
Chapter 1
Behavior-Finding: Morphogenetic Designs
Shaped by Function

Daniel Lobo, Jose David Fernández, and Francisco J. Vico

Abstract Evolution has shaped an incredible diversity of multicellular living organ-
isms, whose complex forms are self-made through a robust developmental process.
This fundamental combination of biological evolution and development has served
as an inspiration for novel engineering design methodologies, with the goal to over-
come the scalability problems suffered by classical top-down approaches. Top-down
methodologies are based on the manual decomposition of the design into modular,
independent subunits. In contrast, recent computational morphogenetic techniques
have shown that they were able to automatically generate truly complex innovative
designs. Algorithms based on evolutionary computation and artificial development
have been proposed to automatically design both the structures, within certain con-
straints, and the controllers that optimize their function. However, the driving force
of biological evolution does not resemble an enumeration of design requirements,
but much rather relies on the interaction of organisms within the environment. Sim-
ilarly, controllers do not evolve nor develop separately, but are woven into the or-
ganism’s morphology. In this chapter, we discuss evolutionary morphogenetic al-
gorithms inspired by these important aspects of biological evolution. The proposed
methodologies could contribute to the automation of processes that design “organic”
structures, whose morphologies and controllers are intended to solve a functional
problem. The performance of the algorithms is tested on a class of optimization
problems that we call behavior-finding. These challenges are not explicitly based
on morphology or controller constraints, but only on the solving abilities and effi-
cacy of the design. Our results show that morphogenetic algorithms are well suited
to behavior-finding.

Daniel Lobo
Biology Department and Tufts Center for Regenerative and Developmental Biology, Tufts Univer-
sity, 200 Boston Ave., Suite 4600, Medford, MA, 02155, USA. e-mail: daniel.lobo@tufts.
edu

Jose David Fernández and Francisco J. Vico
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga Severo Ochoa
4, 29590 Málaga, Spain. e-mail: {josedavid,fjv}@geb.uma.es

1

daniel.lobo@tufts.edu
daniel.lobo@tufts.edu
{josedavid,fjv}@geb.uma.es

2 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

1.1 Introduction

Engineers have made remarkable progress in their ability to design complex prod-
ucts. However, current engineering practice still favors a top-down approach, where
the main problem is manually divided into smaller ones in order to maintain the
overall complexity reasonably manageable. This procedure is rather loosely defined
and ultimately relies on human expertise and creativity, which are skills that typ-
ically involve high costs, are unreliable and are difficult to formalize. Moreover,
the ever increasing complexity of current engineered systems and robustness re-
quirements is reaching the feasibility limits of the current paradigm, forcing the
implementation of new engineering methodologies.

Inspired by the biological evolution and morphogenesis of organisms, recent ad-
vances in the discipline of evolutionary computation propose a radically different
approach. Genetic algorithms combined with artificial development mechanisms
operate over a population of individuals encoded by genomes that govern a mor-
phogenetic process producing self-constructed designs [74]. That is, the genome is
not a blueprint of the design, but the set of instructions that indirectly build it. The
evolutionary operations (mutations and crossover) are applied to the developmen-
tal generative process that build the design, not to the design itself. This approach
has been shown to overcome the issues of scalability, adaptability, and evolvability
present in traditional evolutionary algorithms (based on a genomic representation
that encodes the design in a explicit way) when applied to complex problems [30].
As a result, evolutionary developmental algorithms have been tried in a wide range
of design problems, including the structure and controller of robots [20], digital
creatures in Artificial Life studies [4, 29, 35, 56, 73], and computer animated char-
acters [71]. In almost all models, however, the control system is fairly complex (of-
ten based on some kind of recurrent neural network), and in many cases, we believe,
unnecessarily so.

In a seminal work [53], Chandana Paul demonstrated that a whole body-control
system is able to perform more complex computations than the control system alone.
This observation spawned the concept of morphological computation—a design
methodology for robotic-like agents to exploit the dynamics of interaction between
the body and the control system, resulting in minimal control systems. Several ap-
plications have been proposed in the field of robotics, including the design of semi-
passive bipedal robots [48], tensegrity robots whose complex, coupled non-linear
dynamics are harnessed to generate a gait pattern with minimal control [53], and
robots with open-loop control systems and minimal numbers of degrees of freedom
that can self-stabilize into fast gait patterns and generate diverse behaviors through
the interaction between body and control system [55].

In a line similar to morphological computation, we present here a set of method-
ologies for the evolution of designs optimized to solve a functional problem. We
call this class of problems behavior-finding, in contrast to form-finding problems
focused on the optimization of a structure or morphology according to a set of
constraints. The morphogenetic techniques that we present here do not assume a
clear-cut boundary between structure and controller. As the encoding of the agents

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 3

has no provision for the complexification of their control systems in an explicit
way, innovative designs arise by evolutionary optimization, together with their con-
trol systems implicitly contained in their structure. The results obtained from the
application of the proposed methodologies to the set of behavior-finding problems
reflect the potential of these algorithms to find novel and diverse designs, which are
characterized by qualitative biological properties that would be otherwise hard to
reproduce by traditional engineering approaches.

In the following sections, we present three behavior-finding studies carried out
in our group: an evolutionary developmental model based on graph grammars (Sec-
tion 1.2), a more refined version of the same model adding complex regulatory
mechanisms to the development (Section 1.3), and a model solving a biologically in-
spired behavior-finding problem, in which the agents do not undergo artificial devel-
opment per se, but an innovative mutation operator provides some of the advantages
of artificial development in the sense of evolutionary optimization (Section 1.4).

1.2 A graph-grammar-based developmental model for
behavior-finding

New insights in developmental biology are configuring a new algorithmic paradigm
that may dramatically change the tenets of evolutionary computation. Artificial de-
velopment is a discipline that mimics the mechanisms of natural development, or
“embryogenesis”, by which a group of living systems develop from one single cell
into complete multicellular organisms. In search of methods to produce phenotypes
with high structural complexity, evolutionary algorithms have incorporated mecha-
nisms inspired by embryonic development, such as gene expression, morphogenesis,
and cellular differentiation [74].

An important aspect in the implementation of an evolutionary algorithm is the
genotype-to-phenotype encoding scheme [35]. Traditional evolutionary algorithms
use a “direct” encoding method, meaning that the individual is represented by a
list of data explicitly linked to its properties. However, direct mappings have been
shown to lack effectiveness in complex problems, due to their limitations in scala-
bility, adaptability, and evolvability [30]. As a result, evolutionary algorithms with
“indirect” encodings have started to be applied to a wide range of problems (for a
review see [74]).

Various computational paradigms that rely on developmental mechanisms and in-
direct encodings have been proposed for the design of structures and robotic agents.
Cellular automata have been used as a model of development to generate simple
shapes [21, 22], biological processes (e.g., gastrulation and limb budding) [26], or
specific 2D [6] and 3D [2] target patterns. Rules that fire cell functions, such as
mitosis, apoptosis, or migration, have been implemented to design 3D geometri-
cal shapes [78], tessellating tiles in a grid [3], and 3D morphologies [38]. Rules
have also been combined with gene regulatory networks to control their activa-
tion in the evolution of 2D shapes [14], 2D patterns [81, 19], and 3D multicellu-

4 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

lar organisms [15, 16, 31]. An alternative combination of rules with diffusion of
chemicals has been proposed to develop simple shapes [24]. Other development
models have taken a “generative” approach, such as string grammars to develop
house plants [64], or L-systems to encode plant morphologies [57, 34], 3D branched
organisms [7], objects made of voxels [28, 27], and surfaces in 3D spaces [25].
Shape grammars [76], a production system to generate geometric shapes, have been
evolved for architectural designs [67]. Grammatical evolution, a method to evolve
productions of a string grammar by encoding the rules of the production in a binary
genome [51], has been applied to shape grammars to evolve simple shapes [52].
Other paradigms used in the literature are genetic programming for 2D patterns [49],
instructions for a block builder based on turtle graphics [59, 60], neural networks
to develop multicellular organisms [12, 13], and functions to develop 2D images
with structural motifs [75]. Finally, models that resemble in more detail biologi-
cal processes, as proteins concentrations or cell chemical signaling, have been also
proposed [39, 63, 61, 17, 62, 1]. While these models make use of developmental
methods and indirect encodings, and undoubtedly constitute a great achievement in
the field, they are not focused on the implementation of engineering structures, thus
their practical utility is still limited.

Little work has been done in designing engineering structures with developmen-
tal methods. Shea et al. [69, 70] used simulated annealing to evolve shape gram-
mars for the automation of the design process of roof trusses and discrete structures.
Rudolph and Alber [65] proposed an evolutionary algorithm based on genetic pro-
gramming to evolve node-based graph grammars that encoded structures resembling
transmission towers. Kowaliw et al. [36] used a cellular growth method to generate
truss designs, controlling developed morphology via a variety of fitness functions.
Finally, Lobo et al. [43] proposed an encoding based on a construction tree to evolve
the sequence of modifications that can transform a given truss structure into a new
one that serves a different function. In summary, these works represent promising
examples of the application of developmental methods to the design of engineering
structures.

1.2.1 The model

In this section we present a model of development (published in [45]) of artificial or-
ganisms (agents) based on string-regulated graph grammars [46]. The organisms are
connected and directed geometrical graphs. In these graphs, edges can be interpreted
as cells (black lines in Fig. 1.1), and the nodes are junctions where cells get attached
to each other. In physical simulations, edges are considered as damped springs, all
with the same stiffness and damping constants, while nodes are free movable joints,
all with the same mass and friction with the medium. The connectivity and rest
lengths of the springs are determined during development, as described in the fol-
lowing paragraphs.

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 5

Fig. 1.1 Diagram of a developing multicellular organism, representing the genetic information
(genome with beginning and end of the cell domain) and physical information (rest length with
connectivity properties; see text) of a cell.

Development starts with a graph of a single edge, resembling the zygote in living
organisms. Edges, like cells, perform developmental actions during embryogenesis,
which consist of a sequence of regulated applications of rewriting rules that can
(1) alter the properties of one edge in a graph, (2) replace the edge by two new
edges, and (3) affect the future regulation of the resulting edge or edges. The genome
of an individual is implemented as a string that results from the concatenation of
substrings, each containing an index to a rule, and numeric values to instantiate the
rule’s attributes. These substrings will be referred to as genes, since they represent
indivisible units of genetic expression.

The rewriting rules are described first for a 2D model (Fig. 1.2a):

• The resize rule (R) may affect the rest length of an edge. It includes an attribute
determining the new length of the edge, in the [0.2,5] range, relative to the current
one. If the value of the attribute is greater than 1, then the rest length is increased,
otherwise it is decreased.

• The duplicate rule (D) replaces an edge by two edges connecting the same nodes
of the original edge. It also defines an attribute that is used to apportion the ex-
pression domain of the original edge.

• The split rule (S) replaces an edge by two new edges connecting the original
nodes in a sequence. It defines two attributes, the first one determines the pro-
portional length of the new edges, with respect the length of the original edge,
and the second one concerns the distribution of the domain of expression, similar
to the duplicate rule. The new node created in a split rule is slightly misaligned
to the right with respect to the direction of the original edge, provoking a bias
towards a given direction in case of compression.

• Finally, the connection rule (C) is included to affect the connectivity properties
of the nodes that delimit an edge. Two attributes (c1 and c2 in Fig. 1.1, one for
each node of the edge) determine the activation state of the edges in the follow-
ing way: a node will be active if at least one of the edges converging on it has its
corresponding attribute set active. Two nodes will be connected by a new edge if
both nodes are active and the distance between them is below a certain threshold.
This new edge will be inserted as a structural element, with an empty expression
domain, connection attributes set to inactive, and a rest length equal to the av-

6 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

(a) (b)

Fig. 1.2 Production system of the regulated graph grammar. (a) Definition of the rewriting rules:
transformation of an edge (left), and new domain(s) of expression (right). (b) Four derivation steps
for the genome D()R(2.0)D(0.5)S(0.2,0.5)R(0.5).

erage of the rest lengths of the edges converging to the two nodes. The creation
of these structural edges facilitates the emergence of tensile integrity, or “tenseg-
rity” [50], by connecting nodes that are later pushed toward opposite directions.
Tensegrity is a useful property in several engineering problems [79].

All rules have an effect on the domain of the cell. In the case of the resize rule,
only the beginning of the domain is altered, in a way that discards the first gene of
the current domain. Duplicate and split rules generate two domains by splitting the
current one into two, according to the value of their apportion attribute, in the [0,1]
range. These rules assign to the first descendant cell a domain extending from the
second gene of the current domain to an intermediate gene (as shown in Fig. 1.2a),
the rest of the domain being assigned to the second cell. As a special case, when
the gene does not specify a value for this attribute, the domain for both descendants
is the same, and extends from the second gene to the end of the domain in the
progenitor cell. As a consequence of this, concrete regions of the genome can be
expressed simultaneously in different parts of the organism, allowing modularity.

We will refer to this model as ELSA (standing for Expression by Limited Splitting
Actions). Fig. 1.2b illustrates how an example genome (D()R(2.0)D(0.5)S(0.2,0.5)R(0.5))
develops into a final organism under the ELSA scheme. A variant of this model,
ELSA3, incorporates necessary mechanisms for the morphologies to explore the
third spatial dimension: the geometric graphs are defined in three dimensions and
the split rule defines a new parameter to set the inclination of the new edges in the
original edge’s normal plane.

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 7

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−7

generation

fit
ne

ss

best
mean
worst

(a)

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−7

generation

fit
ne

ss

best
mean
worst

(b)

Fig. 1.3 Average best, mean, and worst fitness for each generation of 50 evolutionary runs using
(a) direct encoding and (b) indirect encoding. The length of the error bars represents the standard
deviation of the best fitness.

1.2.2 Evolutionary search

We test the potential of ELSA3 in an evolutionary search with the following problem:
how a vehicle, configured as a mass-spring tensegrity structure, can land properly
when falling from a given height. In tensegrity structures, some edges bear compres-
sive forces while others bear stretching forces, such that the sum of forces incident
in each node of the structure is zero. The performance of ELSA3 is also compared
to a direct encoding scheme for tensegrity structures, such as the model proposed
in [54].

Each individual in the population develops from its genetic information, and af-
terwards the free fall to the ground is physically simulated (with a given initial speed
vector). The fitness of an individual represents how “well” it managed landing, by
calculating how far it moved from a target point, and how the impact was absorbed.
The following equation combines these measures into a single value:

f (sk) =
1

d(c1,c2) ∑
i≤n
|ji|

where f (sk) means the fitness value of the k-th individual, simulated for n time
steps. The first divider represents the Euclidean distance traveled by the lander after
the impact, i.e., between the first contact and the resting site. More precisely, c1 is
the projection of the center of mass on the plane when the structure touches down
for the first time, and c2 is the projection of the center of mass on the plane when
the structure has completed landing. The second divider represents the “impact dis-
turbance” of the structure, computed as the accumulated jerk (first derivative of the
acceleration) in the sequence of points that the center of mass describes during land-
ing, where ji denotes the jerk vector at time step i. The jerk behaves as a predictor
for large accelerations of short duration [68], a magnitude that must be minimized

8 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

(a)

(b)

Fig. 1.4 From left to right, and from top to bottom: landing sequences of the best structures with
direct (a) and indirect (b) encodings.

in vehicles having to decelerate abruptly. As a consequence, the resulting function
computes a higher fitness value for structures that slow down smoothly and remain
close to the impact point.

A standard experiment consisted of simulating the evolution of a fix-sized pop-
ulation of 250 structures during 500 generations. The initial population contained
genomes made of a variable number of genes (from 2 to 8), where genes and their
attribute values were randomly generated. The genomes of the individuals form-
ing the new populations were obtained by mutating existing ones, according to four
operators:

• Insertion: a new random gene is inserted at a random position.

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 9

(a)

(b)

Fig. 1.5 Best tensegrity structures evolved in several different evolutionary runs using (a) direct
and (b) indirect encodings. Edges are colored according to their state: compressed (red), stretched
(blue), and relaxed (green).

• Deletion: a gene is randomly chosen and removed.
• Replacement: a gene is randomly chosen and replaced by a new random gene.
• Single-attribute: an attribute of a randomly chosen gene is replaced by a new

random attribute.

The probabilities of occurrence associated with each operator were 0.2, 0.1, 0.1 and
0.6, respectively. A new generation was obtained by mutating and replacing 90%
of the current population. Selection was implemented as a roulette algorithm, in
which the probability of selection was linearly proportional to the fitness. In order
to minimize the disruption of mutations, they were more likely to occur at positions
of the genome toward the right side. Since the genome was interpreted from left to
right, this strategy had a tendency to keep the first stages of development unaltered.
Elitism of one individual was also implemented.

1.2.3 Evolution of modular designs

The evolutionary search was run 100 times to test the models (50 times for ELSA3,
50 times for the direct coding scheme of [54]). Fig. 1.3 shows the average fitness
curves over 50 runs using the direct (a), and indirect (b) encoding methods. The
best-individual curves (blue) are accompanied by error bars, representing the stan-
dard deviation. In both cases we observed a fast fitness improvement in the first
100 generations, followed by a gradual refinement as evolution progressed. How-
ever, the best individuals with direct encoding started with an average fitness value
several times larger than the best individuals with indirect encoding, due to the mor-
phological differences between early individuals in both encodings. For this reason,
the direct-encoding fitness curves generally reached slightly better values than the

10 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

indirect-encoding fitness curves. The black and red curves represent the average
mean fitness, and average worst fitness, respectively. We observed that both strate-
gies performed equally well in the proposed landing test. However, as we will see,
structures with indirect encoding are better suited to engineering.

In Fig. 1.5, the best structures evolved by direct and indirect encodings are
shown. The best structures obtained from evolutionary runs with direct encoding
are characterized by their irregular, shapeless organization and lack of modular-
ity (Fig. 1.5a). In clear contrast, the best structures evolved with indirect encoding
present bilateral and radial symmetries, and clear modularity (Fig. 1.5b). See [45]
for an extended discussion on the ontogeny and phylogeny of these structures. Sim-
ilarly, Fig. 1.4 shows the landing sequence of the best structures with direct and
indirect encodings. In the first case (Fig. 1.4a), the irregular shape helps during im-
pact absorption, landing about 3.5 units away from the impact point. In the second
case (Fig. 1.4b), the structure shows a regular geometry and four modular subunits
that help stabilizing the position of the structure after impact, landing about 1.5 units
away from the impact point.

1.2.4 Advantages of the model

These results demonstrate that both encoding strategies can find good solutions to
the proposed problem. The differences concern their particular way of prospecting
candidate forms, mainly derived from the search space that each type of encoding
defines. Direct encoding is based on a genome that describes the exact positions of
every node in the structure. This independence of the nodes generates designs with-
out any patterning or regularity (Fig. 1.5a). Furthermore, mutations have only a local
effect on the structure, preventing the evolution of iterated modules. In contrast, the
proposed indirect encoding scheme ELSA3, based on regulated graph grammars,
generates structures that follow patterns and regularities due to their rewriting na-
ture, such as triangular and square pyramids, bipyramids, and bilateral and rotational
symmetries (see [45]). Moreover, grammar productions are regulated by a string that
is copied and transmitted through edge duplication, in a way analog to the mecha-
nisms of copy and transmission of the genome during division of biological cells.
This process causes the reuse of genetic information (both across development and
evolution), which in turn allows the repetition of modules in the structures.

In summary, we have shown that the use of an indirect encoding scheme facili-
tated the emergence of qualitative biological properties in the solutions. Direct and
indirect encodings differed in the following aspects:

1. Regularity: while the direct encoding method explores irregular structures,
ELSA3 exploits mechanisms to obtain symmetric and modular configurations.

2. Organicity: solutions evolved with the indirect encoding method have an “or-
ganic” appearance, in the sense the developed organism can be segmented into
structural (and, possibly, functional) parts or modules.

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 11

3. Generalization capability: the regularities observed in indirectly encoded or-
ganisms are not superficial. Symmetry allows the structure to display a similar
behavior when landing conditions vary slightly. The landing problem was solved
by the indirect encoding structures for a wide range of initial angles and speeds,
whereas the irregular forms created by direct encoding proved to be highly sen-
sitive to initial conditions.

4. Manufacturability: properties of regularity and organicity are well suited to fu-
ture industrial manufacturing of solution individuals. Even though it was not the
objective of this study, the modularity of landers obtained with indirect encod-
ing (see Fig. 1.5b) facilitates the independent construction and assembly of the
different parts of the vehicles, in particular allowing the serial production of com-
ponents. This would not be the case with irregular forms (Fig. 1.5a), where the
diversity of constituent parts hinders production and assembly.

1.3 A gene regulatory developmental model for behavior-finding

In the model presented in Section 1.2, diverse organisms developed by the appli-
cation of rewriting rules, which can be considered actions performed by the cells.
Since the genome is a sequence of the rules to be applied, regulation of rules is en-
coded in the sequence. In nature, however, the actions (the rules) performed by the
cells of a developing organism are controlled by its gene regulatory system. In fact,
the evolution of diverse phenotypes may very well have to do with a complexifica-
tion of the regulation of gene expression [41], in addition to direct gene mutation. In
this sense, it has been pointed out that evolutionary change in body plans could be
the result of change in the architecture of regulatory developmental programs [9],
suggesting that diversity could be better explained by variation in the regulation of
gene expression than the structural genes themselves [10]. Because designing new
structures and robotic agents require a model able to generate novel morphologies
and controlling systems, it is interesting to explore models closer to biological de-
velopment, including some kind of regulatory network to drive the developmental
process.

Several theoretical models and formalisms have been proposed to describe gene
regulatory systems (see [32] for a review). Among them, the Boolean networks pro-
posed by Kauffman [33] allow the simulation of large regulatory networks [32] and
have been extensively used. Furthermore, a recent study [8] has demonstrated a
good correspondence between Boolean networks and more realistic models based
on differential equations of chemical kinetics. Similarly to Boolean networks, other
network-level models focus on a statistical analysis of network properties and pat-
terns. In order to apply realistic mutation operators in network-level models, an en-
coding of the network in a sequence-based genome is needed. Among such models,
the Artificial Genome proposed in [58] has attracted much attention. An Artificial
Genome encodes a regulatory network in a sequence of digits, making the regulatory

12 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

dynamics equivalent to a Boolean network with limitations in the possible Boolean
functions carried by its nodes [84].

Similarly, a great number of theoretical models have been proposed to model
biological development, creating an expanding subfield within evolutionary com-
putation. In this emerging discipline, some models addressed the network-level for
developmental regulation. Sims [72] presented a system for the evolution of physi-
cally simulated virtual creatures made of articulated rigid parts, effectors, and sen-
sors, and controlled by an extended neural network. However, the morphology and
controller were encoded separately in two recurrent directed graphs, an aspect that
did not correspond to real biological development. Eggenberger [15] described a
growing phenotype made of spherical modules, connected by articulated joints. A
parametric regulatory network model was used, including diffusion of gene products
from particular concentration source sites. The evolved forms presented only limited
variability and the emergence of bilaterality. Bongard and Pfeifer [5] extended this
type of model by adding a neural controller, intended to favor agents that developed
directed locomotion and block pushing. The evolved agents managed to perform
the assigned tasks, although, there too, with limited variability in their characteris-
tics. Kumar and Bentley [39] proposed a computational model of development in
which a regulatory network controlled the synthesis of proteins, and embryos with
spherical forms were evolved. Once more, the evolved phenotypes remained rather
simple. Andersen et al. [1] proposed a model of developmental cellular systems in
3D based on chemical signaling and gene regulatory networks. Their evolved em-
bryos showed particular stable shapes and a high capacity for self-repairing. Yet
again, the shapes presented by the phenotypes were too primitive, mostly rectangu-
lar or spherical. Finally, Zhan et al. [86] presented an evolutionary developmental
system based on cell signaling and artificial gene regulatory networks, which was
focused on the engineering challenge of electronic circuits design.

In summary, most theoretical developmental models based on genetic regulation
found in the literature are not fully adequate for the morphogenetic engineering of
structures and robotic agents. In this section, we describe a computational model
(published in [44]) in which an artificial gene regulatory network controls the devel-
opment of locomotive multicellular organisms through a fixed set of simple struc-
tural genes. An evolutionary algorithm optimizes morphologies, based on a blend
of structures and controllers, which are well adapted to a basic behavior-finding
problem: following a path. Our results show that, despite the simple fixed set of
structural genes, the evolution of gene regulation yields a rich diversity of body
plans and original behaviors.

1.3.1 The model

The model presented in this section is based on a regulated graph grammar that
abstracts a developmental process in the same way as the model presented in Sec-
tion 1.2. In this case, however, a gene regulatory network controls the sequence of

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 13

rules that are applied during the developmental process of the design. The main
characteristics of this model, and differences with the previous model, are the fol-
lowing:

• The evolutionary search selects for active structures able to follow a path.
• The graphs are 2D, and their edges are oriented. This new attribute of the model

will be used in the locomotion of the structures.
• The first three rules (resize r, duplicate d, and split s) remain unchanged, but the

connection rule is omitted, while a new rule is added, the swap rule w, which
simply reverses the direction of an edge.

• Instead of a sequence of rules, each cell (edge) contains a genome consisting of
a regulatory network that controls rule firing.

The last change is the most significative from the point of view of morpho-
genetic engineering. The genome is now a Boolean network encoded in an Artificial
Genome [58]. This artificial genome is represented by a vector of digits (Fig. 1.6a)
between 0 and 3, which correspond to bases in a real DNA strand. Each gene is a se-
quence of four digits (for example the word 0320) preceded by a promoter (always
0101). A word placed between the promoter of a gene and the previous gene plays
the role of regulatory region of the former gene. The product of a gene (a “protein”)
is also a sequence of four digits, obtained by increasing every digit in a gene by
1, modulo 4 (thus 1031 in the above example). Each protein regulates those genes
that have a matching regulatory regions. A protein can act as an enhancer, activat-
ing the gene, or as an inhibitor, blocking its activation. Similarly to previous works,
proteins ending with the base 0 are inhibitory, otherwise they behave as enhancers.
While the presence of a single enhancer is enough to activate a gene, inhibition
blocks enhancement.

This Artificial Genome is expressed in each cell (edge) of a developing organism
as a corresponding Boolean network (Fig. 1.6b). Although all edges are governed
by the same Boolean network, each one has its own expression state during de-
velopment, thus allowing cell differentiation. This Boolean network controls the
application of the rewriting rules: each rule is triggered by a specific node in the
Boolean network (Fig. 1.6c). The genome specifies an order for the nodes, that are
then mapped to the rules. During development, one edge is transformed according
to a rule when the corresponding node of its Boolean network is activated. In this
way, a step of development in an organism comprises the following actions: (1) up-
dating the state of the Boolean network in each edge, and (2) transforming the edges
according to their active nodes. Edge updates are done sequentially, from the oldest
to the newest. Also, if several nodes are active in a Boolean network, the application
of the rules is done in a sequential manner, following the ordering of the nodes.

The first node of the Boolean network is assigned a role of differentiation. When
split or duplication rules are applied (division rules), one of the descendant edges
will set this node to an active state, while the other resets it. The fixed mapping
between nodes and rules is made starting from the second node. This asymmetry
introduces a slight difference in the future expression patterns of both cells, allowing
cell differentiation.

14 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

Fig. 1.6 Diagram of the morphogenetic model consisting on a derivation of a graph grammar
regulated by a Boolean network encoded in a sequential genome. (a) The genome is represented
by a sequence of digits. A detail of the sequence, with the regulation between genes T and W,
is shown below. Gene T is an enhancer of gene W while gene W is an inhibitor of gene T. (b)
Boolean network encoded in the genome. Node D is the differentiation gene. Nodes S, T, W, and
R are genes mapped to split, duplication, swap, and resize rules, respectively. Finally, node X is a
regular gene (type node omitted for clarity). (c) Graph grammar rules set, being s the split rule, t
the duplication rule, w the swap rule, and r the resize rule.

Similarly to differentiation in biological multicellular organisms, the model in-
cludes a cellular type that determines how the edge will behave in the physical
simulation: motor edges, sensor edges, and structural edges. This is implemented
again with a special node in the Boolean network, the “type node”, which deter-
mines the type of the edge. Each edge embeds a counter that stores the number of
times this node has been active during development. This counter acts as a signaler
that induces the differentiation of the edge. One edge becomes a sensor if it has
accumulated more than three quarters of the maximum activations of an edge in
the organism; it becomes a motor edge if it accumulates less than a quarter of that
amount (and has been active at least once); and it becomes a structural edge oth-
erwise. In this way, the function and the form of an organism are implemented by
edges. Consequently, the model makes no distinction between the control (i.e., how
the function is commanded) and the morphology of the organism.

Development starts with a graph containing a single edge (resembling the zy-
gote of living organisms). In grammatical terms, this graph is the “axiom” of the
Boolean-network-regulated graph grammar, from where the resulting graph derives
after a number of productions. The nodes of its Boolean network are initially in-
active, except for the first node, which initiates the dynamics of the network. The
developmental process ends when one of the following conditions is verified: (1) all
edges have ended their expression (i.e., all nodes of the Boolean network inside ev-
ery edge are inactive), (2) the expression of an edge enters in a loop without division
rules, or (3) the organism has exceeded a given number of edges (our simulations are
limited to 20 edges). Finally, mimicking biological competition and cellular death

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 15

processes, only one edge is allowed between each pair of nodes. If edges of different
types connect the same pair of nodes, they are deleted in this order: structural, then
sensor, then motor edges.

1.3.2 Problem statement and evolutionary search

After development has completed, an organism is physically simulated in a flat
world where it has to follow a path as much as possible in constant time. An or-
ganism interacts with the environment by sensing and acting: it is propelled by its
motor edges, and senses the path borders with its sensor edges, in a chemotactic
way. The physical simulation is similar to the model described in Section 1.3: edges
are modeled as damped springs, and nodes are free movable joints that have fric-
tion with the medium. All springs and joints have the same physical parameters,
and the connectivity and rest length of the springs are determined by the final devel-
oped graph. Motor edges implement an additional force

−−→
Ft+1 that pushes the edge

in the direction that it defines. The magnitude of this force is proportional to the
actual length of the edge, accordingly to

−−→
Ft+1 = α Lt

−→u , where α > 0 is the motor
strength parameter, Lt the length of the motor edge in the current time step, and −→u
the unitary vector of the direction. Consequently, the whole organism moves as a
result of the motor edges pushing forward in a continuous way. Edges differentiated
as sensors transduce the physical world information to the organism. They have the
regular forces of a damped spring, but their spring rest length lt is dynamically up-
scaled accordingly to the following equation: lt+1 = (rt (β −1)+1) l0, where β > 1
is a continuous gain parameter that regulates the upscaling factor, rt ∈ [0,1] is the
proportion of the edge that falls outside of the path in the current time step, and lo is
the original rest length of that edge in the graph that results from morphogenesis. In
this way, if a sensor edge is completely inside of the path, its rest length equals its
original rest length. On the contrary, when it falls completely outside the path, the
rest length equals the original rest length scaled by the gain parameter β (thus it gets
longer). Intermediate situations are linearly scaled by the portion of edge falling out-
side the path. Notice that a sensor edge transduces sensory information (how much
it falls outside the path) to mechanical information (its rest length). This mechanical
information is propagated to its adjacent edges, in the same way as muscular cells
propagate a change in length to adjacent cells. Finally, structural edges are normal
springs without any particular effect.

The paths used in the simulations are made of two equal curves but in opposite
directions discretized by a closed polygon. Each path curve is formed by two circu-
lar arcs that form the left and right path borders respectively. A path is defined by
three parameters: γ ∈ [0,1] is its difficulty, ω is its width, and λ its length. The dif-
ficulty determines the sharpness of the bend, a path with γ = 0 being a straight line,
and a path with γ = 1 the most twisted (Fig. 1.7). The actual curves have an angle
a = 3πγ/2. The segments needed to build the whole path will have positive angle if
the curve is to the left, and negative if it is to the right. A radius of λ/2a+ω/2 units

16 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

Fig. 1.7 The behavior-finding problem consists in following a path, which difficulty is given by
the value of parameter γ (below).

is applied to the external border, and λ/2a−ω/2 to the internal border. Finally, the
extremes of the path are extended with a beginning and an end (straight segments of
length 2ω).

The goal of the evolutionary search is to obtain efficient path-followers, i.e., or-
ganisms that, when placed at the beginning of the path, can follow it until the end.
The fitness of an individual is determined by the length of path traveled in a con-
stant simulation time. The path is divided into consecutive sections (similar to tiles)
in order to quantify how well and how far an organism has moved along it. A simu-
lation starts by developing the individual from its genomic information, and placing
the resulting organism at the beginning of the path. The physics is then run for a
fixed number of steps and stops if the organism reaches the path end. During the
simulation, a new section of the path is labeled as “visited” if the centroid of the
organism (the average position of its nodes) steps on it. In order to prevent high
scores in organisms that do not interact with the environment (e.g., by starting with
any trajectory that happens to fit the path), the fitness is the minimum of two runs,
where in the second simulation the path is flipped along the horizontal axis.

A genetic algorithm has been implemented to evolve the structure and function
of organisms. The initial population is made of 200 random organisms with short
genomes (256 bases). On average, 256 bases only contain a single gene. In each
generation only 25% of the population is mutated. The Artificial Genome enables
the use of bio-inspired mutation operators, instead of the network-level mutations
typical in other works using Boolean networks. In this way, mutations give rise to a
wide variety of network-level changes, which eventually project onto the morphol-
ogy [83]. Five biologically inspired sequence-level mutation operators are used:

• Single-point: a single nucleotide is replaced by another nucleotide.
• Duplication: a segment of the genome is randomly chosen and copied immedi-

ately after the original (tandem duplication).
• Transposition: a segment is deleted and copied at a random location.
• Deletion: a segment is randomly chosen and removed.
• Inversion: a segment is randomly chosen and re-written in reverse order.

In all cases, the size of the segment to be mutated was fixed at 256 bases. How-
ever, genomes could vary their lengths during evolution, as a direct consequence

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 17

of mutations. The mutant individuals obtained are added to the population, and the
next generation is obtained by deterministic tournament selection with size 2. This
scheme induces a low selection pressure that is compensated by elitism of one in-
dividual. The result is a good balance between exploitation and exploration, which
favors the evolution of different strategies of locomotion.

1.3.3 Evolution of novel behaviors

In order to evolve a variety of path followers, the genetic algorithm was run 21
times, comprising 7 evolutionary runs for each different path (γ = 0.2, γ = 0.4, and
γ = 0.6). In spite of the simple building blocks available for the organisms, 4 clearly
different steering behaviors have evolved (classified by hand). For a more complete
discussion on the performance of the evolutionary algorithm and the ontogeny of
the organisms, see [44]. Below, we present a brief description of a representative
organism for each resulting behavior:

Behavior A: emergence of bilateral sensors. The simplest path-follower that
one could think of would include sensors in both sides to correct the direction, and a
motor inbetween. This type of structure effectively evolved in about half of the evo-
lutionary runs. Fig. 1.8a illustrates the steering behavior with a sequence of snap-
shots. When the organism was on the path (in gray), the forces of its two motor
edges compensated, resulting in a straight motion. When one of the sides exited the
path, the sensor became longer, transmitting a positional change to the motor edges.
This corrected the direction of movement, pointing now to the interior of the path.
This process repeated every time the organism transgressed a path border, allowing
it to stay inside the path.

Behavior B: emergence of turning by friction. This was an interesting behav-
ior that exploited a completely different aspect of the physics, emerging in about
10% of the evolutionary runs. The morphology of the organism integrated a more
sophisticated sensory system (8 sensor edges), only one motor edge, and it showed
symmetry with respect to the motion direction axis. It moved straightforward while
inside the path. When the organism started exiting the path, the external skeleton of
structural edges forced the sensors to reconfigure internally, and the symmetry broke
down due to the elongation of some of the sensors. In this asymmetrical configura-
tion, more nodes concentrated on the side opposite to the exit border, producing a
higher overall friction on that side, which generated a bent movement towards the
path. When the organism went back inside the path, it recovered its initial symmetry.

Behavior C: emergent spinning. Contrary to expectation, the second behavior
preferred by evolution (emerging in about 30% of the evolutionary runs) had to do
with spinning organisms. A combination of sensor and motor edges arranged in a
sort of quadrilateral pattern favored a rotational motion. Typically, a small asym-
metry was important in this type of organisms, since it allowed them to actually
start moving and reach a path border, preventing endless rotation around the start-
ing point. In this way, when a path border was transgressed for the first time, the

18 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

(a)

(b)

(c)

(d)

Fig. 1.8 From left to right, and from top to bottom: sequences of snapshots illustrating the steering
behaviors A, B, C and D. Motor edges are in red, sensor edges in cyan (with white bands to compare
relative lengths), and structural edges in green. The path is the area in gray.

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 19

organism followed it due to an iterative elongation of its sensors during the rotation,
while keeping its centroid inside the path most of the time.

Organisms showing a spinning behavior described a typical cyclic trajectory
along one of the path borders during the simulation. Snapshots of an organism per-
forming a complete spin are shown in Fig. 1.8c. Notice how in snapshot 1 the ex-
terior motor edges were aligned at roughly 45◦ with respect to the interior motor
edges. In snapshot 3 this angle increased to about 90◦ due to the elongation of the
sensor edges that fell outside the path. Repetitive transition between these two con-
figurations allowed the organism to steer following the path’s border.

Behavior D: emergent rectification. Finally, some organisms revealed a much
more elaborate behavior. Remarkably, this behavior emerged from the simplest pos-
sible sensory system: one sensor edge. While the organism was inside the path, and
as a result of balanced motor actions, all the edges were arranged in a single line,
and the organism followed a straightforward movement. When the sensor exited the
path, its elongation broke the previous configuration, initiating a long sequence of
actions (the rectification) which forced the organism to go backwards, return to the
path, and start another trajectory, shifted by a few degrees (around 40◦) with respect
to the original one.

This organism moved comparatively much slower than the others, and maneu-
vered in a complex way to correct the direction. The structure of the organism in-
cluded two pairs of motor edges that pushed forward, and another pair that pushed
backward (hence the overall slowing down). The net effect was an alignment of the
edges, and a straight movement in the direction of the two pairs of motor edges.
When the organism exited the path, the sensor elongated, forcing one of the leading
pairs of motor edges to rotate and push backwards. In this configuration, the net
movement was backwards, taking the organism back to the path. As the sensor en-
tered the path again, it shortened, provoking the pair of motor edges to return to its
original aligned arrangement. While this happened, the organism tilted to one side,
correcting the original direction. Finally, the organism kept moving straightforward.

1.3.4 Advantages of network-regulated morphogenesis

Despite the simple and fixed set of structural genes implemented (one for each
rewriting rule), a rich variety of body plans evolved, providing the organisms with
appropriate steering strategies. The strategies obtained are diverse and complex, and
successfully exploit very different aspects of the model: sensory systems adapted to
the geometry of the problem (behaviors A and B), physical aspects of the environ-
ment (behavior B), symmetry (behaviors B and C), or complex arrangements of
edges (behaviors C and D). This diversity is remarkable considering the simplicity
of the resulting graphs (7 edges for behavior A, 17 for B, and 9 for C and D). Some
strategies show generalization capabilities (see [44] for a discussion), being able
to function in altered environments with different paths. Considering the very lim-
ited functionality of the cellular types that have been modeled, the performance and

20 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

generalization capacity of the evolved organisms result from the expressive power
of the genetic model and the high degree of adaptation to the environment reached
by the organisms. The fact that behavior D can be obtained with only 9 edges and
a single sensor edge is remarkable given the efficiency and generalization capacity
demonstrated by this organism.

In the field of autonomous agents, an embodiment is employed to allow agents
to interact with the environment. Such embodiments have been traditionally split
in morphology and controller [23, 72, 37, 11, 4, 35, 29]: the controller is typically
implemented in a neural network and adjusted separately from the morphology. In
contrast, in the proposed model there is no clear separation between the body and
the brain that controls its behavior. A sensor is implemented as an excitable element
that alters its rest length depending on its position relative to the path. In this way,
sensors transduce information of the environment by introducing a change in the ge-
ometrical state of the organism. This change propagates along the organism to adapt
the response in a proper way, so as to accomplish what is favored by evolution: steer-
ing to keep following the path. Furthermore, since the controller and morphology
are merged in the model, both of them develop seamlessly during the same process,
simplifying the model as a reliable abstraction of biological development.

1.4 Behavior-finding in a non-developmental model

In evolutionary optimization, the genomes of the individuals being optimized are
mutated, and the best ranked ones are selected. However, in rugged fitness land-
scapes, many coordinated changes may be needed in order to transform a given
individual into a better one, so the evolutionary search is likely to get trapped in
local optima. Morphogenetic techniques provide the means to solve this problem:
when genomes indirectly encode the structure and the behavior of the agents, in
component-level specifications or instructions on how to drive a self-organization
or self-assembly process, a small mutation in the genome is frequently translated as
many (small or big) correlated changes in the phenotype, potentially smoothing the
fitness landscape. In this way, the evolutionary search of new designs becomes more
efficient than with direct genotype-phenotype encodings, as in the models examined
in Sections 1.2 and 1.3.

However, instead of the genotype-phenotype mapping, a similar morphogenetic
effect can also be obtained at the evolutionary scale if the mutation operators are
able to bring many coordinated changes to the phenotype directly, even when the
mapping is mainly direct.

In this section, we present a third and last model of morphogenetic design based
on behavior-finding (published in [18]). As in the previous studies, agents are repre-
sented by mass-spring networks, and their structure is the result of an evolutionary
search for agents able to perform a specified behavior. Here, however, agents do not
self-assemble through a developmental process, but their morphologies are sculpted
by an evolutionary optimization with a simple yet powerful mutation operator. Their

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 21

resultant behaviors are the product of a controller indirectly encoded in their mor-
phologies and the consequent reactive interactions with the environment.

1.4.1 An agent-based model of molecular motors

The model is motivated by biological molecular motors, such as the enzymes
myosin, kinesin and dynein, capable of transforming chemical energy into mechan-
ical work. Breaking down ATP molecules for power, these molecular motors can
effectively walk along cellular filaments [66]. They are composed of one or two mo-
tor heads, each comprising a catalytic core (the site where ATP molecules attach)
and a docking site (the site where the motor attaches to the filament). Each motor
head undergoes a cycle (working cycle) of shape changes (conformational changes),
powered by the energy stored in ATP molecules. The docking site cyclically attaches
and detaches from the filament in a coordinated way, allowing the motor to advance
through the filament.

Molecular motors can be construed as nanoscale robotic agents. The control sys-
tem is implicitly defined in the specific biochemical interactions between the molec-
ular motor, the ATP molecules, and the filament; in this way, their morphologies
canalize the movements and the function of the motors [82]. Indeed, molecular mo-
tors represent a clear example of morphological computation. Taking inspiration
from this observation, we have built a framework based on evolutionary optimiza-
tion to design robotic agents that function in a way similar to molecular motors. We
call these agents molecular motor templates. An agent, or template, is defined as
a mass-spring network, which represents the structure of a plausible protein [80].
While modeling molecular motors with mass-spring networks may seem simplistic,
it can be justified theoretically: for most proteins, including many molecular motors,
the dynamics is mainly dictated by their overall structure rather than their specific
biochemical compositions [47].

A template has two motor heads, each one endowed with a catalytic core and
a docking site. The catalytic core is defined as a set of two nodes in the network.
When an ATP molecule binds to the core, it is placed exactly in the middle of the
two vertices, connected by a spring to each vertex in the pair. These springs are
stretched to model the change in potential energy brought by the ATP molecule (this
mechanism has been used in other studies, as [80]). The docking site is modeled as
a set of nodes that can attach and detach from the filament. The working cycle of a
motor head can be described as a reactive finite-state machine with four states:

1. Sticky state: The docking site is not in contact with the filament, and the cat-
alytic core is empty (Fig. 1.9a). This state ends when any node of the docking
site touches the filament: the node becomes fixed to the filament, and an ATP
molecule is bound to the catalytic core with stretched springs (Fig. 1.9b). Then,
the motor head transitions to the next state.

2. Bound state: The stretched springs introduced in the transition to this state induce
a conformational change (Fig. 1.9c), while the docking site remains firmly at-

22 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

Fig. 1.9 Working cycle of a molecular motor template.

tached to the filament, resulting in a conformational change. After a fixed amount
of time passes, the motor head transitions to the next state.

3. Nonsticky state: the nodes of the docking site detach from the filament, but re-
main in contact with it. If the activity of the other motor head or residual elastic
forces drive the docking site out of contact with the filament (Fig. 1.9d), the ATP
is expulsed from the catalytic core, deleting the associated springs (Fig. 1.9e).
Then, the motor head transitions to the next state.

4. Relaxing state: When the catalytic core becomes empty, the absence of the asso-
ciated springs triggers another conformational change. After a fixed amount of
time passes, the vertices of the docking site regain the ability to get fixed to the
filament, and the motor head transitions to the initial state (Fig. 1.9f), complet-
ing the cycle. A motor head has completed a working cycle when it has passed
through all states and is back to the initial one: 1-2-3-4-1.

Simple and elegant theoretical tools that consider proteins as mass-spring networks,
such as the Gaussian Network Model (GNM), use normal mode analysis to pre-
dict their structural and dynamical properties, and can do so to a surprising extent,
including their unfolding pathways [77], their domain decomposition [40], and, in
particular, their conformational changes and the position of their catalytic cores [85].
We use a heuristic based in GNM to determine the placement of the docking sites
and catalytic cores, which are indirectly encoded in the morphology of the struc-
ture. Specifically, to define the two motor heads (each one with a catalytic core and
a docking site) in the mass-spring network of a template (Fig. 1.10a), we segment
the network using the normal mode associated to the third eigenvector of its Kirch-
hoff matrix [85]. This eigenvector assigns a vibrational amplitude to each node in
the network, which can be either positive or negative. In Fig. 1.10b, each node’s
size and color represent the amplitude and sign, respectively (white is positive, gray
is negative). Grouping neighboring nodes with same-sign vibrational amplitudes,
three clusters can be defined in most mass-spring networks. There are two inter-

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 23

(a) (b) (c)

Fig. 1.10 (a) A mass-spring network is processed to determine its catalytic cores and docking sites.
(b) The normal mode associated to the third eigenvector of its Kirchhoff matrix is shown. Each
vertex is associated to a component of the eigenvector, whose magnitude (size) and sign (white:
positive, gray: negative) conveys information about the vibration of the vertex in that normal mode,
splitting the structure into three clusters. (c) The resulting molecular motor template has two motor
heads, each one composed of a catalytic core (ATP and binding springs shown in black) placed
between a distal cluster and the central cluster, and a docking site (white).

faces (hinges) between the clusters, such that two of the clusters are distal while the
other one is central. As the third eigenvector is associated to a low-frequency nor-
mal mode, the interfaces heuristically indicate the places where the structure may
bend easily in a conformational change [85]. Each catalytic core is in one interface,
defined as a pair of nodes where ATP can bind (In Fig. 1.10c, the ATP and its bind-
ing springs to the nodes of the core are shown in black), one node in a distal cluster
and the other in the central one. As many pairs of vertices may exist, a heuristic is
applied to select one of them. Each docking site is defined as the nodes of one of the
distal clusters (Fig. 1.10c, white nodes), and is associated to the catalytic core in the
interface of that cluster.

1.4.2 Evolutionary search

The genotype-phenotype mapping is direct at the morphological level: the genome
is the 3D structure. At the functional level, however, the configuration of the motor
heads is indirectly encoded by the structure, as described in the previous subsection.

To start an evolutionary optimization, the agents in the initial generation are gen-
erated as randomly folded chains of 50 nodes, defining relaxed springs between all
neighboring nodes. Then, agents are evaluated in the following simulation: they are
placed above a straight filament (made of nodes of the same size as the nodes of
the structure), such that both docking sites touch it. One of the motor heads is set
in the sticky state, while the other is set in the beginning of the relaxing state. If
the structure and the configuration of the motor heads is adequate, the molecule is
able to “walk” along the filament, as the motor heads undergo coordinated working
cycles (that is to say, their states change in a coordinated and cyclic way). After a
preset amount of time passes, the simulation is stopped and the fitness is calculated

24 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

(a) (b)

Fig. 1.11 (a) A mass-spring network structure is mutated by enlarging the rest length of a spring
(dark gray). (b) The resulting structure after relaxation is shown along with the original structure,
in dark gray. Arrows point towards the main direction of displacement in each part of the structure.

to be the displacement of the agent’s center of mass in the direction of the filament,
plus the number of completed working cycles by both motor heads.

For some structures, the heuristic cannot properly define the configuration of the
motor heads (docking sites and catalytic cores). In this case, they are tagged as
nonevaluable and are not subject to selection (they are eliminated from the evolu-
tionary competition).

After the evaluation is done, a new population of agents is generated from the
previous one by preferentially selecting agents with higher fitness. Finally, the mu-
tation operator is applied (Fig. 1.11). As the genotype-phenotype mapping is direct
at the morphological level, the mutation operator must be able to bring many coor-
dinated changes to the structure. This can be accomplished by using a physics-based
mutation: as each network is a spatial configuration of vertices connected by springs
in resting state (neither compressed nor stretched), a mutation consists of chang-
ing the rest length of one or several springs, each one by an independent, random
amount. These perturbations introduce potential energy in the mass-spring network.
If it is allowed to relax through a physics simulation, the relative positions of many
vertices will change in a coordinated manner (just as originally intended) to relieve
the stress. After the relaxation process, the rest lengths of the springs are set to the
new distances between nodes, and springs may be added (resp. deleted) if nodes
become (resp. cease to be) neighbors. In each evolutionary run, a population of 100
templates undergoes the evaluation-selection-mutation cycle for 200 generations.

1.4.3 Coevolution of form and function

The model has been tested in 30 evolutionary runs. In each run, 100 random mass-
spring networks were generated to compose the corresponding initial population,
3000 in total. Almost all of them either walked a negligible distance or were
nonevaluable (Fig. 1.12). However, taking as a reference the distance walked by
the best individual in each evolutionary run, significantly improved individuals have
evolved, too. In many cases, relatively minor modifications to the mass-spring net-
work triggered a significant increase in the distance covered by the corresponding

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 25

Fig. 1.12 Histograms comparing the performance of 3000 randomly generated templates and the
best evolved templates in 30 evolutionary runs. In the first histogram, a significant fraction of the
templates (∼ 1200) were nonevaluable.

motor templates, suggesting that good templates needed to be precisely tuned to the
working cycle and the details of the simulation.

Several walking strategies have evolved, associated to a diverse collection of
shapes (see three examples in Fig. 1.13). In some instances, the evolutionary algo-
rithm has produced templates using just one catalytic core and one docking site to
move, as is the case for some subtypes of molecular motors in biology [42]. In our
results, templates that used both motor heads did not do so symmetrically, i.e., in
most instances, one motor head was responsible for the motion, while the other was
used to secure the template to the filament and/or to maintain a correct orientation.
Three examples are presented here:

• An example using only the leading motor head (Fig. 1.13a). After completing a
single working cycle, the rear motor head lost contact with the filament for the
rest of the simulation, effectively becoming useless. This specific example also
rotated around the filament as it progressed.

• An example using both motor heads for conformational changes (Fig. 1.13b).
The leading motor head moved forward the template, while the rear motor head
attached itself to the filament, inducing a conformational change in the template,
and reorienting it at each working cycle of the leading head.

• An example using both motor heads, but only one of them induced a conforma-
tional change (Fig. 1.13c). It was almost functionally equivalent to the one that
used one motor head, but here the leading motor head pushed the template against
the filament, leading the rear motor head to remain attached to the filament. This
happened even if no effective conformational change was generated because of
the geometry of the template.

26 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

(a)

(b)

(c)

Fig. 1.13 Sequences of snapshots illustrating the gait patterns of three evolved molecular motor
templates (in each case from left to right and from top to bottom). A node in the filament is marked
in red to provide a point of reference.

1.4.4 A different approach to morphogenetic design

Many aspects of the model were specifically designed to be as simple as possible.
The genome is minimal: it is only a fixed-width sequence of nodes in 3D space
with springs between neighboring nodes, and the evolutionary algorithm is also very
simple, including a single mutation operator and no crossover. Viable gait patterns
could still be found in a high-dimensional space because the search was canalized
in two ways:

• The working cycle (a simple reactive model) is hard-wired, and the configuration
of the motor heads is indirectly encoded in the morphology of the agent.

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 27

• The mutation operator is based on physical relaxation after the application of
perturbations to the structure, so it induces a fitness landscape that is more cor-
related to the physical characteristics of the structure, which plays a key role in
the configuration of gait patterns.

However, these features of the model are relatively low-level and did not constrain in
any precise way the gait patterns of the templates. Thus the diversity of shapes and
gait patterns was only enabled, not determined, by these characteristics and by the
fact that the individuals competed in a 3D virtual world, coevolving their morpholo-
gies and behaviors (gait patterns). Morphogenesis arose by repeated application of a
complex mutation operator through evolutionary time, instead of leveraging a com-
plex genotype-phenotype mapping. As an example of morphological computation,
gaits lacked any specific control subsystem: gait patterns emerged from the inter-
action between the properties, the physics, and the geometry of the templates and
filament.

The mutation operator can also be considered as a mode of morphological com-
putation. Instead of using heuristics based on the analysis of the characteristics of
the structures, the mutation operator only perturbed the rest length of one or more
springs in the structure. The new structure was then calculated by simulating physi-
cal relaxation, which naturally induced many coordinated changes into the mutated
structure.

1.5 Concluding remarks

In this chapter, we have examined three morphogenetic algorithms automatically
producing designs optimized for behavior-finding problems. The various method-
ologies that we followed were based on genetic algorithms enhanced either by arti-
ficial development, network regulation, or dynamic mutation operators, all of which
enabled the evolution of complex morphologies and behaviors. Inspired by biologi-
cal organisms, the morphologies produced by this common approach were not gov-
erned by any separate controller; instead, the morphologies were the controllers. In
this way, the structure and behavior of the agents coevolved to produce designs opti-
mized for specific functional problems. This approach is able to generate novel and
diverse designs with useful qualitative biological properties, but at a bigger compu-
tational cost than traditional evolutionary algorithms. Yet, removing the necessity
of implementing an independent controller brings overall a valuable benefit from
an engineering perspective, as it decreases manufacture and maintenance costs and
increases robustness and reliability of the product.

The results demonstrate the versatility of our approach. Depending on the re-
quirements of the behavioral problem and the properties of the available structural
building blocks, the algorithms could produce either complex or minimalistic de-
signs. In the examples using building blocks with limited functionality, such as the
simple tensegrity structures (Section 1.2) and molecular motors (Section 1.4), the
evolutionary search exploited elaborated morphologies to obtain the adequate struc-

28 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

tural and behavioral complexity in order to solve the problem. In contrast, when
more elaborated building blocks were available, as in the path-follower organisms
(Section 1.3), the search algorithm was able to find minimalistic designs that could
produce novel and complex emergent behaviors. This adaptability of the presented
morphogenetic approach also represents an attractive advantage in an engineering
setting.

As engineering products become more and more complex, the potential of the
traditional engineering process is bounded by the ability of engineers to fully assim-
ilate and globally comprehend all the aspects of the product. In this context, evolu-
tionary morphogenetic methods, such as those presented in this chapter, have the
potential to become a valuable computer-aided tool for the design of new products.
This approach has the capacity to solve engineering problems in innovative ways
by exploiting the characteristics of the available structural and functional building
blocks in truly clever designs.

References

1. Andersen, T., Newman, R., Otter, T.: Shape homeostasis in virtual embryos. Artif. Life 15(2),
161–183 (2009)

2. Basanta, D., Miodownik, M., Baum, B.: The evolution of robust development and homeostasis
in artificial organisms. PLoS Comput. Biol. 4(3), e1000,030 (2008)

3. Bentley, P., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an
evolutionary design problem. In: Proc. Genetic Evol. Comput. Conf. (GECCO), vol. 1, pp.
35–43. Morgan Kaufmann (1999)

4. Bongard, J.C., Pfeifer, R.: Repeated structure and dissociation of genotypic and phenotypic
complexity in artificial ontogeny. In: Proc. Genetic Evol. Comput. Conf. (GECCO), pp. 829–
836. Morgan Kaufmann (2001)

5. Bongard, J.C., Pfeifer, R.: Morpho-functional Machines: The New Species, chap. Evolving
Complete Agents Using Artificial Ontogeny, pp. 237–258. Springer (2003)

6. Chavoya, A., Duthen, Y.: A cell pattern generation model based on an extended artificial reg-
ulatory network. Biosystems 94(1-2), 95–101 (2008)

7. Coates, P., Broughton, T., Jackson, H.: Evolutionary Design by Computers, chap. Exploring
three-dimensional design worlds using Lindenmayer systems and genetic programming, pp.
323–341. Morgan Kaufmann (1999)

8. Davidich, M., Bornholdt, S.: The transition from differential equations to boolean networks: A
case study in simplifying a regulatory network model. J. Theor. Biol. 255(3), 269–277 (2008)

9. Davidson, E.H.: The Regulatory Genome: Gene Regulatory Networks In Development And
Evolution, 1 edn. Academic Press (2006)

10. Davidson, E.H., Erwin, D.H.: Gene regulatory networks and the evolution of animal body
plans. Science 311(5762), 796–800 (2006)

11. Dellaert, F., Beer, R.D.: A developmental model for the evolution of complete autonomous
agents. In: Proc. From Animals To Animats: Internatl. Conf. Simul. Adaptive Behav. (ISAB),
pp. 393–401. MIT Press (1996)

12. Devert, A., Bredeche, N., Schoenauer, M.: Robust multi-cellular developmental design. In:
Proc. Genetic Evol. Comput. Conf. (GECCO), pp. 982–989. ACM (2007)

13. Devert, A., Bredeche, N., Schoenauer, M.: Unsupervised learning of echo state networks: A
case study in artificial embryogeny. In: Proc. Internatl. Conf. Artif. Evol. (EA). Springer
(2008)

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 29

14. Eggenberger, P.: Cell interactions as a control tool of developmental processes for evolutionary
robotics. In: Proc. From Animals To Animats: Internatl. Conf. Simul. Adaptive Behav. (ISAB),
pp. 440–448. MIT Press (1996)

15. Eggenberger, P.: Evolving morphologies of simulated 3D organisms based on differential gene
expression. In: Proc. Eur. Conf. Artif. Life (ECAL), pp. 205–213. MIT Press (1997)

16. Eggenberger, P.: Genome-physics interaction as a new concept to reduce the number of genetic
parameters in artificial evolution. In: Proc. IEEE Congress Evol. Comput. (CEC), pp. 191–
198. IEEE-Press (2003)

17. Federici, D., Downing, K.: Evolution and development of a multicellular organism: Scalabil-
ity, resilience, and neutral complexification. Artif. Life 12(3), 381–409 (2006)

18. Fernández, J.D., Vico, F.J.: Automating the search of molecular motor templates by evolution-
ary methods. Biosystems 106, 82–93 (2011)

19. Fernández-Blanco, E., Dorado, J., Rabuñal, J.R., Gestal, M., Pedreira, N.: A new evolutionary
computation technique for 2D morphogenesis and information processing. WSEAS T. Inf.
Sci. Appl. 4(3), 600–607 (2007)

20. Floreano, D., Keller, L.: Evolution of adaptive behaviour in robots by means of Darwinian
selection. PLoS Biol. 8(1), e1000,292 (2010)

21. de Garis, H.: Genetic programming: Artificial nervous systems, artificial embryos and embry-
ological electronics. In: Proc. Parallel Problem Solving Nature (PPSN). Springer (1991)

22. de Garis, H.: Artificial embryology: The genetic programming of cellular differentiation. In:
Proc. Workshop Artif. Life (ARTIFICIAL LIFE). Addison-Wesley (1992)

23. Gruau, F.: Advances in genetic programming, chap. Genetic micro programming of neural
networks, pp. 495–518. MIT Press (1994)

24. Haddow, P.C., Hoye, J.: Achieving a simple development model for 3D shapes: are chemicals
necessary? In: Proc. Genetic Evol. Comput. Conf. (GECCO), pp. 1013–1020. ACM (2007)

25. Hemberg, M., O’Reilly, U.M.: Integrating generative growth and evolutionary computation
for form exploration. Genet. Program. Evol. M. 8(2), 163–186 (2007)

26. Hogeweg, P.: Evolving mechanisms of morphogenesis: on the interplay between differential
adhesion and cell differentiation. J. Theor. Biol. 203(4), 317–333 (2000)

27. Hornby, G.S.: Functional scalability through generative representations: the evolution of table
designs. Environ. Plan. B 31(4), 569–587 (2004)

28. Hornby, G.S., Lipson, H., Pollack, J.B.: Evolution of generative design systems for modular
physical robots. In: Proc. IEEE Internatl. Conf. Robot. Autom. (ICRA), vol. 4, pp. 4146–4151
vol.4. IEEE-Press (2001)

29. Hornby, G.S., Lipson, H., Pollack, J.B.: Generative representations for the automated design
of modular physical robots. IEEE T. Robot. Autom. 19(4), 703–719 (2003)

30. Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation
for body-brain evolution. Artif. Life 8(3), 223–246 (2002)

31. Joachimczak, M., Wróbel, B.: Evo-devo in silico: a model of a gene network regulating mul-
ticellular development in 3D space with artificial physics. In: Proc. Internatl. Conf. Simul.
Synth. Living Systems (ARTIFICIAL LIFE), pp. 297–304. MIT Press (2008)

32. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J.
Comput. Biol. 9(1), 67–103 (2002)

33. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J.
Theor. Biol. 22(3), 437–467 (1969)

34. Kniemeyer, O., Buck-Sorlin, G.H., Kurth, W.: A graph grammar approach to artificial life.
Artif. Life 10(4), 413+ (2004)

35. Komosinski, M., Rotaru-Varga, A.: Comparison of different genotype encodings for simulated
3D agents. Artif. Life 7(4), 395–418 (2002)

36. Kowaliw, T., Grogono, P., Kharma, N.: The evolution of structural design through artificial
embryogeny. In: IEEE Symposium on Artificial Life (IEEE-ALIFE), pp. 425–432 (2007).
DOI 10.1109/ALIFE.2007.367826

37. Koza, J.R.: Gene duplication to enable genetic programming to concurrently evolve both the
architecture and work-performing steps of a computer program. In: Proc. Internatl. Joint Conf.
Artif. Int. (IJCAI), vol. 1, pp. 734–740. Morgan Kaufmann (1995)

30 Daniel Lobo, Jose David Fernández, and Francisco J. Vico

38. Kumar, S., Bentley, P.J.: Implicit evolvability: An investigation into the evolvability of an
embryogeny. In: Proc. Genetic Evol. Comput. Conf. (GECCO). Morgan Kaufmann (2000)

39. Kumar, S., Bentley, P.J.: Biologically inspired evolutionary development. In: Proc. Internatl.
Conf. Evolvable Systems (ICES), pp. 99–106. Springer (2003)

40. Kundu, S., Sorensen, D.C., Phillips, G.N., Jr: Automatic domain decomposition of proteins
by a gaussian network model. Proteins Struct. Funct. Bioinf. 57(4), 725–733 (2004)

41. Levine, M., Tjian, R.: Transcription regulation and animal diversity. Nature 424(6945), 147–
151 (2003)

42. Lister, I., Schmitz, S., Walker, M., Trinick, J., Buss, F., Veigel, C., Kendrick-Jones, J.: A
monomeric myosin VI with a large working stroke. EMBO J. 23(8), 1729–1738 (2004)

43. Lobo, D., Hjelle, D.A., Lipson, H.: Reconfiguration algorithms for robotically manipulatable
structures. In: Proc. ASME/IFToMM Internatl. Conf. Reconfigurable Mechanisms Robots
(ReMAR), pp. 13–22. IEEE-Press (2009)

44. Lobo, D., Vico, F.J.: Evolution of form and function in a model of differentiated multicellular
organisms with gene regulatory networks. Biosystems 102(2-3), 112–123 (2010)

45. Lobo, D., Vico, F.J.: Evolutionary development of tensegrity structures. Biosystems 101(3),
167–176 (2010)

46. Lobo, D., Vico, F.J., Dassow, J.: Graph grammars with string-regulated rewriting. Theor.
Comput. Sci. 412(43), 6101–6111 (2011)

47. Lu, M.: The role of shape in determining molecular motions. Biophys. J. 89(4), 2395–2401
(2005)

48. Matsushita, K., Lungarella, M., Paul, C., Yokoi, H.: Locomoting with less computation but
more morphology. In: Proc. IEEE Internatl. Conf. Robot. Autom. (ICRA), pp. 2008–2013.
IEEE-Press (2005)

49. Miller, J.F.: Evolving a self-repairing, self-regulating, french flag organism. In: Proc. Genetic
Evol. Comput. Conf. (GECCO), pp. 129–139. Springer (2004)

50. Motro, R.: Tensegrity: Structural Systems for the Future. Butterworth-Heinemann (2006)
51. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE T. Evolut. Comput. 5(4), 349–358 (2001)
52. O’Neill, M., Swafford, J.M., McDermott, J., Byrne, J., Brabazon, A., Shotton, E., McNally,

C., Hemberg, M.: Shape grammars and grammatical evolution for evolutionary design. In:
Proc. Genetic Evol. Comput. Conf. (GECCO), pp. 1035–1042. ACM (2009)

53. Paul, C.: Morphological computation: a basis for the analysis of morphology and control re-
quirements. Robot. Auton. Syst. 54(8), 619–630 (2006)

54. Paul, C., Lipson, H., Valero-Cuevas, F.: Evolutionary form-finding of tensegrity structures. In:
Proc. Genetic Evol. Comput. Conf. (GECCO), pp. 3–10. ACM (2005)

55. Pfeifer, R., Iida, F., Gomez, G.: Morphological computation for adaptive behavior and cogni-
tion. Internatl. Congress Series 1291, 22–29 (2006)

56. Pollack, J., Lipson, H., Hornby, G., Funes, P.: Three generations of automatically designed
robots. Artif. Life 7, 215–223 (2001)

57. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer (1990)
58. Reil, T.: Dynamics of gene expression in an artificial genome - implications for biological and

artificial ontogeny. In: Proc. Eur. Conf. Artif. Life (ECAL), pp. 457–466. Springer (1999)
59. Rieffel, J., Pollack, J.: The emergence of ontogenic scaffolding in a stochastic development

environment. In: Proc. Genetic Evol. Comput. Conf. (GECCO), pp. 804–815. Springer (2004)
60. Rieffel, J., Pollack, J.: Crossing the fabrication gap: Evolving assembly plans to build 3D

objects. In: Proc. IEEE Congress Evol. Comput. (CEC). IEEE-Press (2006)
61. Roggen, D., Federici, D.: Multi-cellular development: Is there scalability and robustness to

gain? In: Proc. Parallel Problem Solving Nature (PPSN), pp. 391–400. Springer (2004)
62. Roggen, D., Federici, D., Floreano, D.: Evolutionary morphogenesis for multi-cellular sys-

tems. Genet. Program. Evol. M. 8(1), 61–96 (2007)
63. Roggen, D., Floreano, D., Mattiussi, C.: A morphogenetic evolutionary system: Phylogene-

sis of the poetic circuit. In: Proc. Internatl. Conf. Evolvable Systems (ICES), pp. 153–164.
Springer (2003)

64. Rosenman, M.A.: Evolutionary Algorithms in Engineering Applications, chap. The generation
of form using an evolutionary approach, pp. 69–86. Springer (1997)

1 Behavior-Finding: Morphogenetic Designs Shaped by Function 31

65. Rudolph, S., Alber, R.: An evolutionary approach to the inverse problem in rule-based design
representations. In: Proc. Internatl. Conf. Artif. Int. Design (AID). Kluwer Publishers (2002)

66. Schliwa, M., Woehlke, G.: Molecular motors. Nature 422(6933), 759–765 (2003)
67. Schnier, T., Gero, J.: Learning genetic representations as alternative to hand-coded shape

grammars. In: Proc. Internatl. Conf. Artif. Int. Design (AID). Kluwer Publishers (1996)
68. Schot, S.H.: Jerk: The time rate of change of acceleration. Am. J. Phys. 46(11), 1090–1094

(1978)
69. Shea, K., Cagan, J.: Innovative dome design: Applying geodesic patterns with shape anneal-

ing. Artif. Int. Eng. Design Anal. Manuf. 11(5), 379–394 (1997)
70. Shea, K., Cagan, J., Fenves, S.J.: A shape annealing approach to optimal truss design with

dynamic grouping of members. J. Mec. Design 119(3), 388–394 (1997)
71. Shim, Y.S., Kim, C.H.: Generating flying creatures using body-brain co-evolution. In: Proc.

Symp. Comput. Animation (SCA), pp. 276–285. Eurographics Association (2003)
72. Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1(4), 353–372

(1994)
73. Spector, L., Klein, J., Feinstein, M.: Division blocks and the open-ended evolution of devel-

opment, form, and behavior. In: Proc. Genetic Evol. Comput. Conf. (GECCO), pp. 316–323.
ACM (2007)

74. Stanley, K., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130
(2003)

75. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of develop-
ment. Genet. Program. Evol. M. 8(2), 131–162 (2007)

76. Stiny, G.: Introduction to shape and shape grammars. Environ. Plan. B 7(3), 343–351 (1980)
77. Su, J.: Protein unfolding behavior studied by elastic network model. Biophys. J. 94(12), 4586–

4596 (2008)
78. Taura, T., Nagasaka, I.: Adaptive-growth-type 3D representation for configuration design. Ar-

tif. Int. Eng. Design Anal. Manuf. 13(3), 171–184 (1999)
79. Tibert, A., Pellegrino, S.: Review of form-finding methods for tensegrity structures. Internatl.

J. Space Struct. 18, 209–223 (2003)
80. Togashi, Y., Mikhailov, A.S.: Nonlinear relaxation dynamics in elastic networks and design

principles of molecular machines. Proc. Natl. Acad. Sci. USA 104(21), 8697–8702 (2007)
81. Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: A model for intrinsic artificial devel-

opment featuring structural feedback and emergent growth. In: Proc. IEEE Congress Evol.
Comput. (CEC), pp. 301–308. IEEE-Press (2009)

82. Vale, R.D., Milligan, R.A.: The way things move: Looking under the hood of molecular motor
proteins. Science 288(5463), 88–95 (2000)

83. Watson, J., Geard, N., Wiles, J.: Towards more biological mutation operators in gene regula-
tion studies. Biosystems 76(1-3), 239–248 (2004)

84. Willadsen, K., Wiles, J.: Dynamics of gene expression in an artificial genome. In: Proc. IEEE
Congress Evol. Comput. (CEC), pp. 185–190. IEEE-Press (2003)

85. Yang, L.W.W., Bahar, I.: Coupling between catalytic site and collective dynamics: a require-
ment for mechanochemical activity of enzymes. Structure 13(6), 893–904 (2005)

86. Zhan, S., Miller, J.F., Tyrrell, A.M.: An evolutionary system using development and artificial
genetic regulatory networks for electronic circuit design. Biosystems 98(3), 176–192 (2009)

