
1

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA
INFORMÁTICA

INGENIERO EN INFORMÁTICA

DISEÑO E IMPLEMENTACIÓN DE UNA ESTRATEGIA PARA UN
JUEGO DE CONEXIÓN

Realizado por

DAVID DANIEL ALBARRACÍN MOLINA

Dirigido por

FRANCISCO J. VICO VELA

Departamento

LENGUAJES Y CIENCIAS DE LA COMPUTACIÓN

UNIVERSIDAD DE MÁLAGA

MÁLAGA, Marzo de 2010.

2

3

UNIVERSIDAD DE MÁLAGA
ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

INGENIERO EN INFORMÁTICA

Reunido el tribunal examinador en el día de la fecha, constituido por:

Presidente/a Dº/Dª. __

Secretario/a Dº/Dª. __

Vocal Dº/Dª. ___

para juzgar el proyecto Fin de Carrera titulado:

Diseño e implementación de una estrategia para un juego de conexión

realizado por Dº. David Daniel Albarracín Molina

tutorizado por Dº. Francisco J. Vico Vela

ACORDÓ POR ________________________________ OTORGAR LA

CALIFICACIÓN DE __________________________________

Y PARA QUE CONSTE, SE EXTIENDE FIRMADA POR LOS COMPARECIENTES

DEL TRIBUNAL, LA PRESENTE DILIGENCIA.

Málaga a 18 de Marzo de 2010

El Presidente ___________________ El Secretario___________________ El Vocal_________________

Fdo: __________________________ Fdo: _________________________ Fdo: ____________________

4

5

Design and implementation of a
strategy for a connection game

6

ABSTRACT

The purpose of this project is developing an automatic strategy for playing
Selfo, a connection game whose goal is to get arranged all the friendly pieces
into a single connected group. The idea is to copy some kind of swarm conduct,
like the observed in an ant colony or in a flock of birds, to play this game. The
swarm behaviors consist on few simple inborn rules. But these simple rules
applied in group usually bring complex dynamics. The ultimate goal is to check
whether a computer player based on these principles can compete against a
thinking trained human.

We first built a simple computer version of Selfo in order to deeply examine the
dynamics of the game by running human-human and human-dummycomputer
games. From this experience we proposed and developed a swarm behavior
based strategy.

We built the program over the Zillions of Games platform. Zillions is a popular
website where people can download and play a multitude of board games. This
is a great tool to get the players experiences. And it also allowed us to easily
define the user interface and game rules, letting us focusing on the game
engine.

To evaluate the quality of the proposed strategy, we run several simulations of
computer-computer games and played human-computer games. We noted that
the computer opponent can defeat many times an average player and
sometimes beat an experienced player. We also learned that it is very important
the initial distribution of pieces and sometimes the strength of the first move.
Finally we could observe the speed of the computer player, despite the
computational complexity of the game.

We conclude that we have achieved the initial aims: building an easy to use
computer version of Selfo with an on-line game mode and developing a fast
strategy inspired by nature which could face up a human player.

7

INDEX
Chapter 1: Introduction ... 10

1.1 Motivation ... 10

1.2 Aims .. 10

1.3 Chapter overview .. 11

Chapter 2: Introduction to connection games ... 13

2.1 Definition ... 13

2.2 Board design ... 13

2.3 Scale ... 14

2.4 Rules of play ... 15

2.5 Clarity .. 15

2.6 First move advantage ... 15

2.7 More players ... 16

2.8 Defensive play .. 16

2.9 Classification ... 16

2.10 Examples .. 17

Chapter 3: Description of Selfo ... 20

3.1 Introduction ... 20

3.2 Definition ... 21

3.2.1 Board .. 21

3.2.2 Initial board position ... 22

3.2.3 Density ... 22

3.2.4 Winning condition ... 22

3.2.5 Number of players .. 23

3.2.6 Move length .. 23

3.2.7 What a Selfo game is not ... 23

3.2.8 Summarized rule set .. 24

3.3 Initial board position .. 25

3.3.1 Regular positions.. 25

3.3.2 Irregular positions ... 26

3.4 Self-organized dynamics ... 28

3.4.1 An example of self-organized play ... 29

3.5 Discussion .. 30

8

Chapter 4: Related technologies .. 32

4.1 Introduction ... 32

4.2 Zillions of Games .. 33

4.2.1 Introduction .. 33

4.2.2 Web .. 34

4.2.3 Zillions of Games program ... 36

4.3 Building a game in Zillions .. 38

4.3.1 ZRL Language ... 39

4.3.2 DLL Interface .. 41

Chapter 5: Proposal of a game strategy ... 45

5.1 Initial study .. 45

5.2 An approach ... 46

5.3 Definition of the strategy ... 47

Chapter 6: Simulation results ... 52

6.1 Introduction ... 52

6.2 Human-Computer results .. 52

6.3 Computer-Computer simulations .. 53

6.3.1 Setup 1 ... 54

6.3.2 Setup 2 ... 56

6.3.3 Setup 3 ... 58

6.3.4 Setup 4 ... 60

6.3.5 Setup 5 ... 62

6.4 General observations .. 64

Chapter 7: Conclusions .. 65

References ... 67

Appendix: Implementation .. 68

Diagrams .. 68

DLL Interface .. 68

Structures .. 68

Methods .. 69

Custom Strategy ... 70

Structures .. 70

Functions ... 70

9

10

Chapter 1: Introduction

1.1 Motivation

It has been shown that nature is a powerful source of inspiration in different
fields of engineering. We have taken ideas which has bring to us inventions like
planes, diving fins, radar, sonar, Velcro, computer viruses, self-cleaning
surfaces and countless other gadgets. Particularly, in computer science we can
see many ideas inspired by nature helping us to solve several kinds of
problems, ideas like artificial neural networks, fuzzy logic, evolutionary
computation or many techniques in computer vision.

Over the years, game theory has provided to computer science the possibility of
applying and testing different strategies, behaviors or algorithm. MINIMAX
strategies, application of artificial neural networks or the use of pattern
databases are among the most common methods to face the problem of
building computer intelligences for playing games.

Our proposal is to develop a game engine for a connection game, a kind of
board game where the goal is to get certain configuration between the friendly
pieces. To achieve that purpose we will think about bio-inspired strategies
which will treat each piece like an independent individual following simple rules.
That will bring a general and a more complex emergent behavior, similar to how
the ant colonies find the shortest path to food simply dropping and following
pheromones.

1.2 Aims

This project focuses in three main goals: building a computer version of the
connection game Selfo, developing a bio-inspired computer play engine taking
into account the dynamics of the game; and checking whether the developed
strategy is capable of defeating a human player.

According to these objectives, we will first build a preliminary computer version
of Selfo containing the following features:

- An on-line mode to provide another way to play. So people can play
against an offline human player, an online human player and a computer
player,

- it should let people send us their save games in order to analyze them.
- a friendly and easy to use interface,

11

- different game variant,
- the computer game engine should be fast, so the people do not get

bored waiting,
- Selfo should be placed on the Internet to increase the people who have

access to it.

After studying executed games and in-depth understanding the dynamics of the
game, we will design an advanced game strategy. The strategy will be bio-
inspired and the execution of the game engine will remain fast, in order to keep
the game fun.

The last phase will include a series of tests consisting of computer-computer
and human-computer games to see if the new designed strategy has reached
the desired level. The goal is that the new engine is able to defeat an
experienced human player.

1.3 Chapter overview

This document has been structured as follows:

• Chapter 2: Introduction to connection games:

Here we provide a description of what a connection game is, what
exactly characterizes a board game as such. We discuss features
like board setups, rules or usual developments of a connection
game and finally we give some examples of them.

• Chapter 3: Description of Selfo:

In this chapter we focus on the connection game named Selfo. It is
given a precise definition of boards, kind of moves, goals and
many other features. In addition we discuss some important issues
related to Selfo, like its dynamic or the initial configurations of
pieces.

• Chapter 4: Related technologies:

Through this chapter, we discuss the discarded and chosen
technologies. It is given a description of the Zillions of Games

12

platform, the ZRL language and the DLL interface to engage a
custom game engine to Zillions.

• Chapter 5: Proposal of a game strategy:

In this section we propose an artificial strategy to play Selfo. We
give the definition of the strategy according to our experiences
playing Selfo and we explain its functioning and some aspect
related to the implementation.

• Chapter 6: Simulation results:

Here we show simulation results and experiences playing Selfo
using the new developed strategy. We give some statistic data
and graphics; and we expose our conclusion in relation to the kind
and level of play developed by our game engine.

• Chapter 7: Conclusions:

In this chapter we reflect on the obtained result. We comment the
level of play achieved by the proposed strategy and think about
the accomplished goals. Finally we expose some additional
experiences and future lines of work.

13

Chapter 2: Introduction to
connection games

2.1 Definition

A connection game is a board game in which payers have to develop or
complete a specific type of connection with their pieces. This might involve
forming a path between two or more goals, completing a closed loop, or
gathering all pieces together into a single connected group. In all cases, the
size and shape of the connection do not matter; it is the fact of connection that
counts.

Most board games feature at least some aspect of connection. This could be as
fundamental as the adjacency of squares on a Chess board, or the fact that a
winning pattern in Tic-Tac-Toe forms a connected line. But in both cases what
really matters is not the fact of connection. Consider the game of Tic-Tac-Toe,
we can set up a board position that connects opposite sides of the board or
connects as many pieces as we want without either player winning. It is the
pattern’s size and shape that is important here (three pieces in a line), the fact
of connection is an irrelevant by-product of its formation.

2.2 Board design

As board geometry is a central element in most connection games, any
singularities in board design can have profound effects upon the game. Players
should take advantage of powerful cells and stay away from weaker cells.
Powerful cells are those with greater connective potential or at which connective
flow converges. The central point is usually the strongest point on the board.

The right-most design, a hexagon tiled with hexagons called the hex hex board,
is of particular interest. The absence of acute corners means that edge cells are
more uniformly distant from the center of the board, resulting in a more even
distribution of power over all cells.

The cells of a game board are generally adjacent to those cells with which they
share an edge.

14

Figure 2.1 Adjacencies on the triangular, square and hexagonal grids. Taken from Browne
[2005].

Some games are played on grid intersections rather than cell interior. In
addition, the rules of some games specify connective adjacencies between cells
or board points that are not physical neighbors; for instance, points in Twixt are
not connected to their immediate neighbors but to those a knight's move away.

Figure 2.2 Games played on cell interior and on grid intersections. Taken from Browne [2005].

2.3 Scale

Most connection games tend to scale up well. For instance, Hex (see 2.10) can
be played on a 20 x 20 board just as well as on a 10 x 10 board because the
connections involved are independent of size. However, connection games do
not tend to scale down so well. Smaller boards degenerate into limited tactical
battles. Smaller boards offer fewer lines of play, are more readily analyzed, and
tend to be overshadowed by combinatorial edge tactics that reward note
learning of book positions rather than quick thinking over the board.

15

Larger games are generally more satisfying, but can take much longer to
complete. Players will generally find a board size that balances their skill and
depth of interest in a game with their patience to play it.

2.4 Rules of play

Rules of play govern the interaction between pieces on the board, and shape
the stages of play as the game progresses.

2.5 Clarity

Clarity is the case with which a player can understand what is going on. Games
like Hex with transparently simple rules and goals, and no special conditions or
hidden complexities to distract the mind have excellent clarity. The clarity of a
game determines how far you can see down the games strategy tree. Games
with overly complex move mechanics or excessive piece movement tend to
have poor clarity and hence limited depth.

2.6 First move advantage

Most Pure Connection (see 2.9) games suffer from a severe first-move
advantage as the opening player can win with perfect play. Move transformers
are a balancing mechanism used in some games to counteract the first-move
advantage. For instance, the move transformer 12333 means that the first move
is a single move, the second move is a double move, and all subsequent moves
are triple moves. It can speed up play but can also introduce unnecessary
complexity, reducing clarity and making it extremely difficult to anticipate future
moves and formulate strategies. The swap option is a more elegant way to
address any first-move advantage. The opening player makes a move, and then
the opponent has the option of either making a move in reply or swapping
colors. The swap option discourages the first player from making an overly
strong opening move.

16

2.7 More players

Even though the Cut/Join nature of connection games is ideally suited to two-
player games, games involving three or more players can be implemented
successfully. However, care must be taken because the possibility of deadlocks
could be increased.

2.8 Defensive play

A good rule of thumb for complementary-task connection games is that defense
equals attack. Blocking the opponent’s connection by definition implies a win for
the player. A strongly defended position is a good one, and players should
resist the urge to play excessively aggressive mores that overreach and lead to
disaster. An active form of defense is to exploit weak points of overlap in die
opponent's potential connections. It is often important to block a group's
progress across the board. Such positional defense is usually best done from a
distance.

2.9 Classification

Connective Goal

Connective Goal games are those that end as soon as a specified connection,
independent of size or shape, is achieved; connection is paramount in deciding
the winner. Such games can be described as involving connection at a global or
strategic level.

Connective Play

Connective Play games are those that feature at least some connective aspect
and no non-connective aspects during general play; connection between pieces
is paramount during play. Such games can be described as involving
connection at a local or tactical level.

Non-connective aspects include unconstrained piece movements, jumps, or
flips. Similarly, the movement, rotation, or removal of tiles to arbitrarily change
connections disqualifies a game from this category. Moves must be primarily
dictated by connection. The placement of pieces on the board from an outside
pile does not exclude games from this category. Piece capture is allowed, as

17

long as it is strictly connection-based (as in Go) and does not involve size or
shape constraints.

Pure Connection

Pure Connection games are those with both strictly connective play and strictly
connective goals. These can be described as games involving connection at
both the local and global levels.

2.10 Examples

Hex

Figure 2.3 Hex board. Taken from Browne [2005].

Hex is the game that kick-starred the connection game genre in the middle of
the twentieth century. It has extraordinarily simple rules yet remains one of the
most difficult and interesting of all connection games. It is included in Pure
Connection class.

Hex is played on a rhombus of hexagons, typically 11 x 11, which is initially
empty. Two players, Black and White, own alternating sides of the board that
bear their color. Players take turns placing a piece of their color on an empty
cell.

The game is won by the player who connects his two sides with a chain of his
pieces. Exactly one player must win. The first player has a huge (winning)

18

advantage, especially if allowed to open near the center of the board. It is
recommended that a single-move swap option be used.

Go

Figure 2.4 Go game. Taken from Browne [2005].

Go is one of the most influential of all abstract board games. It is played on the
intersections of a square grid, typically 19 x 19, which is initially empty. Two
players, Black and White, take turns placing pieces of their color on an empty
intersection. All enemy groups with no remaining liberties (orthogonally
connected empty points) are then captured and removed from the board.

Players may not place a piece that would commit suicide, that is, any piece
placed on the board must have at least one liberty or become pan of a group
that has at least one liberty. In addition, players cannot make a move that would
result in a repeated board position.

Players may pass in lieu of making a move. If both players pass in succession
then the game ends, and player scores are calculated based on the amount of
territory under or surrounded by their pieces. Captured stones may also
contribute to player’s scores, depending upon which version of the rules is
used.

Go is widely regarded as one of the deepest games in existence. It is estimated
to be 3.000 years old and boasts many textbooks, clubs, and professional
players who spend their lifetimes studying the game.

Although strongly based on the concepts of war and territory, Go has a
substantial connective aspect. In fact, capturing moves can be seen as the
formation of orthogonally and diagonally connected cycles around maximal
orthogonally connected enemy groups.

19

Lines of action

Figure 2.5 Initial configuration of Lines of action. Taken from Browne [2005].

Lines of Action, the classic game of convergence, is played on an 8 x 8 square
grid. Two players, Black and White, start with 12 pieces each, setup as shown
in Figure 2.5

Players take turns moving one of their pieces in an orthogonal or diagonal line.
The piece must move exactly the same number of squares as there are pieces
of either color along that line. The piece may jump over friendly pieces but not
enemy pieces, and may not leave the board. The piece may land on an enemy
piece to capture it.

The game is won by the first player to move all of his remaining pieces into a
single connected group. Connections within the group may be orthogonal or
diagonal. If a capturing move creates single connected groups for both players
simultaneously, then the mover wins.

Lines of Action is widely regarded as a game of the highest quality, achieving
deep tactical and strategic possibilities with a simple and interesting move
mechanism. It remained something of a cult game until the 1990s when it
started enjoying a wider audience (much like Hex).

One of the fascinating features of Lines of Action is that capturing an
opponent's piece can harm a players chances as much as improve them, as the
opponent then has one less piece to connect to achieve his goal.

20

Chapter 3: Description of Selfo

3.1 Introduction

Selfo is defined as a class of abstract strategy board games subscribed to the
category of connection games. Its name derives from the phenomenon of self-
organization (i.e. the increase in a system’s organization without external
guidance), since during the game the sets of pieces might flow in a coordinated
way as they step on the board. Despite its very simple definition (“group all your
pieces by moving in turns to adjacent cells”) complex self-organization
processes takes place under concrete circumstances (a balanced distribution of
pieces and similar levels of expertise in the players), and are the result of abrupt
and deep changes in the tactics. Since a big number of variants have been
found to meet the conditions for self-organization, the particular values given to
the traditional parameters that define a game (i.e., board tiling, size and initial
position, or number of pieces and players) are not so relevant. The Selfo class
of connection games is defined, instead, by the interrelations among
parameters in order to favor self-organization.

Since the invention of Go, traditional connection games have been widely
played and studied. In the last decades this genre of games has proliferated,
and now they constitute a significant contribution to strategy games. An
ambitious compilation has been published by C. Browne [2005].

Some connection games are well-known and have become popular as board
games: Lightning, the first connection game by several decades [Polczynski
2001]; Hex, devised by the mathematician and Nobel laureate John F. Nash,
and whose publication [Gardner 1957] raised the connection game genre; Y,
from which Hex is a special case, was proposed in the early 1950s by C.
Shannon, the father of the Communication Theory; or Twixt, a game that has
been marketed by six different companies since 1961.

Far from pure connection games, Browne classifies under the category
“convergent connective goal” those connection games whose winning condition
implies amalgamating a set of pieces into a single connected group. A number
of games have been proposed under this convention, like Lines of Action
(invented by C. Soucie [Sackson 1969]), or Groups (proposed in 1998 by R.
Hutnik [Browne 2005]).

The Selfo class of games defined in this report subscribes to the convergent
family, since the ultimate goal is to knit together the pieces. Despite their
apparent similarity, Lines of Action and Groups do not belong to this class;
some rules are added to the definition, and they have been designed for fast

21

games (usually under 10 turns in Groups). On the contrary, the fun of playing
Selfo will be more in going through balanced positions (like in Tetris); with a
tempo that switches frequently among evenly matched players.

3.2 Definition

This section describes the main rules that apply to a game in this class.

After setting the board’s grid and size, move length, and the initial board
position, each player is assigned a set of pieces, and a random order of play.
Players move their pieces in turns, and after the first player’s turn, a swap
option is given to the rest of the player on their first move. The game ends when
a set of pieces gets arranged into a single connected group, or when all players
decide a draw (e.g. if some pieces get isolated).

3.2.1 Board

Selfo does not impose any restriction on the particular board topology. This
aspect of the game is indeed critical, since the adjacency graph (based on a
triangular, square, hexagonal, or even irregular grid) strongly influences the
particular dynamics of the game. But, as said before, self-organized dynamics
does emerge on any particular grid if the connectivity is balanced with other
parameters. For simplicity, in this report we will constraint ourselves to board
surfaces with hexagonal tessellations, where board points will be cell interiors.

With respect to board size, in principle Selfo can be played on a theoretically
infinite board, where pieces are not confined, and can wander around without
limits. This option reduces dramatically the possibilities of self-organized play,
which easily turns into a race where any initial advantage cannot be neutralized
by the opponents.

Limiting the number of cells introduces a major difference in the development of
the game. Boundary effects clearly favor the use of tactics for isolating
competing pieces over densely occupied finite boards. This balancing
mechanism strongly favors the self-organization during the game, or, said in
another way; it expands the range of the parameter space where self-
organization takes place.

22

3.2.2 Initial board position

Some constraints apply to the initial position: the minimal number of moves
necessary for a set of pieces to reach the winning condition (keeping the
opponents’ pieces on their initial cells) must be high (proportional to the number
of pieces) and similar for all sets. Also, subsets of pieces cannot be isolated by
competing chains of pieces, neither in the initial position, nor after the first
moves (i.e. there must be a chance for any piece to avoid isolation).

All the pieces are placed on the board before starting the game (players cannot
place pieces, as in Go). This can be done according to a fixed arrangement, or
by an algorithm that, respecting the previous constraints, randomly assigns
pieces to empty cells. Section 3.3 develops some examples of fixed initial
positions, and algorithms for randomly sorting the pieces.

In order to avoid first-move advantage, a swap option is offered to each player.
Every player can (only on their first turn) either make a move, meaning that they
keep the set, or swap sets with any other player. This determines the final
assignment of sets of pieces to the players.

3.2.3 Density

Defined only for finite boards, the density of a Selfo game is the relation, as a
percentage, between the overall number of pieces and the number of cells of
the board (i.e. a ratio of empty vs. non-empty cells).

The density has to be high enough to provide a strong interaction among the
sets of pieces. But a too dense game will raise the probability of a deadlocked
game. Densities in the range 35-40% have demonstrated to favor self-
organized play.

3.2.4 Winning condition

The winning condition of any Selfo game is to form a single group connecting all
the pieces of a player. The connectivity in this group will be assumed to be that
of the adjacency graph of the board, i.e. two pieces are connected if they are in
adjacent cells. For example, on a square board where pieces could only move
orthogonally, the winning condition would be to form a single orthogonally
connected group.

Players can also resign. Resigning must be announced on a player’s turn, and
the effect is like the player passing on the following turns: the pieces do not

23

move any more, they stay on the current cells, remaining as non-empty cells for
the rest of the game.

3.2.5 Number of players

Selfo can be played by two or more players that are assigned the same number
of pieces. Since the density of pieces has been defined as a very influencing
parameter, and must be kept, the size of the sets of pieces will be the total
number of pieces divided by the number of players. This size must be bigger
than one in order to make groups, but less than four pieces per player is not
recommended.

3.2.6 Move length

This parameter is defined as the maximum number of moves through empty
adjacent cells that a player can perform with a single piece in a turn. The length
of the move has a lower limit of zero (meaning that the player can pass the turn
on). This is the parameter that influences the depth of the game more
significantly, since the collection of possible movements increases exponentially
with higher values of the maximum length allowed. For this reason the class will
be divided into subclasses according to the maximum move length: Selfo-1
being the simplest subclass, where any piece can perform single moves by
stepping onto one empty adjacent cell (and players can pass on turns), and
Selfo-n being the class where a piece can make a sequence of up to n single
moves in a turn.

3.2.7 What a Selfo game is not

Possible refinements and extensions of the class can be considered, but in
order to keep the simplicity of its definition a number of restrictions should
always be met:

- all pieces move according to the same rules,

- players cannot influence the initial position,

- the winning condition should not be altered.

With respect to the first condition, having pieces with different behaviors would
introduce a significant complexity in the definition. In such a case it would be
necessary to specify a distinctive shape for each type of piece, and their role in
group formation.

24

The second condition is also important, since it affects the simplicity of the
strategy: moving pieces on a densely populated board is one thing, and placing
pieces on an empty board according to some rules is another. To reach a
balanced initial position would mean that the players match also in their skills to
select an advantageous constellation of cells.

The proposed winning condition is a standard one (see the Introduction
section), and any deviation from this simple goal will increase the solutions,
giving less chance for a balanced play.

3.2.8 Summarized rule set

All the above definition can be condensed on the following rules for the simplest
variant of the class, and two players:

- A board with a given topology and size, and a number of pieces are

chosen,

- all black and white pieces are distributed on the board with a proper

algorithm,

- colors are randomly assigned to players,

- starting with blacks, players move in turns, and a swap option is given to

whites on the first movement,

- in each turn, a player can either pass on the turn, or move one piece to an

adjacent empty cell,

- the player that first arranges all her/his pieces in a single connected group

wins the game,

- players can decide a draw if the game lasts for too long or some pieces

get isolated.

Or even more concisely:

Starting with an initial board position, players take turns moving a piece of their
color an adjacent empty cell. The first player to connect all of their pieces into a
single group wins.

25

3.3 Initial board position

Given that the expertise of the players match (or has been balanced somehow),
the main point for a Selfo game to develop self-organized dynamics is to start
with a board position where the sets of pieces are distributed in a way that do
not favor the grouping of one nor the other sets. Some initializations are
proposed based on regular and irregular distributions of pieces.

3.3.1 Regular positions

Figure 3.1 shows a number of fixed initial positions of hex hex boards of size 6
(for clarity, hexagonal cells are painted as circles), for two players (first row) and
three players (last row).

Figure 3.1 Regular initial positions for a hex hex board of size 6. Colors identify the different

sets. Taken from Vico [2007].

Similar positions can be obtained for a higher number of players by re-coloring
the pieces in a way that keeps the symmetry. All these board positions contain
36 pieces (≈40% density).

A number of regular positions for two players (can be extended to more players)
derive from defining a pattern of pieces on one of the six triangles that form the
hex hex board (see Figure -left), and copying it after reversing colors and
rotating the pattern to fit the neighboring triangles. Figure shows an example of
initial position after reproducing the pattern on the left. A variation would be to

26

define the pattern on two or three adjacent triangles, and copying and inverting
colors three or two times, respectively.

This method is simple in its definition, and ensures a good distribution of the
pieces on a hex hex board, whatever its size.

Figure 3.2 Shown in two differentiable gray tones are the six triangles that, arranged around the

central cell, form a hex hex board; and a pattern of black and white pieces (left). The resulting

position of 36 pieces (right). Taken from Vico [2007].

3.3.2 Irregular positions

Irregular initial positions of the board can be obtained by different algorithms.
The main restriction is that the sets of pieces are balanced (see section 3.2.2).
Two main strategies are proposed to determine an initial position: perturbing a
regular position, and selecting random cells for each piece after indexing the
board.

The first option starts with a regular distribution, and all pieces are randomly
numbered. Starting from the first piece, a random number from 1 to 6 is
selected that indicates a direction according to the scheme in Figure 3.2, the
piece then steps onto the corresponding cell if it exists and is empty. This
procedure applies to all the pieces on the board, and can be easily implemented
on a physical board with a standard die. The result is a random rearranging of
the sets of pieces that generally keeps a good distribution of pieces. Figure 3.3
shows an example starting with one of the positions proposed in the previous
section.

27

5

2

3

6

4

1

Figure 3.2 The six possible directions of movement from a given cell. Taken from Vico [2007].

Figure 3.3 An irregular position derived from a regular one. Taken from Vico [2007].

The second strategy places the pieces following a spiral course that starts from
the central cell and goes clockwise. In this case a random number is selected,
and a piece of the first player is placed on the corresponding cell; counting from
the central cell. A piece of the next player is placed after moving a random
number of steps forward from the last piece. The process goes on until the last
piece of the last player is placed on the board. This procedure can also be
implemented with a die, renumbering the six faces accordingly (for example, on
a size 6 hex hex board, numbers from 1 to six would be reinterpreted as {1, 2,
2, 3, 3, 4} for a 36% mean density). In case some of the last pieces cannot be
placed on the board, the whole procedure should be repeated.

28

Figure 3.4 Trajectory followed on the hex hex board to place the pieces randomly. Taken from

Vico [2007].

The proposed methods give an initial position that warranties a balanced
distribution of the pieces. But it could also happen that a piece gets isolated (or
can be isolated with little effort) in this initial setting. In such a case, the
procedure should be applied again.

3.4 Self-organized dynamics

As explained in previous sections, the development of the match in a Selfo
game starts with a fixed board position. After the opening movement, and the
consideration of the swap option by the rest of the players, pieces start to
occupy strategic cells, and to form small groups. Each set of pieces will
converge to a configuration that minimizes the overall distance inside a set,
while obstructing the opponents’ options to group their pieces first. Given the
conditions of equilibrium in the initial distribution of the pieces and similar
experience among the players, the tightly coupled position reached during the
opening should develop into a phase of self-organization.

But, what does it mean to say that the sets of pieces self-organize during the
game? Self-organization is a process widely studied in the field of Complex
Systems. Models of cellular automata are good examples of self-organized
behavior, where structure (order) emerges from disordered initial states, after
the iterative updating of the cells values with a local rule (e.g. Wolfram’s 1D
cellular automata [Wolfram], and the 2D automata based on the Belousov-
Zhabotinsky reaction [Dewney 1988]). Self-organization takes place similarly in
Selfo games, once a player’s set of pieces is distributed on the board, they start
to move according to local rules (i.e. the strategy of the player) to try to find an
ordered configuration. The fact that adversary pieces try to do the same, while

29

preventing others from grouping their sets, allows a balance of forces that
makes the pieces flow on the board in a self-organized fashion.

Self-organization occurs only over long lasting matches. It is a direct
consequence of rapid changes in the tactics (alternating offensive and
defensive movements), forced by the opponents’ recent actions, and it is
characterized by global long-range displacements of the pieces on the board.
This phenomenon can be measured in different ways. A simple indicator is the
“mean number of turns since last movement” applied to a player’s set of pieces.
A value of this mean fluctuating around the size of the set of pieces reveals a
mobilization of the whole set, On the other hand, values significantly higher than
the number of pieces are representative of the set having found a stable
configuration (pieces that do not change positions, while a small number of
them wander around).

3.4.1 An example of self-organized play

Figure 3.5 shows successive positions of a hex hex board of size 5 during a
Selfo-1 game, played by players of similar experience. The initial board position
is a regular one that soon shows the formation of some groups derived from the
first black piece’s movement. After 28 turns, the two players compensate their
movements by establishing two ladders aligned horizontally (position after 18
and 28 moves). But in deciding who will be first connecting both sides of the
board, tension grows on the upper-right corner (position after 38 moves). At this
point the initial strategy changes, when the whites break the ladder, allowing
some of the black pieces to cross it (positions after 42 and 49 turns), and
converge to new diagonal ladders (position after turn 57) that finally align
vertically. This option finally forces a draw when both sets of pieces reach a
configuration where some pieces would become isolated before any whole set
can get arranged into a single group (final position after 77 turns).

This simple example shows how self-organization takes place: the sets of
pieces tend to balance configurations, and continue in this direction until the
tension fractures the patterns, pushing the sets towards unstable sequences of
positions that rapidly generate new patterns.

30

Figure 3.5 Evolution of the board position after 0, 18, 28, 38, 42, 49, 57 and 77 turns (from left

to right and from top to bottom). Taken from Vico [2007].

3.5 Discussion

We are living in a time (the Internet era) where less and less time can be
dedicated to learning from reading and mastering particular games. The
success of new games is certainly influenced by this constraint. Traditional
games, like backgammon or chess, could be categorized as complex to start
playing, in the scope of the emerging family of online games and game
consoles, operated by very simple rules and commands. Board strategy games
will benefit much from the new Internet-based infrastructure, but simplicity will
be a cutting factor for a game to become popular.

Taking this constraint as one of the main factors in game design, Selfo has
been conceived in the spirit of E. de Bono’s L-game [de Bono 1968]: simplest
possible definition, a considerable depth, and indecisiveness of the game
(playing all players perfectly, the winning condition would never be met). The
result is a game where the only difficulty is in establishing the initial board
position, but this handicap vanishes when the game is played on the computer,
since the methods proposed in section 3.2.2 can be programmed. For the rest,
a child starts playing Selfo correctly within minutes.

Interesting extensions of the Selfo class can be derived from assigning unequal
forces to the players: variable number of pieces, or different lengths of move. In
principle, move length looks like an adequate way to balance unpaired players
with different degrees of expertise, but the fact is that a player with a slightly
longer move, has in practice too much advantage. In general, the depth of a
Selfo game is influenced by move length (more significantly), the number of
pieces of a player, and the number of players.

Another variant might consider special pieces with a bigger (or unlimited) move
length that help to block the winning strategy of an opponent. This proposal
challenges the first condition imposed to the class in section 3.2.7, but it looks
like the simplest variation when departing from a homogeneous set of pieces.

31

An important feature of Selfo is that it can be played with household stuff, by
using the conventional chess (or draughts) board and pieces. For example,
using the 16 pawns yields a 25% density, that works fine on an 8-neighbours-
based topology. Initial board positions can be obtained from regular distributions
or by iterating a pattern (4 times a square one, or 8 times a triangular one).
Hexagonal boards can also be handcraft easily with a round cutting board.

32

Chapter 4: Related technologies

4.1 Introduction

As discussed before, it was needed a programming support to build the
program's user interface and implement the game engine. It was also required a
website to publish Selfo to provide greater disclosure and elicit feedback with
players.

One option may have been: choosing a programming language from scratch
and deploy the application; locate and reserve a space on the internet where to
place it; and make a small campaign to publicize the game and make it known.
But we knew the existence of a platform called Zillions of Games which
basically consists of a website where people can publish their board games to
share them with others and a program that can be downloaded from the web to
run those games.

Zillions of Games is a well-known platform among the people who likes board
games. Publish Selfo in this place would greatly help us to disclose it. We could
play games with known people, against the computer, make simulations
between non-human players; and we would also have a host of players willing
to spend time in our game and willing to share their experiences and saved
games with us.

On the other hand, making use of Zillions will allow us do the auxiliary job, like
providing a powerful and easy to use user interface, in a quick and simple way.
The Zillions’s game interface includes all features you could ask for a
programmed board game, such as choosing the color of pieces, choosing the
type of players (human or computer), choosing between different variants of the
game, providing user support, etc.

The integration of a game in Zillions of Games is a relatively simple and well
documented process. It consists of three basic phases: definition of the game,
game engine implementation and publication.

The definition of the game is done over a programming language called ZRL
(Zillions Rule Language), created by Zillions of Games for that purpose. The
syntax of that language is very similar to LISP. It has a set of sentences, types
and structures to define the dimensions of the board, its topology, the number
and kind of pieces, or the number of players who can participate.

33

Zillions of Games provides three choices to have an artificial player for custom
games. The first option is using the universal engine provided by Zillions. The
second option is implementing the engine using a tool called Axiom, created by
an expert user of Zillions to assist people in creating their own games. And
there is a third option which is implementing the play engine directly through a
DLL, following a predefined interface.

In order to publish a game inside Zillions of Games it is necessary to make a
package with a predetermined structure and containing files with the definition
of the game, the images used on it and optionally the game engine. It is also
necessary to write some information about the game to be included in the
download section of the game page in Zillions. The package is sent by email to
the administration of the platform and no later than one week is obtained
confirmation of the publication.

4.2 Zillions of Games

4.2.1 Introduction

Zillions of Games is a platform that consists of two main elements: the website
and the program Zillions.

The program Zillions has been developed to manage and run a series of default
games and games created by users. This program provides an interface where
the user can configure the application, run a game and interact with it. Zillions
also includes a generic game engine ready to play any game defined over the
platform and it also has the ability to interact with a possible custom play
engine.

The website is designed to facilitate access to the latest version of Zillions, to
games developed by individual users and obtain the games development kit. It
is also a place where users can discuss their programming and playing
experiences, and to get games-related information.

34

4.2.2 Web

Figure 4.1 Zillions of Games homepage.

The Zillions of Games website is composed of a main section which allows the
downloading of a demo version of program Zillions, purchase the full version
and get updates. The main section also reports the existence of other services
such as custom game development, free games downloading, the game
development tools, an overview of all sections of the website and the latest
published games.

In Features section it is explained in detail the features of the latest version of
Zillions and it is offered the possibility to download the demo or purchase the full
version on CD or through an unlocking code for the demo.

The FAQ section contains a helpful list of resolved questions about the
acquisition and characteristics of Zillions programming platform.

In Press section, the references that have been made of Zillions in media and
press dedicated to the world of computers and games are shown and
discussed.

In Store, Zillions full version can be bought and demo can be downloaded and
in About Us section it is provided some information about the Zillions platform.

And finally in the User's Corner section it is given access to those areas and
most important tools for a Zillions user and/or developer. In the game download
area, you can locate and get, close to 2000 different games based on the
Zillions system. In other areas you can get updates of the program, the

35

development tools necessary for creating games, all sorts of information about
board games, technical support, programming guides and a forum for sharing
information between users and game developers.

Figure 4.2 Connection games zone inside the Download Section of Zillions of Games website.

36

4.2.3 Zillions of Games program

Figure 4.3 Zillions of Games main window.

Zillions of Games program has a free trial version that allows access to 48 of
the over 350 game variants that are installed; and disables features like opening
and storing saved games, opening game rules files (games created by other
users of Zillions), board editing and network / Internet play. The complete
version can be obtained through an unlocking code from the demo for a current
price of $ 24.98 or on CD sent by mail with a current total cost of $ 34.98.
Currently the software is at version 2.0.1.

If we run the program, we can see a very friendly interface. It has a status bar at
the bottom. The central part is occupied by a set of icons representing default
games included in Zillions. At the top is the menu bar that allows us, among
other things: load a different game to those that appear by default, load save
games from any game, configure general options (sound, music, animations,
graphical look ...), configure LAN parties, set the parameters of the artificial
game engine and get help and access to the official website. Another way to
start the program is making it through the ZRF file of the chosen game, in which
case Zillions will be executed with the desired game loaded and ready to play.

When a game is loaded, the program interface adjusts itself to that situation.
The bottom status bar now provides information that gets from the game; the

37

menu bar has enabled several options like saving games, printing the list of
moves, choosing piece color, moving forward or backward along the states
reached during the game, accessing to different game variants and getting
some help and information about the current game. We also note that a new
toolbar with buttons which provide access to the most frequent actions during
the game has appeared. Finally, in the central area we can see the game board
with the pieces placed according to the reached game state and a list of all
performed moves at the right.

Handling the game interface is very intuitive. For instance, to move pieces over
the board you just need to drag them using the mouse from the starting position
to a valid final position. There are two important function that provides the
interface which have not been mentioned: the Start Thinking button, used to
indicate the engine may begin searching moves to perform (e.g. when
established both players as non-human and want to start the simulation); and
the Move Now button, used when the search engine is consuming too much
time to find a proper move, so the engine will return best move found so far.

Figure 4.4 Playing Selfo inside program Zillions.

38

4.3 Building a game in Zillions

As already mentioned, a game created for Zillions of Games consists of a ZRF
file which defines the game rules and refers to other resources.

Board and pieces images (BMP files) constitute the additional resources
compulsory required. Optional resources could be sounds (win/loss/draw
sound, background music…) or custom game engines.

For correctly integration of a custom game, it must be packaged according to
the following structure: The main folder will be named like the game, inside this
folder there will be the resources folders named with the resource type (audio,
images, engines, include...), the ZRF file and an optional readme file. Inside
each resource folder should be a folder with the name of the game and inside it
there will be the applicable resources.

Figure 4.5 Game packaging.

Zillions of Games comes with a universal game engine which can run any game
developed games inside the platform. This engine avoids having to create an
independent game engine for simple games because it is capable of playing
well such games, or if the game was designed to play between humans, for
example, and the option of playing against the computer is a mere accessory.
The default Zillions engine is generally very limited to play more complex
games. In the web it is mentioned that this engine can behave properly in
games similar to Checkers or Chess but it is really bad playing games whose
win conditions are more complex to express in ZRL language, like connection
games, where it behave like a random engine, fact that we have been able to
test.

One of the options to implement a custom game engine is to make use of the
Axiom development tool, created by an expert user of Zillions. Axiom is
provided as a development kit designed to provide an interface between the
programmer; and the ZRF file with the definition of the game and the DLL with
the custom game engine. The game logic is defined in Axiom language, created
for this purpose and based on Forth language.

Another option to deploy the engine is doing by directly creating a DLL that
must implement a specific interface to which the program Zillions accesses

39

when needed. Because Axiom language provided no advantage in terms of
versatility in the implementation of the engine and because it would have been
necessary spending some time in learning that language, we decided to build
the engine directly into a DLL using the C language.

4.3.1 ZRL Language

The game definition in Zillions of Games is made in the so-called Zillions Rule
Language (ZRL), whose syntax is based on S-expressions, in the same way as
LISP language.

Those rules which define the game are stored in a Zillions Rules File (.zrf).
When one is selected, Zillions loads the ZRF, and uses it to find out how to run
the game. ZRF files have four main parts: the board, the pieces, the goals of the
game, and additional information like help and strategy.

Main parts:

(game
 ;...players, help and extra information
 ;...board definition
 ;...piece definition
 ;...goals of game)

Players:

(players X O)

This line tells Zillions the names of the players. In this case, there are two
players named X and O.

Board:

 (board
 (image "images\TicTacToe\TTTBoard.bmp")
 (grid
 (start-rectangle 16 16 112 112) ; top-left position
 (dimensions ;3x3
 ("a/b/c" (0 112)) ; rows
 ("1/2/3" (112 0))) ; columns
 (directions (n -1 0) (e 0 1) (nw -1 -1) (ne -1 1))
)
)

The image statement tells Zillions what bitmap file to use to display the board.
In this case, the file in images\TicTacToe\TTTBoard.bmp will be used. The grid
statement makes possible to specify a regularly spaced set of positions. The
start-rectangle tells Zillions rectangle of the upper left screen position. The

40

dimensions section has information about the placement and name of the
positions. The directions statement indicates the directions linking each position
(n for north, e for east and so on). The numbers after these names indicated
which way to step for that direction. When Zillions reads this grid statement,
then it will combine all this information to make a three by three grid, with
names of positions like a1 and c3.

Pieces:

 (piece
 (name man)
 (help "Man: drops on any empty square")
 (image X "images\TicTacToe\TTTX.bmp"
 O "images\TicTacToe\TTTO.bmp")
 (drops ((verify empty?) add))
)

The name section gives this piece a name: man. The help section gives the text
which Zillions will automatically display in the Status bar when the user points to
the piece. The image section gives the bitmap names for Zillions to use for each
piece and for each player. The drops section tells Zillions that this piece is
dropped onto the board when it moves. The (verify empty?) section tells Zillions
to make sure a position is empty before adding it to the board.

Board Setup:

 (board-setup
 (X (man off 5))
 (O (man off 5))
)

The board-setup section tells Zillions that there are 5 men for each player off
the board at the start of the game.

Goals:

 (draw-condition (X O) stalemated)
 (win-condition (X O)
 (or (relative-config man n man n man)
 (relative-config man e man e man)
 (relative-config man ne man ne man)
 (relative-config man nw man nw man)
)
)

The draw-condition statement tells us that if any side is stalemated (has no
legal moves left), then the game is a draw.

After (win-condition we see (X O), the names of the players which this condition
applies to. Next comes an (or and the relative-config statements tell Zillions that
any position where a man piece is north of another man piece which is north of

a third man piece indicates a win. This line is repeated for the other three
directions.

Creating Variants:

Zillions let defining game variants using the
changing sections in new variant are included.

(variant
 (title "Same game"))

There exist many other s
complex move rules or more sophisticated ending conditions.

4.3.2 DLL Interface

In order to indicate the use of a custom play engine to Zillions, the statement
engine is used in the ZRF

 (engine "Engines\myEngine.dll")

To make communication possible between Zillions and the play engine, it is
necessary the implementation of a predefined interface
interface consists of four compulsory functions and two
illustrate it we will use C

The engine returns a DLL_
DLL_OK under normal circumstances.
code, Zillions of Games
plug-in. If an engine plug
returned a move that Zillions
using its built-in, universal engine.

DLL_Result:

41

piece indicates a win. This line is repeated for the other three

Zillions let defining game variants using the variant statement, were only the
in new variant are included.

)

There exist many other statements which let us, for example,
complex move rules or more sophisticated ending conditions.

he use of a custom play engine to Zillions, the statement
ZRF file.

myEngine.dll")

To make communication possible between Zillions and the play engine, it is
necessary the implementation of a predefined interface inside de DLL. This

of four compulsory functions and two optional functions
 language.

DLL_Result constant back to the Zillions, which should be
under normal circumstances. If the engine returns a negative error

 will report this to the user and then unload the engine
If an engine plug-in is unloaded, either for this reason or because it

Zillions did not recognize as valid, Zillions
in, universal engine.

piece indicates a win. This line is repeated for the other three

, were only the

 defining more

he use of a custom play engine to Zillions, the statement

To make communication possible between Zillions and the play engine, it is
inside de DLL. This

optional functions. To

constant back to the Zillions, which should be
he engine returns a negative error

will report this to the user and then unload the engine
in is unloaded, either for this reason or because it

Zillions will revert to

42

Functions:

DLL_Search:

This function will be called from Zillions to obtain the best movement to perform
in a given game situation.

If it returns DLL_OK it should also return the best move found in bestMove,
however, it should not make the move internally. A separate call to MakeAMove
will follow to make move the engine returns. It can also return a negative error
code.

lSearchTime: Target search time in milliseconds.
lDepthLimit: Maximum moves deep the engine should search.
lVariety: Variety setting for engine. 0 = no variety, 10 = most variety.
pSearchStatus: Pointer to variable where Zillions will report search status.
bestMove: Pointer to a string where engine can report the best move found so
far.
currentMove: Pointer to a string where engine can report the move being
searched.
plNodes: Pointer to a long where engine can report number of positions
searched so far.
plScore: Pointer to a long where engine can report current best score in search.
plDepth: Pointer to a long where engine can report current search depth.

MakeAMove:

This function executes inside the engine the move given by the parameter
move.

StartNewGame:

It should prepare the game to play a new game. It can be influenced by the
current variant.

CleanUp:

43

It must free memory and prepare the game unload.

Optional functions:

IsGameOver:

This optional routine is called by Zillions to see if a game is over. If not present,
Zillions uses the goal specified in the ZRF to decide the winner.

lResult: Pointer to the game result which the DLL should fill in when called. If
the game is over the routine should fill in WIN_SCORE, DRAW_SCORE, or
LOSS_SCORE. Otherwise the routine should fill in UNKNOWN_SCORE.
zcomment: Pointer to a 500-char string in Zillions which the DLL can optionally
fill in, to make an announcement about why the game is over, such as "Draw by
third repetition". The DLL should not modify this string if there is nothing to
report.

GenerateMoves:

It can be used in the DLL to tell Zillions the legal moves for any position in the
game.

moveBuffer: Pointer to a 1024-char string which the DLL should fill in when
called. Initial call should be with moveBuffer set to "". Each call to
GenerateMoves should fill in the next available move from the current position,
with a final "" when no more moves are available. All moves must be in valid
Zillions move string format.

The engine does not call Zillions of Games. However, during a search it can
find out from Zillions whether it should continue searching. When DLL_Search
is called, the engine should store away the argument pSearchStatus and then
refer to it during the search. If the user requests that the program move now or
the time has expired, the value will change to kSTOPSOON. In this case the
engine should return a result as soon as possible. If Zillions of Games needs to
abort the search prematurely, e.g. the user has chosen to exit the program; the
value will change to kSTOPNOW. In this case the engine should return as soon
as possible, whether or not a good result is available. The engine should not
change the value of pSearchStatus itself.

During a search the engine should continually report its own search status by
updating the values of plNodes, plScore, and plDepth. Zillions uses these
values to display feedback on progress to the user. In order to display this
feedback during the search, the engine needs to periodically give Zillions a
chance to process Windows messages.

44

Moves are passed back and forth as move strings. These move strings are the
same as those written out to a saved game, such as "Pawn e2 - e4".

For most games these strings are also the same as the move strings displayed
in the move list, there are two exceptions: the moves involving setting piece
attributes and partial moves.

After calling DLL_StartNewGame Zillions of Games will always pass down a
series of board edits to place all the initial pieces on the board.

45

Chapter 5: Proposal of a game
strategy

5.1 Initial study

After examining the platform functioning and the related technologies that we
will use to build Selfo and its game strategy, we built an initial version
comprising the game interface, all the necessary logic to define the game rules
and a simple game engine. This engine was made in order to implement the
Zillions imposed interface and to be used like an interface to the future and
more advanced game strategy. The first version of the engine only consisted of
a few simple rules to move the friend pieces to a certain area of the board. It
was a very easy to defeat “intelligence” but it helped us to make the pieces
move automatically with some criteria, so that sometimes avoided the need of a
human player.

Tests using this first version allowed us to understand several aspects of the
dynamics of Selfo:

We realize that thinking for a good move in Selfo do not takes a long time for a
person. A move choosing is more an exercise in understanding the situation on
the board than making a deep exploration into the possible moves that could
happen in the future.

Another important and related issue is the fact that the goodness of a
movement is not critical in this game, i.e. in general, there are not great moves
or really bad moves; it has more to do with a good or bad concatenation of
them. This usually leads to development of long games between two
experienced players. To win in Selfo, a long-term strategy is needed more than
execute a few brilliant moves. It should looks for improving the situation of
pieces gradually, exploiting holes and blocking the opponent.

We also realized the importance of the initial distribution of pieces over the
game board. On the one hand inequitable distribution can decant a game to one
player from the beginning and on the other hand, an initial distribution where
pieces are dispersed requires a higher concentration for a human player to
understand the board state, is more difficult to perceive if the situation is
favorable or not.

46

The study of the complexity of the game gave us some useful information as
well:

Being N the number of squares on the board, taking into account that the
optimal occupancy consist of around 40% of covered cells (20% for each color)
and 60% of empty cells, considering the usually board in Selfo (hexagonal, 6-
connective) and considering that between occupied neighbor cells and the limits
of the board; on average, pieces has 3 possible movements. So that the
branching factor of the search tree is around (N / 5) * 3. In the standard Selfo
board: (90 / 5) * 3 = 54.

Complexity is relatively high compared to most connection games (except for
Go) and because of nature of movement and the game goal, it's hard to
develop a simple heuristic in order to indicate the goodness of the current
board. Therefore, might be a good idea for the automatic strategy being similar
to human in this sense, i.e. look for a method not based on a deep search but
being sophisticated to deciding whether a situation is favorable.

5.2 An approach

Apart from traditional approaches to address the problem of creating an
automatic playing strategy as the use of MINIMAX algorithms, the use of
databases of patterns or learning making use of artificial neural networks, we
wanted to base our game engine in the definition of a set of simple rules. The
idea was to implement these simple rules on each piece, which were
considered separate entities with certain autonomy of action. This mechanism
combined with a few making centralized decisions should provide emergent
behavior that would fit our problem.

The emergence in a given system consists on the appearance of complex
behaviors or patterns from some simple interactions among its component
entities. This concept, widely studied in fields such as philosophy, art or
science, there has been present in many biological systems and help them in
solving problems related to their adaptation to the environment. The human
mind is considered an example emergency such originated in the neuronal
interactions. This phenomenon is also present in the formation of flocks of birds
or schools of fish or in the way ants organize to find the shortest path to the
food.

The stigmergy is a related concept, which refers to the way in which many living
organisms communicate with others in an indirect way by making use of the

47

environment, usually via pheromones expulsion and monitoring. Ants, for
example, use this mechanism in its search process for the shortest path.

Our intention is the designing of a game strategy based on these ideas. And
see if this behavior is sophisticated enough to compete with a person who
knows how the game works and is capable of comprehending the board to
decide a good move.

5.3 Definition of the strategy

Taking into account all the discussed ideas for designing the strategy and Selfo
dynamics and goal, the fundamental idea, apart from many other calculations
and further considerations is the need to construct a greedy algorithm to obtain
a measure of the distance between particles, or rather between the groups of
particles; and try to approach them.

The designed algorithm works as follows:

Game pieces act as entities that transmit signals across the board to report their
presence and as receptors that capture the signals emitted by other particles.
This signal is spread from one cell to its neighbors, decreasing the power at
each step, so that a near particle receives a strong signal and a farther particle
will capture a less intense signal.

Figure 5.1 Shows the signal expansion for particle 1 and different power of signal captured by 2
and 3.

48

Besides, if two particles are connected, they will throw a joint signal (same
signal identifier) with a higher intensity (at source, will be twice the intensity that
gives a single particle) and so increasing the number of particles connected to
the group, increases the intensity of the signal emitted by the group.

Figure 5.2 Shows the higher signal power for group 1.

A signal will spread along neighboring empty cells and neighboring cells
occupied by friendly pieces belonging to another group and the signal
propagation will stop when the board limit is reached and also when reaching
an enemy particle, which will be able to capture the signal but prevent its
spread. If a group of pieces is behind a group of enemy pieces, the signal must
go around the group and will arrive with less intensity.

A particle at a distance � whose group has a size of �� receives the signal with
intensity:

����� = ��
������������������ ∗ ����

Thus, at a given time or state of the game, the game environment will be
constituted by the board, the pieces placed according to the state and all
signals propagated across the ground and generated by each group of
particles, enemy or friends particles.

Once generated the gaming environment for a given state, the next step is
locating the area where there is a greater concentration of signals from groups
of friend particles. This will be the most important zone for the team and any
proposed movement should take that into account.

49

Next task is locating the group that has more presence on that are. This will be
the most important group and all moves must be oriented to favor connection of
the other particles with it.

Figure 5.3 Shows where the centroid probably is, and which would be the most important
group.

The information obtained through these steps will be combined to calculate a
value that is indicative of good or bad arrangement of friendly particles to
achieve total connection. The above process is repeated for enemy pieces and
both values will be combined to obtain a score representing the overall
goodness of the current situation for the given team.

The above algorithm is used in the final version of the engine as a heuristic
helping in guiding a search process through possible future moves. The
strategy game will perform a search beginning from a state and every time it
needs to know the goodness of one situation, it will call the signal propagation
algorithm. The details of implementation are discussed in the appendix.

50

Figure 5.4 General scheme of the algorithm.

The algorithm developed to achieve connection of particles in Selfo has the
same guidelines that the observed behavior of a species of amoeba known as
Dictyostelium Discoideum. This species has a life cycle that lasts about 8 to 10
hours. One of the first phases of the cycle consists of consolidation of many of
these spores in order to achieve the mature form of Dictyostelium.

Figure 5.5 Shows the life cycle of the Dictyostelium Discoideum. Taken from
http://en.wikipedia.org/wiki/Dictyostelium_discoideum.

In the process of grouping, a substance called cyclic adenosine
monophosphate is secreted, which acts attracting external spores to converge

State
Evaluation

Build the
Environment

Evaluate
Environment
for each team

Locate
centroid

Locate most
important

group

Combine
scores

51

toward the central amoeba. This behavior consisting on following a chemical
signal detected in the environment, through the gradient direction until the
source of the signal is called chemotaxis. A previous version of the proposed
algorithm worked in a more similar way to Chemotaxis of Dictyostelium, tracking
the gradient of the stronger signal. But we had to make some modifications to fit
the competition with the opponent and for possible inclusion in a MINIMAX
strategy.

Figure 5.6 Dictyostelium Discoideum exhibiting chemotaxis. Taken from
http://en.wikipedia.org/wiki/Dictyostelium_discoideum.

52

Chapter 6: Simulation results

6.1 Introduction

In order to check the level of play achieved by the proposed strategy, we
published the game in Zillions again; we made local games between players
whose level of play was known and finally we made several computer-computer
games for collecting data like spent times, move trends, influence of the first
move, initial distribution of particles, etc.

6.2 Human-Computer results

We made some games between the engine and human players. We classified
human players into two categories: Inexperienced players and Experienced
players. The division was somewhat subjective but in general we considered a
person like an Inexperienced player if he/she has played Selfo less than 10
times, regardless the initial setup. The number of games for each setup
depended on the interest (from previous experiences) using that initial
configuration.

 Inexperienced player Experienced player
 LOSS WIN DRAW TOTAL LOSS WIN DRAW TOTAL

Setup 1 14 1 6 20 3 7 10 20
Setup 2 3 1 2 5 0 3 2 5
Setup 3 4 0 1 5 0 3 2 5
Setup 4 16 0 4 20 4 5 11 20
Setup 5 5 0 5 10 1 5 14 20

Figure 6.1 Data from Human-Computer games.

In relation to the initial distribution we see that Inexperienced players have more
chances to win using setups where pieces are already grouped, like in 1 and 2.
When particles are scattered they can only force a blockade. Experienced
players are able to win in any situation, although they are also better when
pieces are grouped from the beginning. We realized that Setup 5 tended to
blockade; since there are more particles than in other cases and they are found
near the board limits.

53

In general, games between Inexperienced players and the artificial strategy
ended in victory for the latter in almost all cases. Thus the computer player was
perceived as a program capable of connecting its particles using a lower
number of moves, easily blocking and delaying the union of particles belonging
to this inexperienced human player.

On the other hand, the result of games between a player with more experience
and the proposed algorithm was more unpredictable. The experienced human
player defeated the engine more times than he lost, but most of times game
ended with draw caused by mutual blocking.

6.3 Computer-Computer simulations

The simulations have been performed using a laptop with an Intel Celeron 1.6
GHz processor.

6.3.1 Setup 1

Figure 6.2 Setup 1.

Number of simulations: 20
Black Wins: 9
White Wins: 0
Draw (Stalemate): 11
Average move time: 0.54s
Average game time: 22.83s

Figure 6.3 Simulation times for Setup

54

20

0.54s
22.83s

Simulation times for Setup 1.

Figure 6.4 Some end situations for Setup 1.

Given the initial situation in this variant,
quickly. If the black player gets a rather favorable situation at the beginning, the
game is a little longer because the white player tries to delay his
inevitable defeat.

The average time to perform a move is relatively low throughout the game. This
is because particles are well organized from the beginning and there
many moves to consider.

The games had a relatively rapid and predictable result because the pieces are
organized from the beginning and particle clusters are very close, leading to
rapid blocking or rapid victory of the player with advantage.

55

Some end situations for Setup 1.

Given the initial situation in this variant, both artificial players tend to get blocked
black player gets a rather favorable situation at the beginning, the

game is a little longer because the white player tries to delay his

The average time to perform a move is relatively low throughout the game. This
s are well organized from the beginning and there

many moves to consider.

a relatively rapid and predictable result because the pieces are
organized from the beginning and particle clusters are very close, leading to

ing or rapid victory of the player with advantage.

artificial players tend to get blocked
black player gets a rather favorable situation at the beginning, the

game is a little longer because the white player tries to delay his almost

The average time to perform a move is relatively low throughout the game. This
s are well organized from the beginning and there are not

a relatively rapid and predictable result because the pieces are
organized from the beginning and particle clusters are very close, leading to

6.3.2 Setup 2

Figure 6.5 Setup 2.

Number of simulations: 15
Black Wins: 1
White Wins: 1
Draw (Stalemate): 13
Average move time: 0.49
Average game time: 47s

Figure 6.6 Simulation times for Setup 2

56

15

0.49s

Simulation times for Setup 2.

Figure 6.7 Some end situations for Setup

Most games ended with mutual blocking
finished with the victory of either player.

In this setup pieces are relatively clustered and set far apart from other groups.
This caused the approximation
chain of particles which tried to minimize the possibility of joining the pieces of
the opposing team. This beha
one of two players got enough advantage to prevent the formation of the enemy
side-to-side chain and won the game.

The game took longer than using first setup, because the pieces are farther
from each other. Average time of move was also lower and it was almost
constant throughout the game.

57

Some end situations for Setup 2.

with mutual blocking. On a few occasions
with the victory of either player.

pieces are relatively clustered and set far apart from other groups.
approximation group process tended to formation of a long

chain of particles which tried to minimize the possibility of joining the pieces of
This behavior usually led to a mutual blockade. Sometimes

two players got enough advantage to prevent the formation of the enemy
side chain and won the game.

The game took longer than using first setup, because the pieces are farther
Average time of move was also lower and it was almost

constant throughout the game.

. On a few occasions, games were

pieces are relatively clustered and set far apart from other groups.
group process tended to formation of a long

chain of particles which tried to minimize the possibility of joining the pieces of
ade. Sometimes

two players got enough advantage to prevent the formation of the enemy

The game took longer than using first setup, because the pieces are farther
Average time of move was also lower and it was almost

6.3.3 Setup 3

Figure 6.8 Setup 3.

Number of simulations: 10
Black Wins: 1
White Wins: 2
Draw (Stalemate): 7
Average move time: 0.63s
Average game time: 37s

Figure 6.9 Simulation times for Setup 3

58

10

0.63s

Simulation times for Setup 3.

Figure 6.10 Some end situations for Setup 3.

Pieces are grouped at the beginning of the game and there
distance between clusters of the same team, though not as much as in
These causes less mutual blocking occur here, although it remains the most
frequent result by far.

Game time is similar as before, although a little lower.
slightly higher, partly because there are more possible moves in the initial state

59

Some end situations for Setup 3.

ieces are grouped at the beginning of the game and there exists
distance between clusters of the same team, though not as much as in

causes less mutual blocking occur here, although it remains the most

time is similar as before, although a little lower. Move time is
slightly higher, partly because there are more possible moves in the initial state

exists considerable
distance between clusters of the same team, though not as much as in Setup 2.

causes less mutual blocking occur here, although it remains the most

time is observed
slightly higher, partly because there are more possible moves in the initial state.

6.3.4 Setup 4

Figure 6.11 Setup 4.

Number of simulations: 20
Black Wins: 3
White Wins: 9
Draw (Stalemate): 8
Average move time: 0.76s
Average game time: 1:07.56

Figure 6.12 Simulation times for Setup

60

20

6s
1:07.56

Simulation times for Setup 4.

Figure 6.13 Some end situations for

In this occasion, we have an initial situation where
Because of this, the end
previous cases. In fact, we note
an advantage over the other very frequently and this advantage often leads to
victory.

At the beginning of the game, time to make a move is significantly higher than in
previous settings. This is because the part
are a bigger number of possible move
will equate to other setup

The average game time
of the higher move time.
with a greater number of moves
situation always takes longer than in

61

Some end situations for Setup 4.

have an initial situation where pieces are widely scattered.
end of the game is much more unpredictable than in

previous cases. In fact, we note in simulations carried out that one
an advantage over the other very frequently and this advantage often leads to

At the beginning of the game, time to make a move is significantly higher than in
previous settings. This is because the particles are widely dispersed and

umber of possible moves. As the game progresses the move time
setups.

 also increases considerably. On the one hand
. On the other and because games here

with a greater number of moves. Stabilization in a mutual blockade or
always takes longer than in previous cases.

pieces are widely scattered.
uch more unpredictable than in

one player gets
an advantage over the other very frequently and this advantage often leads to

At the beginning of the game, time to make a move is significantly higher than in
s are widely dispersed and there

s. As the game progresses the move time

also increases considerably. On the one hand because
 are developed

mutual blockade or victory

6.3.5 Setup 5

Figure 6.14 Setup 5.

Number of simulations: 10
Black Wins: 0
White Wins: 0
Draw (Stalemate): 10
Average move time: 0.62s
Average game time: 24.87s

Figure 6.15 Simulation times for Setup 5.

62

10

0.62s
24.87s

Simulation times for Setup 5.

Figure 6.16 Some end situations for Setup 5.

In this configuration there are
possible moves is large but not as much as in
high average move time.

Because of the number of pieces in play
scattered in the area near the limits of the boar
moves (no more than 20)
pieces.

63

Some end situations for Setup 5.

In this configuration there are more pieces than in previous. The number of
possible moves is large but not as much as in Setup 4, which is reflected in

.

Because of the number of pieces in play and because the pieces are all
scattered in the area near the limits of the board, the game is end
moves (no more than 20). The end is always a mutual blockade of very few

than in previous. The number of
is reflected in a

the pieces are all
ended in very few

. The end is always a mutual blockade of very few

64

6.4 General observations

In relation to the advantage of making the first move, we have observed that is
a very important factor in cases like the first configuration, a key factor in
computer-computer games. But also see that, although beneficial, a strong
movement is not as crucial when the pieces are not so close together, i.e. when
the duration of the game is potentially higher.

Another aspect observed is the kind of game that makes a human player and
the developed strategy, according to the initial position of particles. Usually,
when the pieces are grouped at the beginning, a human player tries to connect
their groups and tend to notice the enemy blockades. However, when the
pieces are scattered, the human player does not realizes blocking situations.
On these occasions, the blockades usually involve a small number of particles.
An experienced player usually perceives the situation and makes a blockade
too, in order to force draw. However, a not skilled player does not usually aware
and continues connecting the pieces as having a chance to win. When he is
aware of the situation may be too late or he may cannot be able to execute a
successful blockade.

For a long and interesting development of a game in Selfo from the point of
view of the phenomenon of self-organization, the initial location of particles is
crucial. The number of pieces on the board and their distribution should be
studied jointly and carefully. Distribute the pieces, so that friend particles are
relatively dispersed at the beginning and not in some large groups, is often a
good option, especially when using the developed game engine.

65

Chapter 7: Conclusions

The realization of the project has been a good experience, through which I have
acquired a wealth of new knowledge and skills and allowed me to apply those
acquired during the career: I have read and learned many ideas and
technologies related to bio-inspiration, hitherto unknown to me; I have improved
my ability to research and also my ability in drafting and project management
have increased; I had the opportunity to exercise the use of English through the
drafting of this document, the research and also the interaction with the
administration staff of Zillions, via email; and I have acquired knowledge related
to software development, like use and creation of dynamic libraries, handling of
new development environments and adapting software created by me to
interact with some commercial software. Finally, in relation to what I have
learned during the career, making this project has let me applying knowledge
about programming in Lisp, C and C++ languages; knowledge related to
artificial intelligence, software design, analysis and design of algorithms; and all
my skills in programming.

About the Zillions of Game platform, we noted that the needing of paying for a
full version which permitted the execution of custom board games is a limiting
factor to the disclosure of a game. At the end, Selfo was only tested by regular
users of Zillions and by those known people, who were provided by us with a
full version of the program. However, after overcoming this problem, the
implementation of a game is not very difficult and getting access and executing
a game developed by a user is extremely simple. The support received in the
forum and by the administration of Zillions has been also very successful. They
are people know very well the world of board games and most of them have
high knowledge of programming.

Learning to define a game using the ZRL language is not difficult; the
development kit downloadable on the website provides a good documentation.
Programming inside the Zillions platform let us focus only in the rules and other
aspects related to our particular game, avoiding the tedious work of defining the
entire user interface, which should be substantially similar to any board game.
On the other hand, the implementation of the game strategy had a problem,
since it was found no documentation about the DLL interface to be
implemented, so we had to learn about it by examining another user custom
engine.

Regarding the proposed algorithm, we can say that we have found a game
strategy with a medium level of play. It is able to beat a human player in some
cases, to force a lock on many occasions and usually only defeated if exploited
its weakness or the initial distribution is not favorable to our proposal algorithm.

66

In the various tests performed by human-computer games, we note that the
artificial engine is generally faster than a human in grouping its pieces when
they are relatively sparse (Setup 4) but not so when they have some level of
grouping at the beginning and groups are considerably far (Setup 2). However,
the major weakness of this strategy is the difficulty in predicting "total blockade"
(a piece or group of them that is completely isolated from other friends
particles). The strategy is not usually able to avoid enemy blockades, although
usually makes them well.

In general, the strategy found is very fast in relation to the quality of provided
move. Its execution consumes less than a second in a game with a high
number of possible moves and under a lower-performance computer. This
allows not changing the pace of play. And also give us a large margin to
enhance the algorithm in the future.

The achieved execution fits perfectly with the fast dynamic but prolonged by the
number of moves that characterizes Selfo and many other connection games.
Another important point is that we have been able to extract one behavior from
nature, whose application in computer science did not exists or was unknown,
and adapt it to solve a different problem but similar in its principle. And we have
done this with a certain level of success.

In order to improve the game engine, we designed a simple MINIMAX algorithm
without any pruning and we combined with the original proposed strategy. It
was configured to make a 2-depth search, but we did not see any improvement
in the quality of given moves and time consumption rose to 5 - 20 seconds. We
configured the algorithm for a 3-depth search. Moves obtained could not be
considered better and time consumption increased to achieve several minutes.
Accordingly we believe that a good strategy for Selfo should not be based on
the search depth, but in a quality and fast evaluation of the current state.

The current algorithm is relatively efficient in grouping particles and executing
partial blockages to the enemy player. So improvements should focus on
expanding its capacity to detect and avoid or execute total blockades. In this
sense we propose algorithms based on stigmergy, to detect a critical path
between clusters of particles and calculate features like its width. It might also
be useful to locate on the board certain blocking patterns previously
investigated and defined.

An alternative strategy, away from the idea of swarm intelligence, although
being also bio-inspired and fitting into the concept of emergent behaviors, may
be based on the use of artificial neural networks, each neuron may correspond
to a square, connections to adjacencies and the activation state to the presence
of a friend or enemy particle or the absence of one piece.

67

References

- Browne, C. (2005). Connections games: variations on a theme. A K Peters,
Ltd.

- Francisco J. Vico (2007). Selfo: A class of self-organizing connection games.
Technical Report ITI 07-7.

- Ilachinski Andrew (2002). Cellular automata: a a discrete universo. River
Edge, NJ: World Scientific.

- Kennedy, J. and Eberhart, R.C. (2001). Swarm Intelligence. Morgan
Kaufmann

- Sackson, S. (1969). A Gamut of Games. Random House, Inc.
- José Santos Reyes (2007). Vida artificial: Realizaciones computacionales.

Universidad da Coruña, Servizo de Publicacións.
- Polczynski, J. (2001). Lightning: A connection game from the 1890s. Abstract

Games, 5: 8-9.
- Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of

Modern Physics, 55(3): 601-644.
- Gardner, M. (1957). Concerning the game of Hex, which may be played on

the tiles of the bathroom floor. Scientific American, 197(1): 145-150.
- Dewdney, A. (1988) The hodge-podge machine makes waves. Scientific

American, Computer Recreations. Aug: 104-107.
- de Bono, E. (1968) The five day course in thinking. Penguin Books.
- http://www.zillions-of-games.com/
- http://en.wikipedia.org/wiki/Dictyostelium_discoideum
- http://en.wikipedia.org/wiki/Stigmergy
- http://en.wikipedia.org/wiki/Chemotaxis
- http://en.wikipedia.org/wiki/Emergence
- http://en.wikipedia.org/wiki/Emergent
- http://en.wikipedia.org/wiki/Self-organization

68

Appendix: Implementation

Diagrams

Figure A.1 Package structure.

SelfoEngine.c is used as an interface between Zillions and the search strategy
implemented in Strategy.c.

DLL Interface

Structures

Definition of a square in the game board:

Values for search status:

Selfo Engine

Header Files

Engine.h

EngineDLL.h

SelfoEngine.h

Strategy.h

Source Files

Engine.def

SelfoEngine.c

Strategy.c

69

Relevant scores during the game:

Global variables used in SelfoEngine.c:

Methods

DLL_Search is called by Zillions and it makes the call to the search strategy
implemented separately:

These functions allow translation between Zillions representation of a square, in
form of a string (e.g. “j9”) and internal representation:

These functions make the string which represents a move in Zillions:

GetNeighbor gives the nth neighbor to position pos in the game board. It has to
deal with the topology of the game board:

This function returns WIN_SCORE or LOSS_SCORE if the current player or his
opponent has won the game, and UNKNOWN score in other case:

70

Custom Strategy

Structures

groundBoard represents the relevant information of a given state in the game
board. It contains information about groups and their signals throw to the
environment:

Information contained in groundBoard for each group and cell:

Representation of a move inside the engine:

Auxiliary boards to explore a certain game state:

Functions

SearchStrategy can call to an auxiliary search strategy, like MINIMAX. But it
can also perform a simple search by itself:

When an evaluation of a state is required, CheckEnvironment is called to put
into groundBoard the environment’s information corresponding to the state:

71

When the environment has been built, EvaluateEnvironment is called to obtain
the score which will tell how good the given state is:

These functions help CheckEnvironment to locate connected groups and
expand their signal of attraction along the environment (groundBoard):

These functions help EvaluateEnvironmet to locate the most attractive square in
the environment (the centroid of attraction) and the score of the situation which
will depends on the relative situation of particles to centroid:

Often is necessary to inform Zillions about current search status:

