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Computación, Escuela Técnica Superior de Ingenierı́a Informática, Universidad de Málaga, Málaga, Spain, 3 Instituto de Neurociencias de Alicante,
Universidad Miguel Hernández-Consejo Superior de Investigaciones Cientı́ficas, Alicante, San Juan de Alicante, Spain

Background. The neuronal cortical network generates slow (,1 Hz) spontaneous rhythmic activity that emerges from the
recurrent connectivity. This activity occurs during slow wave sleep or anesthesia and also in cortical slices, consisting of
alternating up (active, depolarized) and down (silent, hyperpolarized) states. The search for the underlying mechanisms and
the possibility of analyzing network dynamics in vitro has been subject of numerous studies. This exposes the need for
a detailed quantitative analysis of the membrane fluctuating behavior and computerized tools to automatically characterize
the occurrence of up and down states. Methodology/Principal Findings. Intracellular recordings from different areas of the
cerebral cortex were obtained from both in vitro and in vivo preparations during slow oscillations. A method that separates up
and down states recorded intracellularly is defined and analyzed here. The method exploits the crossover of moving averages,
such that transitions between up and down membrane regimes can be anticipated based on recent and past voltage dynamics.
We demonstrate experimentally the utility and performance of this method both offline and online, the online use allowing to
trigger stimulation or other events in the desired period of the rhythm. This technique is compared with a histogram-based
approach that separates the states by establishing one or two discriminating membrane potential levels. The robustness of the
method presented here is tested on data that departs from highly regular alternating up and down states. Conclusions/

Significance. We define a simple method to detect cortical states that can be applied in real time for offline processing of
large amounts of recorded data on conventional computers. Also, the online detection of up and down states will facilitate the
study of cortical dynamics. An open-source MATLABH toolbox, and Spike 2H-compatible version are made freely available.
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INTRODUCTION
The slow (,1 Hz) oscillation, as described in cortical neurons of

naturally sleeping [1,2] and anesthetized [1,3–5] cats, as well as in

the sleep EEG and magnetoencephalograms of humans [6–8]

comprises a periodic fluctuation between a hyperpolarized

membrane potential or down state (characterized by the absence

of network activity), and a depolarized membrane potential, or up

state (where action potentials use to occur).

The slow oscillation is cortically generated [9] and takes place as

a stable synchronous network event as demonstrated by multiple

intra- and extracellular recordings in the intact brain [10–12]. Its

generation by the cortical network is backed by the fact that it is

also generated in deafferented cortical slabs [13] and in cortical

slices maintained in vitro [14]. A large number of studies have been

published in recent years dealing with the cellular and network

mechanisms underlying this slow rhythm and other related

aspects, such as the effect of up and down states on synaptic

transmission and excitability [15–21].

In order to understand the cellular and network properties that

modulate slow membrane potential fluctuations, it is often

required to detect, separate and quantify the up and down states

for further detailed data analysis. To achieve this processing of

intracellularly recorded membrane potential fluctuations some

methods deal with the data in a manual fashion, while others

implement basic automated procedures.

Metherate and Ashe (1993) [22] first carried out the

quantification of the two-state behavior based on the membrane

potential distribution. That graphical tool operates on the

characteristic bimodal distribution of the membrane potential,

best fitted to a dual Gaussian function, and has been extensively

used since then [14,19,23–33]. A peak at the hyperpolarized

membrane potential values identifies the down state, separated

from the depolarized up state by a well-defined central valley,

indicative of fast transitions between the two states. Recently,

a moving average of the membrane potential and its standard

deviation (SD) has been presented [12] to separate the two states.

In this case the down state presents a sharp peak at hyperpolarized

potentials with low SD values, while the up state shows a broader

hill at more depolarized potentials and higher SD values. A

different approach based on the spectral difference of the LFP

(local field potential) signal has been recently proposed to

distinguish between up and down states [34]. This method also

relies on the bimodal distribution of the membrane potential.

The basic assumption underlying the approaches based on the

bimodal distribution of the membrane potential is that the

proportion of the area of the histogram under each of the peaks

represents the proportion of time spent in each state, and

consequently the mode of each peak is the preferred membrane
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potential in each state. While this is true for very stable recordings,

data is typically affected by fluctuating electrical and physiological

conditions.

According to this property, these approaches proceed by

performing certain measurements on the biphasic histogram. A

basic operation is to determine the threshold potential that delimits

both states. This is obtained by computing the modes of the

distributions (or, alternatively, visually identifying the peaks) and

finding either the potential associated with the lowest bar between

them, or the midpoint between the peaks if a broad valley

separates them [35]. More reliable transitions can be performed

by setting two thresholds, e.g., at one fourth and three fourths of

the distance between the peaks [23]. The areas separated by these

delimiting values are a good estimation of the time spent in each

mode.

Despite the simplicity and popularity of the histogram-based

methods, there are some disadvantages related to its use:

1. The intracellular membrane potential recordings must be

stable over the time window used to compute the histogram.

However, this ideal scenario is frequently complicated by

membrane potential drift, changes in the electrode seal,

movement artifacts (e.g. respiratory movements, heartbeat) or

other factors, particularly when large time spans are to be

considered. These changes will tend to blur the standard

bimodal distribution of up and down states, making it hard to

separate the two states based simply on threshold.

2. Although the threshold can be automatically determined,

there is a certain tendency to establish the settings manually

according to the expert assessment, even when dealing with

very stable recordings and well-differentiated bimodal behav-

ior. A reliable computerized method for peak identification in

the histogram of membrane potentials from recordings that

are not obtained in ideal conditions could be hard to find.

An increasing amount of ‘‘non-standard’’ electrophysiological

data (from anesthetized animals and slice recordings) and in

addition long duration recordings demand automated and reliable

methods for up and down states identification and characteriza-

tion. We present an automatic and easy-to-use method that is able

to identify and to reliably separate the two states of membrane

potential, characteristic of slow wave sleep and under certain

anesthesia: MAUDS (for Moving Averages for Up and Down

Separation). Furthermore, the method has been engineered to be

used online, in such a way that the up and down states can be

visualized in real-time superimposed to the original signal, and the

experiment design can include triggering events. It also provides

immediate information on the statistics of the up versus down

periods to evaluate the behavior of the network.

METHODS

Experimental Methods
Slices preparation The methods for preparing cortical slices

were similar to those described previously [14]. Briefly, cortical

slices were prepared from 2- to 6-month-old ferrets of either sex

that were deeply anesthetized with sodium pentobarbital (40 mg/

kg) and decapitated. Four hundred-micrometer-thick coronal slices

of the visual cortex were cut on a vibratome. A modification of the

technique developed by [36] was used to increase tissue viability.

After preparation, slices were placed in an interface-style recording

chamber and bathed in ACSF containing (in mM): NaCl, 124;

KCl, 2.5; MgSO4, 2; NaHPO4, 1.25; CaCl2, 2; NaHCO3, 26; and

dextrose, 10, and was aerated with 95% O2, 5% CO2 to a final pH

of 7.4. Bath temperature was maintained at 34–35uC. Intracellular

recordings were initiated after 2 hr of recovery. In order to induce

spontaneous rhythmic activity, the solution was switched to ACSF

containing (in mM): NaCl, 124; KCl, 3.5; MgSO4, 1; NaHPO4,

1.25; CaCl2, 1–1.2; NaHCO3, 26; and dextrose, 10.

Animal preparation for in vivo recording Intracellular

recordings in vivo from the primary visual cortex of cats were

obtained following the methodology that we have previously

described [37]. In short, adult cats were anesthetized with

ketamine (12–15 mg/kg, i.m.) and xylazine (1 mg/kg, i.m.) and

then mounted in a stereotaxic frame. A craniotomy (3–4 mm

wide) was made overlying the representation of the area centralis

of area 17. To minimize pulsation arising from the heartbeat and

respiration a cisternal drainage and a bilateral pneumothorax were

performed, and the animal was suspended by the rib cage to the

stereotaxic frame. During recording, anesthesia was maintained

with i.m. injections of both ketamine (7 mg/kg) and xylazine

(0.5 mg/kg) every 20–30 min. The heart rate, expiratory CO2

concentration, rectal temperature, and blood O2 concentration

were monitored throughout the experiment and maintained at

140–180 bpm, 3–4%, 37–38uC, and .95%, respectively. The

EEG and the absence of reaction to noxious stimuli were regularly

checked to insure an adequate depth of anesthesia. After the

recording session, the animal was given a lethal injection of sodium

pentobarbital. Animals were cared for and used in accordance

with the Spanish regulatory laws (BOE 256; 25-10-1990) which

comply with the EU guidelines on protection of vertebrates used

for experimentation (Strasbourg 3/18/1986).

Rat barrel cortex Adult Wistar rats (250–300 g) were used for

recordings in S1 cortex. Anesthesia was induced by intraperitoneal

injection of ketamine (100 mg/kg) and xylazine (8–10 mg/kg). The

animals were not paralyzed. Maintenance dose of ketamine was

75 mg/kg/h. Anesthesia levels were monitored by the recording of

low-frequency electroencephalogram (EEG) and the absence of

reflexes. Rectal temperature was maintained at 37uC. Once in the

stereotaxic apparatus, a craniotomy (262 mm) was made at

coordinates AP –1 to 23 mm from bregma, L 4.5–6.5 mm. After

opening the dura, extracellular recordings were obtained with

a tungsten electrode (FHC, Bowdoinham, ME, USA). Extracellular

recordings were used to adjust whisker stimulation (not shown) and

to monitor the occurrence of slow oscillations. Intracellular

recordings were obtained within 1 mm from the extracellular

recording electrode. Whisker stimulation. A puff of air given

through a 1 mm tube placed in front of the whiskers (10–15 mm)

was used for stimulation. The air puff (10 ms) was controlled by

a stimulator and delivered by a Picopump (WPI, Sarasota, FL). Its

pressure was adjusted such that it would evoke a response that was of

50–100 mV in the extracellular recordings and between 5 and

10 mV in the intracellular recordings.

Recordings and stimulation Sharp intracellular recording

electrodes were formed on a Sutter Instruments (Novato, CA) P-97

micropipette puller from medium-walled glass and beveled to final

resistances of 50–100 MV. Micropipettes were filled with 2 M

potassium acetate. Recordings were digitized, acquired and

analyzed using a data acquisition system (Power 1401; Cambridge

Electronic Design, Cambridge, UK) and its software (Spike 2). Two

different implementations of MAUDS where integrated in Spike 2:

(1) using its built-in script language, and (2) as an assembler program

that can be run on the sequencer included in the system. The

functioning of these implementations has been tested and is further

discussed in the results section. These programs, as well as

MATLAB (The MathWorks, Inc.) implementations, are distributed

as open source, and can be fetched from a web site (http://www.geb.

uma.es/mauds), where a tutorial, examples, and a forum for MAUDS

users are also available.

Separating Up and Down States
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Analytical Methods
The strategy we propose for characterizing up and down states in

electrophysiological data is based on a method widely used in

financial data analysis: crossover of moving averages.

Methods for financial time series forecasting often involve the

linear transformation (averaging) of past data in order to track

trends and predict trend reversals [38]. Transitions between up

and down membrane regimes can be anticipated in a similar way:

current and previous dynamics can predict a forthcoming change

to a depolarized or hyperpolarized membrane. In the field of

signal processing such systems are referred to as real-time

smoothers, and its implementation is equivalent to a low-pass

filtering with two cut-off frequencies.

We consider a time series of intracellular membrane potential

samples. xi represents a sample in mV of membrane potential values.

This signal is smoothed by computing for each sample a value that

averages the membrane potential through a given time window.

In forecasting systems, the standard form of a moving average

over the last n values is given at time t by the following expression:

mt~
1

n

Xt

i~t{nz1

xi ð1Þ

A family of implementations can be obtained when the terms in

the summation are scaled according to some weighting function.

One of such functions weights each value with a constant that

decreases exponentially with the distance to the current value. The

main property of this exponential weighting is that it gives a greater

importance to recent values, while integrating over a wide

temporal window. The price is a higher computational cost. This

shortcoming must be taken into account when filtering physiolog-

ical data recorded for a large period of time at a high sample rate.

In such cases, the window size could extend along more than one

hundred thousand values (2–3 s depending on the acquisition

frequency). However, the implementation of exponential weighting

with a first-order difference equation solves this computational

problem. Equation (2) computes the exponential moving average of

the last n values. It proceeds by combining the contribution from the

previously averaged value, and the current value of the signal.

mt~amt{1z(1{a)xt ð2Þ

where a~
n

nz1
, and then 1{a~

1

nz1
(note that a M [0,1), i.e. 1 is

excluded).

The recursion reduces the complexity of the original loop to an

order of magnitude (two products and one addition). This

expression allows the smoothing of large data vectors in real time

on a conventional computer.

Higher values of n will expand the range of past values that

influence the current value, strengthening the smoothing effect of

the average. Parameter n is adjusted according to the dynamics of

the signal. For example, in trading applications, trend tracking

indicators use wide and narrow averaging windows for highly

volatile and non-volatile prices, respectively.

Periods where a signal keeps its tendency to increase or decrease

(trending periods) can be tracked with fitted exponential moving

averages (EMAs), while changes in this trending behavior (trend

reversal) is detected by crossing over two EMAs with different

window sizes. In the financial world these two curves that follow

the signal are generally termed short-term (or fast) and long-term

(or slow) averages. For example, a short-term EMA integrates

something like the last two weeks of the signal (say a commodity’s

price), while the long-term EMA averages the last three months.

Crossings of the short-term EMA from values above the long-term

curve to values below it indicate a possible change from the

current trend to increase (a positive slope characteristic of buying

periods) to a new decreasing period (negative slope, or selling

cycle), while changes from below to above the long-term EMA

indicates a change from the decreasing trend to an increasing one

(negative to positive slope).

The dynamics of the electrophysiological signal that we intend

to characterize depends on several factors: cortical region, level of

anesthesia, depolarizing or hyperpolarizing currents, etc. While

the expected frequency is about 1 Hz, in practice (including in vitro

and in vivo recordings) this variable ranges between 0.2 and 1 Hz.

This variability makes it necessary to adjust the method to the

dynamics of each particular signal. A broad estimation of the

frequency of the recorded signal suffices to compute suitable values

for the window sizes of both EMAs. Expressed in seconds, the size

of the windows for the slow average (Ws) and the fast average (Wf)

are given by the following equations:

Ws~2(4{p) ð3Þ

Wf ~6Ws ð4Þ

where p is the estimated period (the inverse of the frequency) of the

wave to be characterized. Here, equation (3) is defined such that

the period of the wave is expected to fall below four seconds (or

frequencies higher than 0.25 Hz). In a standard situation

(frequency around 1 Hz) the slow EMA will be six times faster

than the original signal.

The crossing points of the two EMAs are good approximations

of the transitions between up and down states (i.e. of both, up and

down initiation). However, some extra processing around these

points can determine more precisely the onsets and offsets. The

results clearly improve by analyzing the slope of the signal with

a simple momentum operation. The momentum is another

indicator widely used in the financial world to measure market’s

sentiment. It is defined as the difference between the current value

of the signal and a previous value, with respect to the time

difference between them. It operates, therefore, as an estimate of

the slope. More precisely, equation (5) shows this relation.

mt~
Vt{Vt{k

k
f ð5Þ

where k is the time difference, and f is the sampling frequency. For

example, if the membrane potential recorded at time t is –70 mV,

and the value that was sampled 125,000 steps before was –60 mV,

a frequency of 25 kHz would give a momentum of –20 mV/s,

which means that around time t the membrane tends to

hyperpolarize at a rate of some –20 mV every second.

This estimation of the slope is an indicator of the shape of the

curve where the transition takes place. When the tendency to

become hyperpolarized slows down at the end of an up state, we

enter the flat hyperpolarized region of the down state. In terms of

potential’s slope, this is like moving from low (negative) values to

a zero slope. The reverse is true for entering the up state: the slope

increases as the membrane depolarizes. Transitions are therefore

computed as the precise moments around the crossing points

where the momentum raises over a certain threshold. This limit

value is negative when transition is made from up to down, and

positive for down to up transitions.

Separating Up and Down States
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Finally, those excursions of the membrane potential (identified

by the method as up or down states) with duration shorter than

40ms were filtered out, as in [12,34].

The combination of these two methods (EMAs overcrossing,

and a fine analysis of membrane potential around the crossing

points) reliably characterizes data in ideal and noisy conditions,

even in situations where the histogram-based approach might fail.

In the rest of the paper the proposed method will be referred as

MAUDS and its performance will be tested against the traditional

method in differently shaped intracellular bistate data. Blue boxes

have been used in the figures to highlight the detected up states.

RESULTS
Up and Down states were identified in intracellular recordings

obtained from the cerebral cortex of both in vitro and in vivo

preparations from different areas of the cortex (visual, prefrontal and

somatosensory). In the first part of the results we describe the

properties of MAUDS analyzing the recordings with the MATLAB

scripts in an offline fashion. In the second part of the results we

demonstrate how this method can also be used online, thus allowing

to exploit the signals that it generates in order to trigger other events

or to obtain immediate statistics of time distribution of up versus down

states under different conditions. The detection of up and down

states occurring in the network can also be carried out by applying

MAUDS to the local field potential (LFP) (Fig. S1), detection that

shows a high correlation with the one from intracellular recordings

obtained simultaneously and in close vicinity to the LFP.

The characteristic shape of neuronal membrane potential

during slow oscillations shows two clearly differentiated states of

membrane potential: a depolarized membrane (up states) and

a hyperpolarized one (down states), with relatively fast transitions

between them. As said before, in short recordings, up and down

states are often identified by thresholding the membrane potential.

However, this method frequently fails in long recordings due to

membrane potential drifting, presence of spindles, and other types

of interferences like electronic noise or movement artifacts while in

Figure 1. Offline separation of standard up and down states. A. Intracellular recording in vivo from a neuron in cat primary visual cortex. Time
marks in the horizontal axes of the traces indicate 1 second interval (relative labels not shown for clarity). A fast EMA is represented as a green line
and a slow EMA in red line. The points of crossing between both of them have been used to calculate the beginning and end of up states,
highlighted with a blue box. Same in B. B. Intracellular recording in vitro from a supragranular neuron in a prefrontal cortex slice from the ferret. C.
Histogram of the membrane potential values corresponding to the trace in A. It shows two clearly differentiated states separated by a transitional
valley (see Gaussian fit in green superimposed to the histograms, with parameters 276.6 and 267.0 for the mean, 0.8 and 5.3 for the standard
deviation). D. Histogram of the membrane potential values corresponding to the trace in B (fitting curves with parameters 264.6 and 257.0 for the
mean, 0.5 and 7.6 for the standard deviation).
doi:10.1371/journal.pone.0000888.g001
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vivo (heartbeat pulsation, respiratory movements, etc). Even when

the aim of the experimentalists should be to eliminate all these

artifacts, we will exploit them here in order to test the robustness of

the described method against other commonly used ones. Two

problems have to be solved for a good characterization of the

states: (1) determining the periods where depolarized (up) or

hyperpolarized (down) membrane potential take place, and (2)

identifying the precise points in time where these states actually

start and end. As explained in the previous section, MAUDS

tackles these problems with an initial broad identification of the

down states by overcrossing two moving averages, and a later

refinement of the initiation and termination points by a discrete

processing of the membrane potential evolution in the transition

interval. In general, we have observed that MAUDS performs well

for any value of the long-term EMA in a wide range. On the other

hand, the characterization is slightly more sensitive to the fast

EMA. An optimum window size would smooth efficiently the high

frequency changes of the membrane potential (isolated spikes and

artifacts), being also quick enough to detect fast excursions of the

signal to highly hyperpolarized regions.

Figure 2. Offline up and down states separation in drifted recordings. A. In vivo intracellular recording from a neuron in the primary visual cortex
from the cat. A drift in the membrane potential is illustrated. B. Intracellular recording in vitro from a neuron in the prefrontal cortex of the ferret. The
slow EMA follows the average membrane potential, providing a value of reference that discriminates the up and down levels. See the high
frequencies detailed in the inset. Time marks in the horizontal axes of the traces indicate 1 second interval. C and D. Histograms corresponding the A
and B traces respectively. Note that in the drifted recordings the bimodality of the Vm values is not as clear as in stable recordings like in Fig. 1.
doi:10.1371/journal.pone.0000888.g002
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We studied periods of $ 900 seconds of intracellular fluctuations

in recordings from neurons in the visual cortex of the anesthetized

cat, from neurons in the somatosensorial cortex in the anesthetized

rat, and from neurons recorded in oscillating ferret cortical slices

obtained from prefrontal or visual cortices from the ferret (n = 20).

The traces in (Fig. 1A, 1B) were recorded from two different animals

and show the standard up-down behavior. These states are efficiently

separated for a wide range of fast and slow EMAs. Under these

recording conditions, the histograms show two different distributions

of membrane potentials (Fig. 1C and D). Therefore, a simple

thresholding is expected to reliably separate up and down states.

(Overshadowing blue boxes show the precise limits of the up states

found by MAUDS, in this and the following figures.)

Non-standard up and down states arise when the recording

scenario departs from these ideal conditions. The periodicity and

homogeneity of the standard up and down states disappears,

yielding either irregular fluctuations (induced for example by noise

or respiration if in vivo), or high frequencies that blur the transitions

Figure 3. Offline detection of up and down states by MAUDS in special situations. A and B. Correctly identifying up states where no action
potentials occur in highly hyperpolarized neurons recorded in vitro in prefrontal cortex from the ferret. Note that in B there is correct detection of
down states in spite of the repetitive occurrence of short lasting sharp events. C. Filtering isolated synaptic events occurring in the middle of a down
state. D. Sorting suspicious down states intermingled into long-lasting up states (third up state). C and D correspond to intracellular recordings
obtained in vivo from cat’s primary visual cortex. In all panels time marks in the horizontal axes of the traces indicate 1 second interval.
doi:10.1371/journal.pone.0000888.g003
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(especially in the down states initiation). While MAUDS can still

deal with these situations (traces and superimposed EMAs in Fig. 2,

A and B), the resulting histogram rapidly looses the bimodal shape

(Fig. 2C and D), making it harder to decide where the right

threshold should be located. Since the duration of up and down

states presents a large variability, it is also difficult to filter false

transitions according to this feature. The histograms performed

over longer recording sessions simply showed a smoothed shape,

but failed to better define the two-peaks picture.

Another undesired artifact is signal drifting, caused by changes

in the junction potential. In principle this effect can be prevented

(chloriding silver electrodes, using an agar bridge, etc.) and

compensated by commercial amplifiers, but it is usual to obtain

long sequences of data where slow shifts (e.g. Fig, 2A) or fast

excursions of the membrane potentials can be observed. These

variations in the apparent membrane potential do not necessarily

reflect any change in the current flowing through the membrane

but an offset of the membrane potential value. Therefore, the

bistable fluctuation of the membrane potential during rhythmic

activity remains, allowing it to be studied in spite of the unstable

wave it is resting on (Fig. 2).

In addition to drifted recordings, the proposed method correctly

separates up and down states where special events take place, such

as the absence of spiking activity in a hyperpolarized membrane

with subthreshold oscillations (Fig. 3, A and B traces), the presence

of isolated synaptic potentials (or even spikes) along well-defined

down states (Fig. 3C shows a synaptic potential between the first

and second up states), frustrated down state initiations that might

generate misclassifications (Fig. 3D), or recordings during re-

spiratory or other movement artifacts (Fig. 4A), where the

underlying slow oscillation is still present (detailed in Fig. 4B).

The histograms of membrane potential show that some bimodal

distribution remains (Fig. 4D) over stable intervals, but it vanishes

when applied to a few seconds interval (Fig. 4C shows the

histogram for the trace on Fig. 4A).

In order to compare the performance of MAUDS with that of

the histogram method, 5 recordings containing standard slow

oscillation were selected (for an overall time of 145 s) and the

corresponding transitions were obtained based on the histogram

(best manual fitting) and with MAUDS, where a broad estimation

of the oscillation frequency parameterized the slow and fast EMAs.

With regard to effectivity, both methods correctly identified all the

Figure 4. Offline identification of up and down states in intracellular recordings with artifacts. A. Intracellular recording from primary visual cortex
of the cat in vivo. There is a respiratory movement artifact that generates rhythmic drifts of the membrane potential. B. Detail of a portion of the
membrane potential shown in A (second 15, 16, 17). Time marks in the horizontal axes of the traces indicate 1 second interval. C and D. The
distributions of membrane potentials in panels A and B, respectively.
doi:10.1371/journal.pone.0000888.g004
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up and down states present in the recordings. On the other hand,

the precision of MAUDS was compared to the histogram-based

characterization according to the Coincidence Index (CoIn)

described in [34]. The mean degree of overlap computed between

the two series of up and down states was 91.760.8%, with

a 97.761.6% CoIn for the up states, and a 85.762.8% for the

down states. This value shows that MAUDS has a high precision

in determining the transitions with respect to the traditional

histogram approach.

Although the histogram method performs similarly in charac-

terizing standard oscillations, the previous examples show that

a fixed threshold will not characterize well the underlying slow

oscillation in non-standard recordings. Determining the threshold

for standard up and down states can easily be done in a manual

way, but a criterion to deal with non-standard behavior (as in the

previous examples) has not been proposed yet in the literature. For

this reason, MAUDS performance can not be compared to

a histogram-based characterization of non-standard slow oscilla-

tions.

In order to use MAUDS for the online analysis of intracellular

recordings (Movie S1), the script was integrated in the Spike 2

(Cambridge Electronic Design, Ltd.) data acquisition software. As

described in the Methods section, two different implementations

have been coded and tested for online characterization. While the

characterization of the electrophysiological signal is equivalent in

both versions, the computational resources and times used differ

significantly. The script version has the advantage of being coded

in a high-level programming language, which is easy to understand

and update by potential users. In contrast, the assembly version

results extremely cryptic and is not suited for further modification

by users. On the other hand, the script runs on the computer’s

processor, which means that it shares the resources with the

recording process (that has a higher priority) resulting in

characterization times that do not allow real-time triggering

(around 1 s on a Pentium IV processor). Furthermore, the assembly

language runs on the sequencer (see Methods for details), and has

the advantage of a processing time that is completely independent

of the computational resources, the system’s load, and the

recording process itself. The sequencer processes 20 instructions

per millisecond, allowing a real-time interaction with the

experiment: stimuli can be triggered 1 ms after the transition

has been detected.

The assembly version was used to perform online characteriza-

tion and pulse triggering. The detection of the transitions between

up and down states was set to generate a 1-bit digital signal,

differentiating the current up or down state present in the voltage

recordings. This signal was recorded and used externally to trigger

events by connecting it to other equipment. Online analysis of up

and down states was performed in more than 40 intracellular

recordings during slow oscillations occurring in the cortex of

anesthetized animals in vivo (visual, somatosensory) and in vitro

(visual, prefrontal). The results of the online analysis are illustrated

in Figs. 5 and 6. Figure 5 represents the detection of up states

during three different intracellular recording in vivo: supra- and

subthreshold up states of different durations and amplitudes are

equally detected during the recording. Identification of up and

down states during recording from a fast spiking neuron (Fig. 5A)

in primary visual cortex, during a drifted recording from a regular

spiking cell (Fig. 5B) or subthreshold up states recorded from rat

barrel cortex (Fig. 5C) are illustrated. Online analyzed drifted

recordings (Fig. 5B) were still well identified. In Fig. 5B a small

depolarization remained undetected. However this depolarization

could hardly be defined as up states even by visual inspection and

manual classification.

In vitro recordings were also analyzed online (Fig. 6A,B; Movie

S1), and subthreshold up states are displayed, along with the

population activity reflected in the multiunit recording in close

vicinity of the intracellularly recorded cell. In a different neuron

(Fig. 6B), the signal generated by the detection of the initiation of

the up states was fed into the intracellular amplifier (Axoclamp 2B,

Molecular Devices Co.) in order to generate a step of hyperpolarizing

current. By regulating the delay of occurrence of the current

injection, the input resistance of the neuron could be measured at

different times with respect to the initiation of the up states. This

signal could have been used equally for the triggering of other

events of stimulation or analysis.

Online detection of up states was also used to average up states

and thus determine the shape of the up state rising time, as it was

done for slow oscillations recorded in the barrel cortex of the

ketamine-anesthetized rat (Fig. 6 C, D). A puff of air delivered to

the whiskers induced a consistent sensory response that was

recorded intracellularly in the barrel cortex (Fig. 6F). The signal

generated by the online detection of the up states’ initiation was

also used to trigger the sensory responses at particular intervals

after the initiation of the up states, thus allowing systematic

average of different trials (Fig. 6G).

DISCUSSION
Identifying the transitions between up and down cortical states is

sometimes difficult and has to rely on the subjective opinion of the

researcher. For example, it is not obvious when a short de-

polarization should be wide enough to be considered an up state or

when the absence of spikes is a necessary condition to determine

Figure 5. Online detection during intracellular recordings in vivo. A.
Up states recorded in a fast spiking neuron in the primary visual cortex
of the cat. B. Online detection of up and down states in an intracellular
recording in cat primary visual cortex during subthreshold and
suprathreshold up states in a drifted recording (note that due to the
drift the suprathreshold up states seem to be more hyperpolarized than
the subthreshold ones). In A and B spikes have been truncated. C.
Online detection of up states recorded in the barrel cortex of a rat. In all
these cases the animals were anesthetized with ketamine and xylazine
(see Methods). In all panels time marks in the horizontal axes of the
traces indicate 1 second interval.
doi:10.1371/journal.pone.0000888.g005
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the presence of a down state. Understanding the cellular and

network mechanisms that generate the two-state behavior

generated by the cortical network therefore demands a robust

and reliable method for up and down states identification. Here we

have demonstrated that the traditional histogram-based approach

originally described by Metherate and Ashe (1993) [22] and

extensively used afterwards (e.g. [14,19,23–26,28–33]), while

being an efficient graphical tool for manual threshold determina-

tion under ideal conditions, lacks the adaptive computational

properties to deal with fuzzy transitions, occurring during

recordings that are not stable, or drifting, that develops quite

often over long recordings.

Trend-following techniques of financial trading applications

combined with problem-specific knowledge yields a method that

robustly separates up and down states, in both ideal and fuzzy

situations. This work formalizes such a method and analyses its

Figure 6. Online detection of up states and their use as triggers. A. Online detection of up states during in vitro intracellular recordings in primary
visual cortical slices from the ferret. Bottom trace: extracellular multiunit recording representing the population firing in the vicinity from the
intracellular recorded neuron. B. Online detection of up states in a recording from ferret oscillatory slices, primary visual cortex. In this case the
beginning of the up state has been used to trigger a hyperpolarizing pulse (20.2 nA) at different times with respect to the occurrence of the up state
in order to estimate changes in the input resistance. C. Slow oscillations in the barrel cortex of the ketamine anesthetized rat. Unfiltered local field
potential (top) and intracellular suprathreshold recording (bottom). D. Averaged up states (n = 20) using the detection of initiation of up state as
a point of reference with online MAUDS analysis, LFP (top) and intracellular recording (bottom). E. Subthreshold oscillations. F. Averaged intracellular
responses to a puff of air to the whiskers (n = 20). The sensory response is highlighted with a yellow box. Same in G. G. Averaged up states while
giving the whisker stimulation at regular intervals after the initiation of the up state (5 in each case), four intervals are represented.
doi:10.1371/journal.pone.0000888.g006
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performance in different situations characteristic of ill-defined

biphasic behavior: (1) irregular shape of up and down states –

variations in amplitude, frequency– (Fig. 3) (2) imprecise down

state initiation, (3) signal drifting (caused by changes in the liquid

junction potential at the electrode tip), or (4) artifacts due to

movements during in vivo recordings, such as respiratory move-

ments or heartbeat (Fig. 2).

The experiments carried out for up and down state separation

show that histogram-based methods will perform well in ideal

situations (as widely reported in the literature), but will fail if the

signal differs from this harmonic, well-defined and non-trended

behavior. On the other hand, MAUDS efficiently separates up and

down states in ideal (closely fitting the best histogram-based

characterization) as well as in irregular oscillation. The cases studied

in this work are common in most intracellular recordings, and can be

analyzed with an adaptive method of the sort of MAUDS.

Well-defined up and down states have been widely studied in the

past, but how this bistate behavior departs from ideal conditions has

not been reported in the literature, perhaps because of the lack of

objective methods to characterize irregular situations. Such a method

will allow formal quantification of these excursions, and must be

based on an extended definition of the up and down states that meets

conflicting experimenters’ criteria. The authors believe that an

algorithmic approach similar to the one presented here would

definitely be a good starting point in this direction.

In order to integrate the online and offline versions, the model

has been defined and tested with EMAs that compute only

previous values. This is at the cost of a delay in the turning points

obtained, which affects the overall performance. An offline version

based on EMAs that average past and future intervals of time for

each value would improve the results shown here. In spite of this

delay, the predictive character of the online version has been used

experimentally to trigger stimuli and to manipulate cell membrane

voltage at specific times along the oscillation. This is of great

interest for experimentalists to study the impact of up and down

states on signal processing (e.g. changes in conductance or in

synaptic transmission and plasticity). Exponential weighting has

proved to perform well, since it reacts faster, minimizing the lag

between the predictive moving average and the actual data. The

method is also expected to perform well in this type of interactive

experiments, since the presence of sensory stimuli, current

injection, or other manipulations interspersed with the oscillation

will not interfere with the turning points. Only the presence of

short down states might be problematic, since the artifacts might

cut them. The general approach exposed here would be easily

fitted to the conditions of particular experimental settings.

The method formalized in this paper has been coded as a Spike

2 script, an assembly program, and also embedded in a MATLAB

toolbox. All these programs are available online as an open-source

code. The MATLAB implementation exploits fast matrix opera-

tions and the powerful graphical capabilities of this programming

language, and can analyze electrophysiological raw data formatted

as ASCII or MATLAB binary files. The code has been optimized

and computes more than a million membrane potential samples

per second on a PIV 2.8GHz with 0.5GB memory (this computer

processes a file containing 10 minutes of intracellular membrane

potential sampled at 25 kHz in some 13 seconds). On the other

hand, the Spike 2 implementations are designed for online data

processing, allowing real-time characterization and visualization

(script version), and triggering of stimuli (sequencer version).

Further work has to be done in order to improve two different

aspects of MAUDS: (1) the adaptive capabilities of the proposed

method, by automatically setting the window size of the fast EMA,

that can be done based on local membrane potential variability, or

exploring ranges of values where the separation remains stable;

and (2) a complete validation of MAUDS over an extensive set of

intracellular and extracellular data (Fig. S1) recorded in different

cortical areas. While the authors expect a good general

performance, even with minor changes in the parameter set, the

forum set up in the MAUDS website is expected to feedback about

this question, as more experimenters report on the application of

MAUDS to recorded datasets.

SUPPORTING INFORMATION

Figure S1 MAUDS detection of up and down states on the

Local Field Potential recording and comparison with detection in

the intracellular recording. Intracellular (A) and LFP (B)

simultaneous recording in the rat barrel cortex. LFP was recorded

unfiltered. MAUDS analysis has been applied off-line to both

channels independently. Blue boxes highlight the detected up

states in each of the recordings. Applying the concept of

Coincidence Index (CoIn) described in (Mukovski et al. Cerebral

Cortex 17:400, 2007), computed CoIn between both channels was

85.7%, with a 89.3% CoIn for the up states and a 82.1% for the

down states.

Found at: doi:10.1371/journal.pone.0000888.s001 (0.55 MB TIF)

Movie S1 Online detection of up and down states applying

MAUDS to the intracellular recordings. Slow rhythm recorded in

the barrel cortex of an anesthetized rat. Top panel: Online up

states detection (trace going up), Middle panel: Unfiltered LFP.

Bottom panel: Intracellular recording.

Found at: doi:10.1371/journal.pone.0000888.s002 (2.23 MB

SWF)

ACKNOWLEDGMENTS
We thank R. Reig and M. Winograd for their participation in the

experiments, and J.-M. Alonso and L.-M. Martı́nez for their critical

comments on a preliminary version of the manuscript.

Author Contributions

Conceived and designed the experiments: MS YS FV. Performed the

experiments: MS DL YS FV. Analyzed the data: MS DL YS FV.

Contributed reagents/materials/analysis tools: MS DL YS FV JN. Wrote

the paper: MS DL YS FV.

REFERENCES
1. Steriade M, Nunez A, Amzica F (1993) A novel slow (,1 Hz) oscillation of

neocortical neurons in vivo: depolarizing and hyperpolarizing components.

J Neurosci 13: 3252–3265.

2. Steriade M, Amzica F, Contreras D (1996) Synchronization of fast (30–40 Hz)

spontaneous cortical rhythms during brain activation. J Neurosci 16:

392–417.

3. Cowan RL, Wilson CJ (1994) Spontaneous firing patterns and axonal

projections of single corticostriatal neurons in the rat medial agranular cortex.

J Neurophysiol 71: 17–32.

4. Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential

fluctuations in neurons of the cat visual cortex. Neuron 22: 361–374.

5. Stern EA, Kincaid AE, Wilson CJ (1997) Spontaneous subthreshold membrane

potential fluctuations and action potential variability of rat corticostriatal and

striatal neurons in vivo. J Neurophysiol 77: 1697–1715.

6. Achermann P, Borbely AA (1997) Low-frequency (,1 Hz) oscillations in the

human sleep electroencephalogram. Neuroscience 81: 213–222.

7. Amzica F, Steriade M (1997) The K-complex: its slow (,1-Hz) rhythmicity and

relation to delta waves. Neurology 49: 952–959.

Separating Up and Down States

PLoS ONE | www.plosone.org 10 September 2007 | Issue 9 | e888



8. Simon NR, Manshanden I, Lopes da Silva FH (2000) A MEG study of sleep.

Brain Res 860: 64–76.
9. Steriade M, Nunez A, Amzica F (1993) Intracellular analysis of relations

between the slow (,1 Hz) neocortical oscillation and other sleep rhythms of the

electroencephalogram. J Neurosci 13: 3266–3283.
10. Amzica F, Steriade M (1995) Short- and long-range neuronal synchronization of

the slow (,1 Hz) cortical oscillation. J Neurophysiol 73: 20–38.
11. Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow

oscillation as a traveling wave. J Neurosci 24: 6862–6870.

12. Volgushev M, Chauvette S, Mukovski M, Timofeev I (2006) Precise long-range
synchronization of activity and silence in neocortical neurons during slow-wave

oscillations [corrected]. J Neurosci 26: 5665–5672.
13. Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin of

slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10:
1185–1199.

14. Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms

of rhythmic recurrent activity in neocortex. Nat Neurosci 3: 1027–1034.
15. Azouz R, Gray CM (1999) Cellular mechanisms contributing to response

variability of cortical neurons in vivo. J Neurosci 19: 2209–2223.
16. Crochet S, Chauvette S, Boucetta S, Timofeev I (2005) Modulation of synaptic

transmission in neocortex by network activities. Eur J Neurosci 21: 1030–1044.

17. Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical
network activity in vivo is generated through a dynamic balance of excitation

and inhibition. J Neurosci 26: 4535–4545.
18. McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T

(2003) Persistent cortical activity: mechanisms of generation and effects on
neuronal excitability. Cereb Cortex 13: 1219–1231.

19. Petersen C, Hahn T, Mehta M, Grinvald A, Sakmann B (2003) Interaction of

sensory responses with spontaneous depolarization in layer 2/3 barrel cortex.
Proc Natl Acad Sci U S A 100: 13638–13643.

20. Sachdev RN, Ebner FF, Wilson CJ (2004) Effect of subthreshold up and down
states on the whisker-evoked response in somatosensory cortex. J Neurophysiol

92: 3511–3521.

21. Timofeev I, Contreras D, Steriade M (1996) Synaptic responsiveness of cortical
and thalamic neurones during various phases of slow sleep oscillation in cat.

Journal of Physiology-London 494: 265–278.
22. Metherate R, Ashe JH (1993) Ionic flux contributions to neocortical slow waves

and nucleus basalis mediated activation - whole-cell recordings in-vivo.
J Neurosci 13: 5312–5323.

23. Anderson J, Lampl I, Reichova I, Carandini M, Ferster D (2000) Stimulus

dependence of two-state fluctuations of membrane potential in cat visual cortex.
Nat Neurosci 3: 617–621.

24. Benucci A, Verschure PF, Konig P (2004) Two-state membrane potential

fluctuations driven by weak pairwise correlations. Neural Comput 16:

2351–2378.

25. Crochet S, Fuentealba P, Timofeev I, Steriade M (2004) Selective amplification

of neocortical neuronal output by fast prepotentials in vivo. Cereb Cortex 14:

1110–1121.

26. Fuentealba P, Steriade M (2005) Thalamic oscillations modulate membrane

properties of cat thalamic reticular neurons. Thal Rel Syst in press.

27. Holcman D, Tsodyks M (2006) The emergence of up and down states in cortical

networks. PLoS Comput Biol 2: e23.

28. Kasanetz F, Riquelme LA, Murer MG (2002) Disruption of the two-state

membrane potential of striatal neurones during cortical desynchronisation in

anaesthetised rats. J Physiol 543: 577–589.

29. Lewis BL, O’Donnell P (2000) Ventral tegmental area afferents to the prefrontal

cortex maintain membrane potential ‘up’ states in pyramidal neurons via D(1)

dopamine receptors. Cereb Cortex 10: 1168–1175.

30. Mahon S, Deniau JM, Charpier S (2003) Various synaptic activities and firing

patterns in cortico-striatal and striatal neurons in vivo. J Physiol Paris 97:

557–566.

31. Peters Y, Barnhardt NE, O’Donnell P (2004) Prefrontal cortical up states are

synchronized with ventral tegmental area activity. Synapse 52: 143–152.

32. Timofeev I, Grenier F, Steriade M (2001) Disfacilitation and active inhibition in

the neocortex during the natural sleep-wake cycle: an intracellular study. Proc

Natl Acad Sci U S A 98: 1924–1929.

33. Tseng KY, Kasanetz F, Kargieman L, Riquelme LA, Murer MG (2001) Cortical

slow oscillatory activity is reflected in the membrane potential and spike trains of

striatal neurons in rats with chronic nigrostriatal lesions. J Neurosci 21:

6430–6439.

34. Mukovski M, Chauvette S, Timofeev I, Volgushev M (2007) Detection of active

and silent states in neocortical neurons from the field potential signal during

slow-wave sleep. Cereb Cortex 17: 400–414.

35. Wilson C, Kawaguchi Y (1996) The origins of two-state spontaneous membrane

potential fluctuations of neostriatal spiny neurons. J Neurosci 16: 2397–2410.

36. Aghajanian GK, Rasmussen K (1989) Intracellular studies in the facial nucleus

illustrating a simple new method for obtaining viable motoneurons in adult rat

brain slices. Synapse 3: 331–338.

37. Reig R, Gallego R, Nowak LG, Sanchez-Vives MV (2006) Impact of cortical

network activity on short-term synaptic depression. Cereb Cortex 16: 688–695.

38. Ellinger AG (1971) The art of investment. London: Bowes and Bowes.

Separating Up and Down States

PLoS ONE | www.plosone.org 11 September 2007 | Issue 9 | e888


