion of words accepted by Ai,1(w) that are also accepted by w. We get

URLOC′,C =
m

|w|
(because gcd(|w|, |w|+ 1) = 1, A∩B 6= ∅ for any A ∈ C and any B ∈ C ′ and

C has m subsuccessions). Therefore, D(Ai,1, w) = (1− m+ 1

|w|+ 1
, 1− m

|w|
).

Case y = 0. The CURL represented by Ai,0(w) is

C ′ = {{ai + (|w|+ 1)k}k∈N}i=1,...,s ∪ {{(bj + 1) + (|w|+ 1)k}k∈N}j=1,...,r.

Let us compute that portion of words accepted by w that are still continue being accepted by

Ai,0(w). We get URLOC,C′ =
m

|w|+ 1
.

Let us compute that portion of words accepted by Ai,0(w) that are also accepted by w. We get

URLOC′,C =
m

|w|
. Therefore, D(Ai,0, w) = (1− m

|w|+ 1
, 1− m

|w|
).

Lemma 5. Let w ∈ V + be a CUDFA, |w|1 = m ≥ 1, i a natural number with 1 ≤ n ≤ |w|,
and y the i-th letter of w. Then D(Ei, w) = (1− m− y

|w| − 1
, 1− m

|w|
).

8 J. Dassow, G. M. Mart́ın, F. J. Vico

Proof. Let C = {{ai + |w|k}k∈N}i=1,...,s ∪ {{bj + |w|k}k∈N}j=1,...,r be the CURL represented by
w, where ai ∈ {0, . . . , i − 1} for 1 ≤ i ≤ s and bj ∈ {i, . . . , |w| − 1} for 1 ≤ j ≤ r. Then,
m = s+ r.

If we eliminate a one at position i, that is, y = 1, the CURL represented by Ei(w) is

C ′ = {{ai + (|w| − 1)k}k∈N}i=1,...,s−1 ∪ {{(bj − 1) + (|w| − 1)k}k∈N}j=1,...,r.

Let us compute that portion of words accepted by w that are still accepted by Ei(w). We get

URLOC,C′ =
m− 1

|w| − 1
because gcd(|w|, |w| − 1) = 1, A ∩ B 6= ∅ for any A ∈ C and any B ∈ C ′

and C ′ has m− 1 subsuccessions).

Furthermore, URLOC′,C =
m

|w|
because gcd(|w|, |w| − 1) = 1, A ∩ B 6= ∅ for any A ∈ C and

any B ∈ C ′ and C has m subsuccessions). Therefore, D(Ei, w) = (1− m− 1

|w| − 1
, 1− m

|w|
).

If we eliminate a zero in position i, that is, y = 0, the CURL represented by Ei(w) is

C ′ = {{ai + (|w| − 1)k}k∈N}i=1,...,s ∪ {{(bj − 1) + (|w| − 1)k}k∈N}j=1,...,r.

Then we have URLOC,C′ =
m

|w| − 1
and URLOC′,C =

m

|w|
. Therefore, we get D(Ei, w) =

(1− m

|w|+ 1
, 1− m

|w|
).

Therefore, the edit operators are disruptive operators. Moreover, for an edit operator, the
disruption is decreasing as the number of ones in the word is increasing.

5. Small disruptions and iterated application of operators

We now define the central notion of the paper.

Definition 5. Let the CUDFA w ∈ V +, O ⊆ M ∪ A ∪ E ∪ PC ∪ PE, and a real number λ,
0 < λ < 1 be given.

i) We say that a word v can be obtained with a disruption strictly less than λ from w using O
if there exist operators O1, O2, . . . , Op ∈ O, p ≥ 0, such that

• v = Op(Op−1 . . . (O2(O1(w))) . . .) and

• D(Oi, Oi−1(. . . (O2(O1(w)) . . .)) < (λ, λ) for any 1 ≤ i ≤ p.

ii) By LD(w,O, λ) we denote the set of all words v which can be obtained with a disruption
strictly less than λ from w using O.

Evolving under Small Disruption 9

An important branch of the biological community supports the idea that during evolution
gradual accumulations of small genetic changes occur resulting in producing small alterations
in the phenotype; this permits the individual to stay adapted to the environment. From this
point of view, those words which can be obtained in such a way that in each step a low disruption
occurs are the most interesting of the set of all words which can be obtained from w by iterated
applications of operations from O (e.g. [3], [1] and other papers).

In Definition 5, we have made the natural supposition 0 < λ < 1. If λ = 1, then any sequence of
operators is an evolution with disruption at most 1, i.e., we allow all sequences which coincides
with the situation studied in previous papers. If λ = 0, no change of the phenotype is possible,
which is not of interest from the biological point of view. By the biological motivation, we are
only interested in the case of small λ, for instance λ = 1

100
. In the sequel we require 0 < λ ≤ 1

2
,

which is sufficient from the mathematical point of view to guarantee a low disruption.

The aim of the remaining part of this paper is the study of the sets LD(w,O, λ). We start
with two easy examples.

Let w = 10n for some n ≥ 2, 0 < λ < 1
2

and O = M∪A ∪ E . Then by Lemmas 3, 4, and 5,
for any operator from O, we have D(w,O(w)) = (a, b) with a ≥ 1

2
or b ≥ 1

2
. Thus no word can

be obtained with a disruption at most λ using O from w. Since we allow that no operator has
to be used, LD(w,O, λ) = {w}.

Let w = 0n for some n ≥ 1, 0 < λ < 1
2

and O =M∪A∪ E ∪ PC ∪ PE . It is easy to see that
operators from M and of the form Ai,1 applied to w have a disruption at least 1

2
. Moreover,

by operators from PC and PE we can get all words only consisting of zeros with no disruption
(see Corollary 2). Hence LD(w,O, λ) = {0m | m ≥ 1}.

Obviously, the reason that in the first example no operator has small disruption comes from
the very small number of ones. If we change this situation, LD(w,O, λ) can be non-empty and
contain infinitely many words, as can be seen from the following theorem.

Theorem 1. Let w ∈ V + be a CUDFA and 0 < λ ≤ 1
2

such that 1
|w|1+1

< λ, and let O =
M∪A∪ E. Then

LD(w,O, λ) = {v | |v|0 > 0,
1

|v|1 + 2
< λ} ∪ {1m | m ≥ 1} ∪ {w}.

Proof. Let us suppose |w|0 = t and |v|0 = q for some t, q ≥ 0 and let us consider the following
finite sequence of operators:

• By O1, O2, . . . , Ot ∈M we mutate all the zeros of w. Therefore,
Ot(Ot−1 . . . (O1(w)) . . .) = 1|w|.

• Let b = ||v| − |w||.

10 J. Dassow, G. M. Mart́ın, F. J. Vico

– If |w| ≤ |v|, we choose Ot+1, Ot+2, . . . , Ot+b ∈ A and get
Ot+b(. . . (Ot+1(1

|w|)) . . .) = 1|v|.

– If |w| > |v|, we choose Ot+1, Ot+2, . . . , Ot+b ∈ E and obtain
Ot+b(. . . (Ot+1(1

|w|)) . . .) = 1|v|.

• By Ot+b+1, Ot+b+2, . . . , Ot+b+q ∈ M we mutate all the positions in which 1|v| has a one
and v has a zero and get Ot+b+q(. . . (Ot+b+1(1

|v|)) . . .) = v.

Therefore, we have Ot+b+q(Ot+b+q−1(. . . (O2(O1(w))) . . .)) = v.

Let us calculate the disruption each time that we apply one of the operators given above.

If 1 ≤ j ≤ t, then Oj increases the numbers of ones by 1. Thus, for 1 ≤ i ≤ t, we have
|Oi−1(. . . (O2(O1(w))) . . .)|1 > |w|1 and hence

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0,
1

|Oi−1(. . . (O2(O1(w))) . . .)|1 + 1
)

≤ (0,
1

|w|1 + 1
) < (λ, λ).

Let |w| ≤ |v| = b. Then, for t + 1 ≤ i ≤ t + b, Oi ∈ A adds a one to a word 1k for some k.
Thus Oi can be interpreted as a partial copy. By Corollary 2,

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0, 0) < (λ, λ).

Let |w| > |v| = b. Then, for t+1 ≤ i ≤ t+b, Oi ∈ E can be interpreted as a partial elimination.
By Corollary 2,

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0, 0) < (λ, λ).

For t + b + 1 ≤ j ≤ t + b + q, the operator Oi does not change the |v|1 ones of v. Thus
|Oi−1(. . . (O2(O1(w))) . . .)|1 ≥ |v|1 + 1 and hence

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (
1

|Oi−1(. . . (O2(O1(w))) . . .)|1 + 1
, 0)

≤ (
1

|v|1 + 2
, 0) < (λ, λ).

Therefore, for 1 ≤ i ≤ t+ b+ q, we have D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) < (λ, λ).

Thus it is shown that all words v with |v|0 > 0 and 1
|v|1+2

< λ or 1m, m ≥ 1 (in this case the

operators O1, O2, . . . , Ot+b are sufficient), can be obtained.

It remains to show that further words cannot be generated by iterated applications of operators
from O, i.e., that words v with v 6= w, |v|0 > 0 and 1

|v|1+2
≥ λ cannot be obtained.

Evolving under Small Disruption 11

Assume that LD(w,O, λ) contains a word v with v 6= w, |v|0 > 0 and 1
|v|1+2

≥ λ. Let Z be the
set of all such v. We introduce a partial order on Z by v1 ≺ v2 if and only if
– |v1| < |v2| or
– |v1| = |v2| and |v1|1 < |v2|1. Let v be a minimal word with respect to ≺ in Z. Let
O1, O2, . . . , Op be the operators from O such that Op(. . . O2(O1(w)) . . .) = v and
D(Oj, Oj−1(. . . O2(O1(w)) . . .)) ≤ (λ, λ) for 1 ≤ j ≤ p. We consider the step v = Op(x)
where x = Op−1(. . . O2(O1(w)) . . .). Let m = |x|1.

We discuss some cases for Op.

Case 1. Op = Ai,0 for some i. If x 6= 1m for all m ≥ 1, then |x| < |v| and |x|0 > 0 in contrast
to our choice of v. Therefore x = 1m for some m ≥ 1. Then |x| = |x|1 = m and

D(Op, x) = (1− m

m+ 1
, 1− m

m
) = (

1

m+ 1
, 0) ≥ (

1

m+ 2
, 0) ≥ (λ, 0),

i.e., the last step does not satisfy the requirement for a disruption at most λ.

Case 2. Op = Ai,1. Then x satisfies |x| < |v| and |x|0 > 0 which contradicts our choice of v.

Case 3. Op = Ei for some i.

If we cancel a letter 1, then m = |v|1 + 1 and |x|0 ≥ 1 and |x| ≥ |x|1 + 1 = m+ 1.

Because m(|x| −m− 1) > −1 or equivalently 1− m−1
|x|−1

> 1
m+1

, the first component of D(Op, x)
satisfies

1− m− 1

|x| − 1
>

1

m+ 1
=

1

|v|1 + 2
> λ

in contrast to the choice of the operators.

If we cancel a zero, then |x|0 ≥ 2 and hence |x| ≥ m + 2.Moreover, |v|1 = m. Because
m(|x|−m−2) ≥ −|x| or equivalently 1− m

|x| >
1

m+2
, the second component of D(Op, x) satisfies

1− m

|x|
>

1

m+ 2
=

1

|v|1 + 2
> λ,

which contradicts our assumption again.

Case 4. Op = Mi. By the choice of v, we have to change a one into a zero. Hence m = |v|1 + 1.
Moreover, the first component of D(Op, x) satisfies 1

m+1
= 1
|v|1+2

> λ. We have a contradiction,
again.

Since we got a contradiction in each case, Z = ∅.

From a biological point of view, the tendency of the complexity through the evolution has been
a increasing tendency. For that reason, we could think that in order to find a parallelism with

12 J. Dassow, G. M. Mart́ın, F. J. Vico

biology, it is logical that we have to increase the length of the words. Therefore we give the
following corollaries.

Corollary 3. i) Let w ∈ V + be a CUDFA and 0 < λ ≤ 1
2

such that 1
|w|1+1

< λ, and let
O =M∪A. Then

LD(w,O, λ) = {v | |w| < |v|, |v|0 > 0,
1

|v|1 + 2
< λ} ∪ {1m | m ≥ 1} ∪ {w}.

ii) Let w ∈ V + be a CUDFA and 0 < λ ≤ 1
2

such that 1
|w|1+1

< λ, and let O =M∪PC. Then

LD(w,O, λ) = {v | |w| < |v|, |v|0 > 0,
1

|v|1 + 2
< λ} ∪ {1m | m ≥ 1} ∪ {w}.

Proof. i) For|w| < |v|, we have used only operators from M∪A in the proof of Theorem 1.

ii) The addition operators used add a 1 to a word only consisting of ones. Hence, there is an
operator from PC which has the same effect.

If we allow operators of PE in addition to those from M∪PC, we get a case where all words
of interest (i.e., all words describing a CUDFA which accepts a non-empty language) can be
obtained with low disruptions from a given word w.

Theorem 2. Let w ∈ V + be a CUDFA and 0 < λ ≤ 1
2
, and let O =M∪PC ∪ PE. Then

LD(w,O, λ) = V + \ {0m | m ≥ 1}.

Proof. Let w ∈ V + be a word with |w| = m and |w|1 = r > 0 and let v ∈ V + be a word with
|v| = n and |v|1 = s > 0.

For a multiple y = lcm(m,n)z, z ∈ N+, of the lowest common multiple of m and n, we set

z′ = y
m

and z′′ = y
n
. We choose y sufficiently large, i.e., z sufficient large, such that

1

rz′
< λ

and
1

sz′′
< λ. We construct the following finite sequence of operators.

• We choose O1, O2, . . . , O y
m
−1 ∈ PC such that any Oi adds a copy of w. Therefore

O y
m
−1(O y

m
−2 . . . (O1(w)) . . .) = wz′

.

• Let t be the number of positions in which wz′
has a zero and vz′′

has a one. We choose
O y

m
, O y

m
+1, . . . , O y

m
+t−1 ∈M, such that such zeros are changed into ones. Thus we obtain

w = O y
m

+t−1(. . . (O y
m

(wz′
)) . . .).

• Let q be the number of positions in which w has a one and vz′′
has a zero. We choose

O y
m

+t, O y
m

+t+1, . . . , O y
m

+t+q−1 ∈M such that such ones are mutated into zeros and obtain

vz′′
= O y

m
+t+q−1(. . . (O y

m
+t(w)) . . .).

Evolving under Small Disruption 13

• We choose O y
m

+t+q, O y
m

+t+q+1, . . . , O y
m

+t+q+ y
n
−2 ∈ PE such that any of the operators

O y
m

+t+q+j cancels one copy of v. Obviously, then v = O y
m

+t+q+ y
n
−2(. . . (O y

m
+t+q(v

z′′
)) . . .).

Therefore, O y
m

+t+q+ y
n
−2(O y

m
+t+q+ y

n
−3(. . . (O2(O1(w))) . . .)) = v.

Let us calculate the disruption each time that we apply one of the previous operators. For
1 ≤ i ≤ y

m
− 1, D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0, 0) < (λ, λ) by Corollary 2.

Since any operator Oj,
y
m
≤ j ≤ y

m
+ t − 1, changes a zero into a one, i.e., we add only ones,

and |wz′|1 = rz′, we get |Oi−1(. . . (O2(O1(w))) . . .)|1 ≥ rz′ and

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0,
1

|Oi−1(. . . (O2(O1(w))) . . .)|1 + 1
)

< (0,
1

rz′
) < (λ, λ)

for y
m
≤ i ≤ y

m
+ t− 1.

Since Oj,
y
m

+ t ≤ j ≤ y
m

+ t + q − 1, changes a one into a zero, but sz′′ ones of w are not
changed, we have |Oi−1(. . . (O2(O1(w))) . . .)|1 ≥ sz′ and

D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (
1

|Oi−1(. . . (O2(O1(w))) . . .)|1 + 1
, 0)

< (
1

sz′′
, 0) < (λ, λ)

for y
m

+ t ≤ j ≤ y
m

+ t+ q − 1.

For y
m

+ t + q ≤ i ≤ y
m

+ t + q +
y

n
− 2, D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) = (0, 0) < (λ, λ) by

Corollary 2.

Therefore, we have D(Oi, Oi−1(. . . (O2(O1(w))) . . .)) < (λ, λ) for 1 ≤ i ≤ y

m
+ t+ q +

y

n
− 2.

It remains to show that we cannot obtain words 0m for some m. If we assume the contrary,
then there is a number k such that there are operators O1, O2, . . . , Op ∈ PC ∪ PE ∪M with
0k = Op(Op−1 . . . (O2(O1(w))) . . .) and

D(Oi, Oi−1(. . . (O2(O1(w)) . . .)) < (λ, λ) for 1 ≤ i ≤ p. (2)

Without loss of generality we can assume that Oj(Oj−1 . . . (O2(O1(w))) . . .) /∈ {0m | m ≥ 1}
for 1 ≤ j < p (otherwise the word Oj(Oj−1 . . . (O2(O1(w))) . . .) ∈ {0m | m ≥ 1} is con-
sidered instead of 0k). Therefore Op is a mutation operator which replaces a 1 by a zero
and Op−1(Op−2 . . . (O2(O1(w))) . . .) contains exactly once the letter 1. Therefore, we have
D(Op, Op−1(Op−2 . . . (O2(O1(w))) . . .) = (1

2
, 0) by Lemma 3 which is a contradiction to (2).

14 J. Dassow, G. M. Mart́ın, F. J. Vico

We note that the operators of PE are not so common in biology as the edit operators and those
from PC. Thus we now look for a result where we only use the edit operators together with
that of PC.

Theorem 3. For any word w with |w|1 > 0 and any λ with 0 < λ <
1

2
,

LD(w,PC ∪M∪A ∪ E , λ) = {v | |v|0 > 0,
1

|v|1 + 2
< λ} ∪ {1m | m ≥ 1} ∪ {w}.

Proof. Let |w|1 = m ≥ 1, and let v be a word with 1
|v|1 < λ. Then there is a number r ∈ N+

such that 1
mr
≤ λ. Using r − 1 times operators from PC which copy w, we get wr. Moreover,

|wr|1 = mr and thus 1
|wr|1 < λ. All the disruptions of these operators are (0, 0) by Corollary 2.

Starting from wr, by Theorem 1, we can construct a sequence of operators O1, O2, . . . Op such
that

• v = Op(Op−1 . . . (O2(O1(w
r))) . . .) and

• D(Oi, Oi−1(. . . (O2(O1(w)) . . .)) < (λ, λ) for any 1 ≤ i ≤ p.

This proves v ∈ LD(w,PC ∪M∪A∪ E , λ). As in the part of the proof of Theorem 1, we can
show that no further words can be generated (in the notation from that proof, the operators
from PC cannot be used for Op by the choice of v).

Therefore, in this section we have proven that the expressive capability of the set of opera-
tors {M,PC,PE} while keeping a low disruption, is higher than the expressive capability of
{M,A, E}, {M,A}, {M,PC} and {M,A, E ,PC}. This is because with the set of operators
{PC,PE} any length can be obtained without disruption, and then with the operatorsM, that
in the most of cases have a very small disruption, we get the symbols in the right position.

6. Discussion

In this paper we started the investigation of iterated applications of some bioinspired operators
with the additional requirement that the disruption is (very) small in each step. In one case
(Theorem 2) we were able to generate all words which correspond to non-empty regular lan-
guages. However, from a biological point of view, the other results are also satisfactory because
the genotypes have to contain a lot of information, i.e., the words under consideration have to
be long and to contain a sufficiently large number of ones. This means that the assumptions
of Theorem 1 are satisfied and all words of biological interest can be obtained by Theorems 1
and 3.

In the literature one can find nice algorithms to determine the minimal number of edit operators
which transform a given word w into another given word v (see e.g. [6]). It remains to search for

Evolving under Small Disruption 15

good algorithms where the additional requirement of small disruption in any step is satisfied.
Finally, a future research line will be to study whether the results presented in this paper are
also satisfied for more complex devices than CUDFA.

Acknowledgments

The authors gratefully acknowledge the useful suggestions and comments of the unknown ref-
erees.

References

[1] ALHAZOW, A., DASSOW, J., MARTÍN-VIDE, C., ROGOZHIN, Y., TRUTHE, B., On Net-
works of Evolutionary Processors with Nodes of Two Types, Fundamenta Informaticae 91 (2009),
1–15.

[2] CASTELLANOS, J., MARTÍN-VIDE, C., MITRANA, V., SEMPERE, J., Solving NP-complete
Problems with Networks of Evolutionary Processors, Lecture Notes in Computer Science 2084
(2001), 621–628.

[3] CSUHAJ-VARJÚ, E., MITRANA, V., Evolutionary Systems: A Language Generating Device
Inspired by Evolving Communities of Cells, Acta Informatica 36 (2000), 913–926.

[4] DASSOW, J., MARTÍN, G., VICO, F., A Similarity Measure For Cyclic Unary Regular Lan-
guages, (submitted).

[5] DAVEY, M., MACKAY, D., Reliable Communication over Channels with Insertions, Deletions,
and Substitutions, IEEE Transactions on Information Theory 47 (2001), 687–698.

[6] GUSFIELD, D., Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology, Cambridge University Press, New York, 1997.

[7] JÜRGENSEN, H., KONSTANTINIDIS, S., Error Correction for Channels with Substitutions,
Insertions, and Deletions, Lecture Notes in Computer Science 1133 (1996), 149–163.

[8] MESSER, P., ARNDT, P., LÄSSIG, M., Solvable Sequence Evolution Models and Genomic
Correlations, Phys. Rev. Lett. 94 (2005).

[9] OHNO, S., Evolution by Gene Duplication, Springer, 1970.

[10] OOMMEN, B., String Alignment with Substitution, Insertion, Deletion, Squashing, and Expan-
sion Operations, Information Sciences 83 (1995), 89–107.

[11] OOMMEN, B., LOKE, R., Pattern Recognition of Strings with Substitutions, Insertions, Dele-
tions and Generalized Transpositions, Pattern Recognition 30 (1997), 789–800.

[12] ROZENBERG, G., SALOMAA, A., Handbook of Formal Languages, Springer, 1997.

[13] SAAKIAN, D., Evolution Models with Base Substitutions, Insertions, Deletions, and Selection,
Phys. Rev. 78 (2008).

[14] ZHANG, J., Evolution by Gene Duplication: An Update, Trends in Ecology and Evolution 18
(2003), 292–298.

