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Miguel, Ale, Maria José, Carlos, David, Jose, Samuel, Antonio, Juan...

I do not have enough room to adequately thank my parents, Maria and

Pedro, for everything they have done to enable me to be in the position of

submitting this thesis. Thanks for being proud of me even without knowing

very well in what I have been working on during these years. In my case,

the main reason why I am proud of them is clear; without their love and

support, I would not be the person I am. At the same time, I have to

thank Jorge for his constant love, affection, friendship and support and for

respecting that this is the work that I love and tolerating the long periods

of being neglected because of my thesis.

Finally, I would like to thank those who have kept me away from the thesis

and helped to make my life so enjoyable. Thus, many thanks to Cristina

Pa, Cristina Pe, Isa, Margui, Corpas, Jose, and Salva. They are the sisters

and the brothers that I have never had. Moreover, I want to thank them



and many others: Jesus, Diego, Yasmin, Berta, Jony, Belen, Anne, Rocio,

Ma Angeles, Jorge, Borja..., for having made me think up different ways to

explain my thesis to them that accidentally had its own contribution to my

own better understanding.





Abstract

Although the process of natural selection described by Charles Darwin in

The Origin of Species does not guarantee that organisms will increase in

complexity as they evolve, since for certain lineages have been in this way,

a big part of the scientific community defend the fact that the tendency of

the complexity has been increasing during the evolution. For that reason,

many researchers have modeled evolving artificial ecosystems in order to

make a case for or against a trend in the evolution of complexity and study

the factors that cause it (in the case there exists such a trend).

The main problem of these proposed artificial ecosystems is that their results

can be questionable since they do not use a rigorous complexity measure.

This problem comes from the fact that complexity is a complex concept

in itself and presents so many variations that it is only valid in specific

situations.

In this thesis, a formal framework where the evolution of biological com-

plexity can be studied in an objective way is defined. That objectivity

is due to state complexity for regular languages is used and it is a well-

known and rigorous complexity measure. Such a framework is composed of a

population of cyclic unary regular languages (individuals) that try to adapt

to a given environment (that also consists of cyclic unary regular languages)

by means of evolutionary computation. The genotypes of the individuals

are defined as the cyclic unary deterministic finite automata that recognize

them and it is shown how they can be represented as binary words. A

similarity measure for cyclic unary regular languages is proposed and it is

used as fitness function (i.e., the more similar an individual is to the environ-

ment, the more adapted to the environment the individual is), to define the

species concept and to analyze the disruptive effect that the usual genetic



operations produce when they are applied over the genotypes represented

as binary words.

Many properties and characterizations of such a framework are presented.

A relation between the cyclic unary deterministic finite automata and the

primitive words is presented, and it provides a characterization of the mini-

mality of such automata. By using it, two more appropriate representations

for the genotypes are introduced. The first one provides a set of operations

that preserve primitivity of words and the second one provides a relation

between the primitive words and number theory.

In this framework, the evolution shows a tendency of the complexity of the

individuals to increase. Moreover, results show a strong correlation between

the complexity of the population of automata and the complexity of the

environment, and that the predatory behavior promotes the emergence of

more complex individuals. By using the framework proposed in this thesis,

a wide variety of ecological experiments could be done in a rigorous way.
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Chapter 1

Introduction

1.1 The Whole Picture

The aim of this thesis is mainly concerned with defining a formal framework where

the evolution of biological complexity can be studied. Along this research direction,

many properties and characterizations of such a framework have been found and are

presented in this thesis.

Although, in the course of history, many open-ended evolutionary systems have been

defined to establish connections between artificial and natural life, to our knowledge,

very few of them have contributed to a better understanding of the conditions in which

complexity could have evolved on Earth. This is mainly due to the fact that complexity

is a complex concept in itself, what makes non-trivial to define a formalism in which

the complexity can be analyzed in an objective way. For that reason, the first research

steps were given in finding the mathematical basis of a framework in which objective

studies of complexity could be performed. Thus, several formalisms, like grammatical

systems or cellular automata, were analyzed.

State complexity, as defined for regular languages, is a well-known and an objective

complexity measure. The Minimization Theorem allows to define it as the number of

states of the minimal deterministic finite automaton that represents a given regular

language. Therefore, considering a regular language as an individual in an evolving

population, the set of regular languages might be an appropriate substrate to study

complexity dynamics. Thus, the regular languages will be the phenotypes and the

automata that represent them will be the genotypes. We need to have a description of

1



1. INTRODUCTION

the genotypes which is simple and evolvable, that is to say, that allows the application

of genetics operations. Thus, words would be a good candidate. For that reason,

we choose cyclic unary regular languages1 (CURL, for short) as the automata that

represent them, cyclic unary deterministic finite automata (CUDFAs, for short), can

be described by binary words. In (70) it is proved that the set of minimal CUDFAs can

be represented as binary primitive words2. Thus, if complexity issues are involved, then

we have to restrict to primitive words (in order to have a unique minimal description

for the CURL).

Another common problem in evolutionary systems is the lack of studies concerning

the disruption that genetic operations produce when they are applied over the geno-

type. The most common operations that are used in evolutionary systems are the

edit operations of substitution, deletion, and insertion of a symbol over a word. In

(25; 71), the edit operations are extended by introducing two new operations (partial

copy and partial elimination). A disruption measure for an operation over a word is

defined and proved that whereas the traditional edit operations were disruptive, par-

tial copy and partial elimination were non-disruptive. Moreover, it is showed that the

application of just edit operations does not generate (with low disruption) all the words

over a binary alphabet, but this can be done by combining partial copy and partial

elimination with the substitution operation.

In spite of such an extension reduces the disruption that the edit operations pro-

duce in the genotype (the binary word), we do not use them as they do not preserve

the minimality of automata, that is to say, they do not preserve the primitivity of

words. If primitivity is not preserved, then individuals with the same complexity can be

represented by automata (genotypes) with very different number of states and this

seems not to be very logical from a biological point of view.

Thus, in order to define a representation of the genotype of the individuals in which

we have not the previous problems, in (26) some operations that preserve the primitivity

of words are defined. These operations, mostly inspired by biological gene duplication,

essentially add a modified copy of a given primitive word at any given place. A large

subset of binary primitive words can be obtained by using sequences of these operations

as genotypes. Genetic operations will be applied over these sequences. Moreover, other

1CURLs are regular languages over unary alphabets that are represented by cyclic automata.
2A word is primitive if it is not a proper power of a shorter word.

2



1.1 The Whole Picture

methods to generate the set of primitive words (68) in a form that might be used as

genotypes have been explored.

In the first studies dealing with the dynamics of the complexity, a population of

CURLs (individuals) adapt to a given environment (represented by another CURL).

In order to calculate how well an individual adapts to the environment, a measure

of the similarity between both languages is needed. Therefore, in (24) a similarity

measure for CURLs by modifying the Jaccard similarity coefficient and the Sørensen

coefficient is defined to measure the overlap level between such languages. This measure

computes the proportion of strings that are shared by two or more CURLs. By using

this similarity measure, a dissimilarity measure for CURLs that is a semimetric distance

is also defined.

In (70), two different approaches to study the behavior of the complexity during the

evolutionary process in which a set of CURLs adapts to a given environment (another

CURL) are proposed. The first one uses a greedy algorithm and edit operations over

binary words. The second one uses a genetic algorithm and the edit operations over

sequences of operations that preserve the primitivity (defined in (26)) of the CUDFAs of

the population during the evolution. In both cases, it is concluded that the complexity

increases. Moreover, in the second approach, the correlation between the adaptation

level to the environment and the complexity of the individual is stronger than in the

first approach.

Finally, an artificial ecosystem of regular languages has been defined (69). It merges

most of the knowledge gained through out the last almost 4 years, which is summarized

above. In this artificial ecosystem, a population of CURLs with minimal complexity

coexists in a world where a number of sources (defined also as CURLs, usually with

high complexity) are located over a finite surface. These sources define niches or suben-

vironments. The individuals compete to gain energy from inert resources (generated as

strings from the subenvironments) or from non-inert resources (depredation between

individuals). The fitness function encourages the acceptance of strings generated at the

subenvironments. By using this model, we have found: (1) that there is a dependency

between the complexity of the population and the complexity of the environment, in

the sense that the more complex the environment where the individuals evolve, the

more complex they do develop, and (2) that predatory behavior promotes a higher

complexification of the individuals.

3



1. INTRODUCTION

1.2 Organization of the Thesis

In this section, an overview of the thesis is given. The content of each chapter and the

connection between them is briefly described. Moreover the more relevant addressed

problems and contributions in each chapter are highlighted.

In Chapter 2, the notation used throughout the thesis is presented. Some concepts

of formal language theory are recalled, paying particular attention to deterministic finite

automata. The representations for UDFAs and URLs that are used in this thesis are

introduced. In the particular case of CUDFAs, we show that they can be described by

words over {0, 1}, where the zeros represent the non-accepting states of the automaton,

and the ones represent the accepting states of the automaton. Moreover, we describe

a CURL represented by a CUDFA w ∈ {0, 1}+ by the union of natural successions

with period |w|. Thus, a CUDFA is considered as a genotype (over which the genetic

operations will be applied), and its accepted CURL as the corresponding phenotype.

Finally, a theorem that characterizes the case in which a UDFA is minimal is presented.

In the particular case of CUDFAs, we conclude that a CUDFA w ∈ {0, 1}+ is minimal

if and only if w is a primitive word (these characterizations are part of (70) in which I

am first author1).

The results presented in Chapter 3 are part of (24) in which I am first author2 (it

is published in the international journal Fundamenta Informaticae). Since, we want to

study the dynamics of the complexity during the evolution of individuals that trying

to adapt to a given environment, a similarity measure that calculates how well an

individual is adapted is needed. Since, in this thesis, individuals are CURLs, a similarity

measure between CURLs is needed. It is shown that there exist some measures of the

overlap between either URLS or CURLs but they do not satisfy the principle: sets are

more similar if they have more elements in common. For that reason, we can not use

them and a similarity measure between CURLs that satisfied that principle is presented

in this chapter. This measure computes the portion of words that are shared by two

CURLs. It is also proved that it is an upper bound of the well-known Jaccard coefficient

and the Sørensen coefficient. By using such similarity measure, a dissimilarity measure

for CURLs is defined that is a semimetric distance. Moreover, we show that both of

1the rest of coauthors are my supervisors and gave hints, suggestions, and comments
2authors by alphabetical order, the rest of coauthors are my supervisors and gave hints, suggestions,

and comments

4



1.2 Organization of the Thesis

them can be used also for URLs, although in this case the dissimilarity measure is not

a semimetric distance, but a symmetric distance.

The results presented in Chapter 4 are part of (25; 71) in which I am first author((25)

is published1 in Proceedings of NCMA09, it was selected by the editors for an extended

version (71) that is to appear 2 in the international journal Fundamenta Informaticae).

Since in order to study the evolution of the complexity we need to use an evolutionary

system, genetic operations have to be applied over the genotypes. The most common

operations that are used in evolutionary systems are the edit operations of substitution,

deletion and insertion of a symbol. Usually, in the literature, edit operations are used

without worries about the disruption that they produce in the genotypes. In this

chapter, studies on the disruption that such operations produce when they are applied

over the genotypes proposed in this thesis (represented as binary words) are done. Thus,

a disruption measure for an operation over a word is defined by using the similarity

measure defined in Chapter 3. Intuitively, the disruption of an operation O with respect

to a word w is a pair (a, b) with a, b ∈ R, where a is the portion of words that are

accepted by w and are not accepted by O(w), and b is the portion of words that

are accepted by O(w) and are not accepted by w. It is proved that not all words

can be obtained by iterated applications of edit operations where each application is

accompanied by low disruption. To solve this problem, the edit operations are extended

by introducing two new operations (partial copy and partial elimination) inspired by

biological gene duplication. These new operations have no disruption and by iteratively

applying them combine with the edit operations all words can be obtained by low

disruption.

The results presented in Chapter 5 are part of (26; 68) in which I am first author

((26) is published3 in the international journal Theoretical Computer Science, and (68)

is in preparation4). As we mentioned before, in Chapter 4, two new operations have

been proposed in order to reduce the disruption produced by the most common opera-

tions used in evolutionary systems: the edit operations, when they are applied over the

1authors by alphabetical order, the rest of coauthors are my supervisors and gave hints, suggestions,

and comments
2the rest of coauthors gave hints, suggestions, and comments
3authors by alphabetical order, the rest of coauthors are my supervisors and gave hints, suggestions,

and comments
4the other coauthor is my supervisor and gave hints, suggestions, and comments

5



1. INTRODUCTION

representation of the genotypes as binary words. Despite reducing such a disruption

by using the new operations, the minimality of automata is not preserved by them,

thus individuals with the same complexity can be represented by automata with very

different number of states and this seems not to be very logical from a biological point

of view. For that reason, a representation of the genotypes over which genetic ope-

rations preserve the minimality of automata, that is to say, preserve the primitivity of

words (since our genotypes can be represented as binary words), are required. In this

Chapter, two different ways of generating primitive words are presented. For the first

one, a set of operations inspired by biological gene duplication that preserve primitivity

of words is proposed. A large subset of binary primitive words can be obtained by using

sequences of these operations as genotypes. For the second one, a characterization of

the non-primitive words that provides a relation between primitive words and number

theory is proposed. This gives a non-grammatical method to generate the set of all the

primitive words. While genetic operations can be directly applied over the sequences

of the operations preserving primitivity, the application of the genetic operations in

the second approach is not as trivial. For that reason, the sequences of the operations

preserving primitivity will be the representation of the genotypes used to study the

complexity during the evolution (now, the minimality of the automata is preserved).

The results presented in Chapter 6 are part of (69; 70) in which I am first author1

(both of them are in preparation). At this point, we have defined: (1) a characterization

of the minimality of CUDFAs (based on primitive words) that allows us define a set of

operations that preserve the minimality of CUDFAs that can be used as representation

of the genotypes of the CURLs over which the genetic operations will be applied, (2)

a similarity measure for CURLs that allows us to calculate how well an individual is

adapted to a given environment, and (3) an objective complexity measure for CURLs:

the state complexity, that allows us to study the evolution of the complexity of the

individuals in a rigorous way. Thus, it is clear that a framework based on CURLs

is a perfect framework to accomplish the main aim of this thesis: defining a formal

framework where the evolution of biological complexity can be studied. In this chapter,

studies on the evolution of the complexity during the evolution of CURLs that try to

adapt to a given environment are done. First of all, some preliminary studies on the

behavior of the complexity by using a simple framework are shown. Two different

1the rest of coauthors are my supervisors and gave hints, suggestions, and comments

6



1.3 Spanish Summary

approaches are proposed. The first one uses a greedy algorithm and the edit operations

over binary words. The second one uses a genetic algorithm and the edit operations

over sequences of the operations that preserve the minimality that were defined in

the previous chapter. We show that the behavior of the complexity is increasing in

both of them, but in the second approach, the correlation between the similarity to

the environment and the complexity of the individual is stronger. This makes the

determination of representing the genotypes as sequences of the operations preserving

primitivity stronger. In the last section, different components (such that the complexity

of the environment, the predatory behavior of the individuals,...) that affect such

an increasing behavior of the complexity are studied in an evolving artificial ecology

consisting of CURLs.

A summary of the major contributions of the thesis is presented in Chapter 7.

1.3 Spanish Summary

Charles Darwin describió el proceso de la evolución de las especies por la selección

natural hace más de 150 años. A pesar de que este proceso no garantiza que la com-

plejidad de los organismos crezca durante la evolución, que aśı ha sido es un hecho

aceptado por muchos investigadores (12; 47; 75) debido a que se pueden encontrar

evidencias de ello en la evolución biológica. Por este motivo, el problema de medir

la tendencia de la complejidad durante la evolución ha sido y es de gran interés para

la comunidad cient́ıfica desde hace años. Muchas investigaciones en vida artificial se

han centrado en el modelado de ecosistemas artificiales (entre ellos modelos basados en

individuos) en los que puedan realizarse estudios sobre la tendencia de la complejidad.

El gran problema de la mayoŕıa de estas investigaciones es que sus resultados son

cuestionables debido a que no cuentan con una medida que cuantifique de forma rigurosa

la complejidad de los organismos de los ecosistemas que proponen (38; 52; 72; 82; 111;

112). El principal motivo de esto es que el término complejidad es un concepto complejo

en śı mismo. Es decir, medir la complejidad es una estimación abstracta que depende

del contexto en el cual se esté trabajando.

El principal objetivo de esta tesis es definir un marco de trabajo formal en el que po-

damos estudiar de manera rigurosa la tendencia de la complejidad durante la evolución.

A lo largo de esta ĺınea de investigación, se han encontrado otras muchas propiedades
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1. INTRODUCTION

y caracterizaciones derivadas de la definición de tal marco de trabajo y serán también

presentadas en esta memoria.

Como se explicaba previamente, definir un formalismo en el cual la complejidad

pueda analizarse de manera objetiva no es trivial. Por esta razón, los primeros pasos de

investigación de esta tesis estuvieron dirigidos a la búsqueda de las bases matemáticas

necesarias para este propósito. De esta manera, se analizaron sin éxito varios formalis-

mos tales como sistemas gramaticales o autómatas celulares.

La complejidad de estados (115) definida para lenguajes regulares, es una medida

de complejidad objetiva y aceptada. Aśımismo, la complejidad de un lenguaje regular

es definida como el número de estados del autómata finito determinista mı́nimo (DFA

mı́nimo, para abreviar) que lo reconoce. Claramente, esta medida de complejidad es

objetiva y computable debido a que el teorema de Myhill-Nerode (83) prueba que dado

un lenguaje regular, existe un único DFA mı́nimo que lo reconoce (mı́nimo con respecto

al número de estados y único salvo isomorfismo) y además, mediante su uso, pueden

definirse algoritmos de minimización. Por tanto, los lenguajes regulares constituyen un

buen substrato en el que estudiar la dinámica de la complejidad, considerándolos como

los individuos de una población en evolución. De esta manera, los lenguajes regulares

serán los fenotipos de nuestro modelo, mientras que los autómatas que los reconocen

serán los genotipos.

Debido a que para el estudio de la evolución de la complejidad es necesario in-

troducir una dinámica en la población de lenguajes y que la computación evolutiva

puede ser usada con este propósito, necesitamos encontrar una representación de los

genotipos usados en nuestro modelo sobre la cual se puedan aplicar los operadores

genéticos. Dado que un autómata finito determinista unario ćıclico (CUDFA, para

abreviar) puede representarse como una palabra w sobre el alfabeto {0, 1}, donde los

ceros representan los estados de no aceptación del autómata, y los unos representan los

estados de aceptación del autómata, y esta es una representación sobre la que pueden

aplicarse los operadores genéticos, restringimos nuestro marco de trabajo al conjunto

de los CUDFAs. El lenguaje regular reconocido por un CUDFA es un lenguaje regular

unario ćıclico (CURL, para abreviar), esto es, un lenguaje regular sobre un alfabeto

unario que es reconocido por un autómata ćıclico. Debido al carácter unario e infinito

de los CURLs, describiremos a un CURL como la unión finita de sucesiones infinitas de

números naturales con el mismo periodo (el número de estados del CUDFA mı́nimo que
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lo reconoce). Cada número natural representa a la cadena de esa longitud perteneciente

al alfabeto unario. Esto es, un CURL no es más que un conjunto infinito de números

naturales.

Además, en la Sección 2.2, damos una caracterización de los UDFAs mı́nimos y

como corolario obtenemos una caracterización de los CUDFAs que proporciona una

relación entre el campo de los autómatas ćıclicos y el de las palabras primitivas (una

palabra es primitiva si no es potencia de una palabra de longitud menor, es decir, dado

un alfabeto V , w ∈ V + es una palabra primitiva si no existe otra palabra v ∈ V + tal que

w = vn con |v| < |w| y n > 1). Esta caracterización es la siguiente: un CUDFA w ∈ V +

es mı́nimo si y sólo si w es una palabra primitiva. Esta relación encontrada, provoca

que diversas propiedades y caracterizaciones del conjunto de las palabras primitivas

sean analizadas en esta tesis. Estos resultados son interesantes para una gran parte

de la comunidad que investiga los lenguajes formales (incluso independientemente del

componente evolutivo introducido en esta tesis), debido a que el lenguaje de las palabras

primitivas ha sido ampliamente estudiado en la literatura.

Los operadores genéticos más comúnmente usados en computación evolutiva son

los operadores edit de substitución, eliminación e inserción de un śımbolo, también

conocidos como operadores de mutación puntual (por estar biológicamente inspirados).

A pesar de estar ampliamente aceptada su utilización y de haber sido considerablemente

estudiados (20; 23; 28; 57; 86; 87; 88; 113), en la mayoŕıa de los trabajos que los

usan no se analiza (y por tanto, no se intenta evitar) el efecto disruptivo que estos

operadores pueden provocar al ser aplicados sobre los genotipos. Esto es, no se analiza

cuánto difiere del fenotipo inicial el fenotipo resultante tras aplicar un operador sobre

un genotipo. Desde un punto de vista biológico, los operadores genéticos que provocan

cambios muy drásticos en los fenotipos no tienen sentido. Por otro lado, desde un punto

de vista computacional tampoco es razonable, ya que los algoritmos de búsqueda no

aleatoria se benefician de una baja disrupción en la aplicación de los operadores para

refinar las soluciones.

Para nosotros estos dos puntos de vista (normalmente olvidados en la mayoŕıa de

los estudios que usan los operadores edit) son importantes y deben ser tenidos en

cuenta. Por tanto nos preocupa la disrupción que los operadores edit puedan provocar

al aplicarlos sobre los genotipos que son objeto de estudio en esta tesis. Para llevar

a cabo este estudio, es necesario contar con medidas de disrupción apropiadas que
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cuantifiquen en qué medida cambia el fenotipo resultante respecto al inicial tras la

aplicación de un operador edit. Definir esta medida no es trivial, y éste es uno de los

principales inconvenientes por los que estos estudios de disrupción no se realizan de

forma habitual. En el caso que nos compete en esta tesis, y debido a que los individuos

han sido definidos como CURLs, para definir una medida de disrupción apropiada

necesitamos una medida que calcule cómo de similares son dos CURLs dados (y en

consecuencia, cómo de diferentes son).

En la literatura, las medidas de disimilitud propuestas entre conjuntos regulares

son escasas, no ocurriendo lo mismo para otros conjuntos de lenguajes (17; 18; 79; 81).

Por otro lado, de entre las existentes para conjuntos regulares (tales como la distancia

de Bodnarchuk, de Baire, de Hamming o relativa a la teoŕıa de información) ninguna

son de nuestro interés, debido a que no satisfacen el siguiente principio de similitud:

dos conjuntos son más similares, si tienen más elementos en común. Aśımismo, en el

Capitulo 3, se propone una medida de similitud para CURLs que calcula la porción de

palabras que comparten dos CURLs dados y por tanto cumple el principio anterior. El

calculo de esta porción es fácilmente realizable gracias a la representación para CURLs

propuesta en esta tesis (y comentada previamente), esto es, un CURL es representado

por la unión finita de sucesiones de números naturales. Esta medida de similitud

se obtiene básicamente a partir de una modificación de los conocidos coeficientes de

Jaccard y de Sørensen (que no pueden ser directamente usados para conjuntos infinitos)

que ha sido propuesta para que puedan usarse en el caso de los CURLs y constituye una

cota superior de los mismos. Es decir, la medida de similitud propuesta en esta tesis,

funciona como un indicador de convergencia mejor que los coeficientes de Jaccard y de

Sørensen. Además, la distancia (medida de disimilitud) que puede definirse usando la

medida de similitud propuesta es una distancia semimétrica. Por otro lado, se muestra

cómo estas medidas (tanto la de similitud como la distancia) pueden usarse en el caso

más general de los URLs, aunque en este caso la distancia es una distancia simétrica y

no semimétrica ya que no verifica la identidad de los indiscernibles. A parte de todas

las aplicaciones que esta medida de similitud tiene en esta tesis, es posible señalar la

aplicabilidad de esta medida en otros campos que no son objeto de estudio en esta tesis

como son la inferencia gramatical y la teoŕıa de la recuperación de información.

Por tanto, tras definir dicha medida de similitud para CURLs, estamos en condi-

ciones de definir la medida de disrupción de un operador al aplicarlo sobre la repre-
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sentación de los genotipos (CUDFAs) como palabras binarias y de esta manera, realizar

estudios sobre la disrupción que los operadores edit producen al aplicarlos en los genoti-

pos que son objeto de estudio en esta tesis, para intentar encontrar soluciones en el caso

en el que la disrupción sea alta. Aśımismo, en el Capitulo 4, se define la disrupción

de un operador O sobre una palabra w como un par (a, b) con a, b ∈ R, donde a es

la porción de palabras que son aceptadas por w y no por O(w) y b es la porción de

palabras que son aceptadas por O(w) y no por w, donde O(w) es la palabra resultante

tras la aplicación del operador O sobre w. Por los motivos explicados previamente,

bajo nuestro punto de vista, lo natural es que, durante la evolución, la aplicación de

cada uno de los operadores genéticos lleve consigo una disrupción baja, es decir, que el

fenotipo resultante no difiera demasiado del original.

Los resultados presentados en esta tesis muestran que aplicando los operadores

edit iterativamente no pueden obtenerse todas las palabras sobre el alfabeto {0, 1}
si añadimos el requerimiento adicional de que la disrupción sea baja en cada paso.

Esto es, en general, los operadores edit producen una disrupción alta al aplicarlos so-

bre los genotipos representados como palabras binarias. Para intentar solucionar este

problema, se han extendido los operadores edit mediante la inserción de dos nuevos

operadores inspirados en la duplicación biológica de genes: copia y eliminación parcial.

Los resultados muestran que mediante la aplicación iterativa de estos operadores con-

juntamente con los operadores edit śı que pueden obtenerse todas las palabras sobre

el alfabeto {0, 1} con el requerimiento adicional de que la disrupción sea baja en cada

paso. Este resultado puede ser interpretado como que la duplicación biológica de genes

reduce la disrupción causada por las mutaciones durante la evolución. Esto se debe a

que la duplicación de genes es un tipo de mutación silenciosa, en el sentido de que es

una mutación neutral que no produce disrupción, ya que no aporta nuevas funciones.

Sin embargo tal duplicación proporciona el substrato necesario para la producción de

nuevas protéınas y funciones.

A pesar de que con la introducción de estos dos nuevos operadores parece haber

disminuido la disrupción causada por los operadores edit cuando se aplican junto con

ellos sobre los genotipos representados como palabras binarias, tras la aplicación de

un operador O sobre una palabra primitiva w (esto es, sobre un CUDFA mı́nimo),

no tenemos asegurado que O(w) siga siendo una palabra primitiva. De esta manera,

podŕıa darse el caso de que un individuo (un CURL) estuviese representado por dos
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genotipos (dos CUDFA) con un número de estados muy diferente entre śı. Por ejemplo,

los autómatas 1 y 11.000.000 representan al CURL que acepta todas las cadenas sobre un

alfabeto unario y claramente tienen un número de estados muy diferente (uno frente a

un millón). Desde un punto de vista biológico, esto no es lógico y podŕıa ser criticado.

Por esta razón, necesitamos una representación de los genotipos sobre la que no sólo se

puedan aplicar los operadores genéticos, si no que además, al aplicarlos se preserve el

carácter mı́nimo del autómata.

Aśımismo, en el intento de buscar mejores (en el sentido explicado en el párrafo

anterior) representaciones de los genotipos, en esta tesis se introducen dos maneras

diferentes de generar palabras primitivas. Estos resultados tienen relevancia por si

solos, es decir, no necesitan de la componente evolutiva introducida en esta tesis, para

ser de interés para una gran parte de la comunidad cient́ıfica que estudia la teoŕıa de

los lenguajes formales.

El primer método generativo de palabras primitivas está basado en la definición

de ciertos operadores para los que el lenguaje de las palabras primitivas (Q, para

abreviar) es cerrado y es presentado en la Seccion 5.2. Antes de explicar un poco más en

profundidad en que consisten estos operadores, merece la pena mencionar que debido

al gran interés que causan las palabras primitivas, en la literatura, existen algunos

resultados relativos al cierre de este lenguaje bajo ciertos operadores (50; 58; 76; 77;

89; 90; 99). Los operadores propuestos en esta tesis están inspirados por la duplicación

biológica de genes y preservan la primitividad de las palabras. En resumen, estos

operadores están basados en el siguiente mecanismo: para una palabra primitiva w

dada, se construye la palabra ww′ donde w′ es una copia de w modificada o una copia

espejo de w modificada, donde si w = x1 . . . xn, su copia espejo es w = xn . . . x1.

Los resultados muestran que la palabra ww′ sigue siendo primitiva. Computacional-

mente, se ha demostrado que aplicando el conjunto propuesto de operadores de manera

iterativa, y a partir de una sola letra, pueden generarse todas las palabras primitivas de

longitud ≤ 11 , en el caso de alfabetos de dos letras (de hecho, son generadas casi todas

hasta la longitud 20). Es decir, puede obtenerse un subconjunto grande de palabras

primitivas usando secuencias de estos operadores. Debido a que el principal interés de

esta tesis se centra en el estudio de la evolución de la complejidad, y que para esto no es

necesario generar el conjunto total de palabras primitivas, este conjunto de operadores
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nos sirve para tal fin, ya que los operadores genéticos pueden aplicarse sobre secuencias

de estos operadores de manera que se preserva la primitividad.

Por otro lado, y a pesar de que, como dijimos antes, el lenguaje de las palabras

primitivas despierta un gran interés, hoy en d́ıa aún se desconoce si tal lenguaje es o no

independiente del contexto. Por tanto, el problema de la clasificación del lenguaje de las

palabras primitivas en la jerarqúıa de Chomsky está sin resolver, habiéndose probado

únicamente que no es un lenguaje regular (32). Por este motivo, y con el objetivo

de encontrar tal clasificación, hay diversos estudios que relacionan subconjuntos del

lenguaje de las palabras primitivas con otras familias de lenguajes (7; 16; 45; 53).

También han sido propuestos diversos métodos generativos de las palabras primitivas,

los cuales son principalmente métodos gramaticales (35; 61). En la Sección 5.3 de esta

tesis, se propone un método generativo de Q que no es gramatical y por tanto, es

totalmente diferente a los métodos presentados hasta ahora en la literatura. Para ello,

el concepto de número primitivo es definido: un entero es un número primitivo en base

q y de longitud m si su representación en base q es una palabra primitiva de longitud

m sobre un alfabeto V con |V | = q.

Los resultados muestran que un entero es primitivo si y sólo si no es congruente con

cero módulo ciertos números obtenidos tras el análisis. Por tanto, además de tener un

método generativo de Q, hemos encontrado una relación entre las palabras primitivas y

la teoŕıa de números. Debido a que el módulo no es más que el resultado de una serie de

operaciones aritméticas básicas y que estas pueden formularse de manera gramatical,

podŕıamos (no lo hacemos porque el objetivo de esta tesis no es la clasificación de

Q) convertir este método a su forma gramatical y tal gramática podŕıa contribuir

a esclarecer la clasificación del lenguaje Q en la jerarqúıa de Chomsky. Aunque, a

diferencia del método anterior, con este método es posible generar el conjunto de todas

las palabras primitivas, no lo usaremos como método de representación de los genomas

debido a que la aplicación de los operadores genéticos sobre tal representación no es

trivial. También se ha encontrado una propiedad curiosa que presentan las palabras

primitivas: la distribución de las distancias entre dos números primitivos consecutivos

es simétrica.

Por tanto, llegados a este punto, parece que tenemos todos los ingredientes nece-

sarios para que, introduciendo una dinámica en una población formada por CURLs,

podamos estudiar el comportamiento de la complejidad durante la evolución. Entre
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estos ingredientes, parece que la representación de los genotipos que mejor se acerca

a nuestras necesidades en la formada por secuencias de operadores que preservan la

primitividad. Aunque todos los caminos parecen llevarnos hacia tal representación (y

no tanto hacia la representación que consiste en palabras binarias), en la Sección 6.1

hacemos un último estudio en el que comparamos los resultados obtenidos usando am-

bas representaciones. A la vez, de estos estudios se concluye una tendencia hacia una

complejidad cada vez mayor durante la evolución. En estos estudios preliminares so-

bre el comportamiento de la complejidad se usa un marco de trabajo muy simple en

el cual una población de CURLs (individuos) intentan ser similares a un CURL dado

(entorno).

En el primer estudio, los genotipos son representados como palabras binarias sobre

las cuales se aplican los operadores edit. Además, se usa un algoritmo voraz de manera

que de entre todas las posibles mutaciones en cada paso, la elegida es aquella que

proporciona el individuo de mayor similitud con respecto al entorno (usando la medida

de similitud propuesta en el Capitulo 3). En el segundo estudio, los genotipos son

representados como secuencias de los operadores que preservan primitividad definidos

en esta tesis, sobre las cuales se aplican los operadores edit. Además, se usa un algoritmo

genético donde el cruzamiento entre individuos no es utilizado ya que es muy disruptivo

y la medida de similitud (propuesta en el Capitulo 3) es usada como función de bondad.

En ambos estudios se observa una tendencia hacia una complejidad cada vez mayor,

es decir, los individuos tienden a ser más complejos durante la evolución. En particular,

si nos centramos en la relación existente durante la evolución entre la

similitud de los individuos con el entorno y la complejidad de estos, vemos que en

el caso en el que los operadores que preservan primitividad son usados como repre-

sentación del genotipo, estas dos magnitudes correlan en mayor grado, es decir, la

complejidad de los individuos incrementa a medida que estos están mejor adaptados al

entorno (son más similares a él). Por tanto, esto nos da un argumento más para que

la representación elegida para los genotipos sea la dada por la secuencia de operadores

que preservan la primitividad.

Aśımismo, tenemos evidencias de que una tendencia hacia una complejidad cada

vez mayor ha tenido lugar durante la evolución. Aunque esto es de interés por si solo,

ya que solapa con la idea bastante extendida entre la comunidad cient́ıfica de que esto

es aśı, conocer que factores influyen en que esto sea aśı es crucial. Para ello, es necesaria
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la definición de un marco de trabajo en el que se vean involucrados un mayor número

de elementos que en el caso anterior.

En la Sección 6.2, se ha propuesto un modelo basado en individuos donde una

población de CURLs (individuos) con complejidad baja es colocada en un ecosis-

tema artificial que está compuesto de un conjunto de CURLs (subentornos) aleatoria-

mente posicionados en un toro. Los individuos compiten por recursos inertes (números

naturales obtenidos de los subentornos) y por recursos no inertes (otros CURLs del en-

torno, esto es, depredación entre individuos). Además, los recursos no inertes pueden

reaccionar o no frente al ataque de un individuo (cuando un individuo intenta proce-

sarlo). La dinámica en este sistema ha sido introducida mediante un algoritmo genético

implementado en el lenguaje de programación Matlab (las simulaciones han sido

realizadas en un cluster de computación de 32 CPUs (2 GHz)). Por las razones ex-

plicadas previamente, los genotipos están representados por secuencias de los oper-

adores que preservan primitividad presentados en esta tesis, siendo además parte del

genotipo la tasa de depredación y de reacción del individuo (en el caso de modelos con

depredación). Estas tasas podrán ser o no mutadas por los operadores genéticos. Te-

niendo en cuenta la descripción dada anteriormente, donde un CURL es una sucesión de

infinitos números naturales, decimos que un individuo (un lenguaje) procesa un recurso

inerte (y por tanto, gana enerǵıa), si tal natural pertenece al lenguaje. Por otro lado,

decimos que un individuo L procesa un recurso no inerte L′ que no ha reaccionado,

si dado un conjunto de números naturales S′ pertenecientes a L′, la enerǵıa obtenida

por L tras intentar procesar a todos los elementos de S′ es positiva. Si L′ reacciona

ante el ataque, decimos que el individuo L procesa a L′, si dados dos conjuntos de

números naturales S y S′ pertenecientes a L y a L′, respectivamente, L obtiene mayor

enerǵıa al intentar procesar los elementos de S′, que la enerǵıa obtenida por L′ cuando

intenta procesar los elementos de S. Un individuo sólo podrá dejar descendencia si

ha adquirido la suficiente enerǵıa para ello. Un individuo que intenta procesar un re-

curso pierde enerǵıa en el desplazamiento que realiza para alcanzar la posición de tal

recurso, por tanto, mientras mayor sea esta distancia, mayor enerǵıa perderá el indi-

viduo. También pierde enerǵıa si intenta procesar un recurso y no lo consigue. Si un

individuo se queda sin enerǵıa, entonces muere (esto es, desaparece de la población).

Usando este modelo se pueden analizar los efectos derivados de las interacciones de

los individuos con el entorno y también de las interacciones entre individuos y estudiar,
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entre otras cosas, si estos afectan de alguna manera a la tendencia hacia una complejidad

de los individuos cada vez mayor. Se han analizado independientemente modelos con

y sin depredación. Además, en el caso de los experimentos con depredación, se han

analizado de forma separada aquellos en los que las tasas de depredación y reacción

son fijas y aquellos en los que no son fijas.

Independientemente del número de subentornos que componen el entorno, los resul-

tados muestran que en el caso en el que no hay depredación en el modelo, los individuos

tienden a agruparse alrededor de los subentornos. También de manera independiente

del número de subentornos, cuando la depredación es introducida en el modelo, se ha

obtenido que cuanto mayor es la tasa de depredación de los individuos, menor es la

acumulación de los individuos alrededor de los subentornos, estando totalmente repar-

tidos en el entorno cuando la tasa de depredación es uno y fija. En ambos casos (con

o sin depredación), el tamaño de la población se reduce drásticamente en las primeras

generaciones y después su comportamiento es creciente, llegando a estabilizarse al fi-

nal (exceptuando cuando ambas tasas están próximas a uno y fijas, en este caso el

tamaño de la población no llega a estabilizarse). Además, en el caso de los modelos

con depredación donde las tasas de depredación y reacción no son fijas, se ha observado

que la población evoluciona hacia un atractor que se mueve a la izquierda en el espacio

de fases (donde los grados de libertad son la tasa media de depredación y de reacción

de los individuos de la población) cuando crece el número de subentornos.

Con respecto a la complejidad, los resultados muestran que existe una fuerte

correlación entre la complejidad del entorno y la complejidad de los individuos. Para

ello, se proponen dos definiciones diferentes para la complejidad del entorno. Por un

lado, podemos definir la complejidad del entorno como la media de la complejidad de

los subentornos que lo componen. En este caso, se obtiene que mientras más complejo

sea el entorno, más complejos son los individuos. Por otro lado, podemos definir la com-

plejidad del entorno como el número de subentornos que lo componen. En este caso,

se obtiene que mientras mayor sea el número de subentornos, menor es la velocidad de

crecimiento de la complejidad de los individuos. Estos resultados pueden interpretarse

como que la complejidad de los individuos se ve afectada por la complejidad del suben-

torno que habitan más que por la complejidad del entorno, lo que tiene sentido desde un

punto de vista biológico. Por otro lado, los resultados muestran que la componente de

depredación también afecta a la complejidad de los individuos, obteniendo individuos
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1.3 Spanish Summary

más complejos cuando existe depredación en el modelo. Es decir, cuando los individuos

compiten entre śı necesitan ser más complejos para poder sobrevivir. Sin embargo, en

el caso particular donde las tasas de depredación y reacción están cercanas a uno y

son fijas se ha obtenido que el crecimiento de la complejidad de los individuos de la

población es mucho menor.

Finalmente, se muestra que mediante el uso de la medida de similitud definida en

el Capitulo 3, se puede definir el concepto de especie en el modelo presentado en esta

tesis: dos individuos son de la misma especie si y sólo si son al menos 90% similares.

Esto puede usarse para realizar estudios sobre la dinámica de las especies. Estudios

preliminares muestran que en general existe una fuerte relación entre el tamaño de la

población y el número de especies, creciendo y estabilizandose en general en el mismo

intervalo.

En conclusión, usando el marco de trabajo que ha sido propuesto en esta tesis,

pueden realizarse (además de los estudios presentados en esta tesis) una gran cantidad

de experimentos de ecoloǵıa teórica de forma rigurosa. Es decir, este modelo constituye

una fuente fiable y objetiva, desde un punto de vista matemático y computacional, en

la que sacar conclusiones que, hasta cierto punto, pueden encontrar paralelismos con

la bioloǵıa.
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Chapter 2

Some Notation, Definitions and

Preliminary Results on CUDFAs

and Primitive Words

The reader is assumed to be familiar with the basic concepts of formal language theory.

In this chapter, only some notation used throughout the thesis will be recalled and

defined. For further information the reader is referred to (102).

In the sequel, we will consider that 0 ∈ N. For the cases in which zero is not

included, we will write N+. The greatest common divisor of two natural numbers n

and m is denoted by gcd(n,m). The cardinality of a finite set X is designated by |X|.

For a given alphabet V , we denote by V ∗ and V + the set of all words and all non-

empty words over V , respectively. The empty word is designated by λ. For w ∈ V ∗

and x ∈ V , we denote the length of w and the number of occurrences of x in w by |w|
and |w|x, respectively. Let w ∈ V + be a word such that |w| = n for some n ∈ N+.

Then, for 1 ≤ i ≤ n, w(i) is the i-th letter of w, i.e., if w = x1 . . . xn, then w(i) = xi.

For 1 ≤ j ≤ n−1 and 1 ≤ i ≤ n− j, a subword w(i)w(i+ 1) . . . w(i+ j) of w is notated

as w(i : i+ j).

A periodic sequence of numbers with period y, i.e., x, x + y, x + 2y, x + 3y, . . . ,

will be called a (natural) succession and will be represented as {x + yn | n ∈ N}. If

A is the union of the successions A1, A2, . . . , Am, with Ai = {xi + yn | n ∈ N} for

1 ≤ i ≤ m, then we say that Ai v M (instead of the usual inclusion ⊆ we use v to

point ot the requirements that Ai has to be a succession and cannot be an arbitrary
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subset and that the periods of Ai in all successions in M are equal) and we write

A = {{xi + yn | n ∈ N}}i=1,...,m. If m = 1, then we omit i = 1, . . . ,m in the index.

The number m is called the number of successions of M .

2.1 Deterministic Finite Automata

A deterministic finite automaton (DFA, for short) is a finite state machine where for

each pair of state and input symbol there is one and only one transition to a next state.

DFAs recognize the set of regular languages.

A DFA will take in a string of input symbols. For each input symbol it will then

transition to a state given by following a transition function. When the last input

symbol has been received it will either accept or reject the string depending on whether

the DFA is in an accepting state or a non-accepting state.

DFAs have many interesting properties. One of the most important is showed in

the Myhill-Nerode theorem, (83). It proves that there exists a unique minimal DFA

that recognizes a given regular language (minimal with regard to the number of states

and unique up to an isomorphism). There are many different algorithms accomplishing

this task and are described in standard textbooks on automata theory.

Such a Minimization Theorem allows to define the state complexity of a regular

language, (115), as the number of states of the minimal DFA that represents it (since

for any regular language there exists a unique minimal DFA that recognizes it and can

be calculated).

2.1.1 Unary Deterministic Finite Automata

In this thesis we work with languages over a unary alphabet. Let A be a deterministic

finite automaton over a unary alphabet (UDFA, for short) that represents a regular

language. As the alphabet is unary, each UDFA will have the structure that is shown

in Figure 2.1. Its states are divided into two groups, the first one, that we call initial

phase, contains the states from the first state to the i− 1-st state, the second one, that

we call loop, contains the remaining states. The initial word can be empty in those

automata that transits from its last state to its initial state.
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2.1 Deterministic Finite Automata

//WVUTPQRS0 //WVUTPQRS1 // . . . //WVUTPQRSi // WVUTPQRSi+ 1 // . . . // WVUTPQRSn

ww

Figure 2.1: Structure of a UDFA

A UDFA will be represented as a vector (v, w) where v ∈ {0, 1}∗ describes the initial

phase and w ∈ {0, 1}+ describes the loop. The zeros represent the non-accepting states

of the automaton, and the ones represent the accepting states of the automaton.

For example, the representation of the automaton in Figure 2.2 is (011, 110).

//GFED@ABC0 //GFED@ABC?>=<89:;1 //GFED@ABC?>=<89:;2 //GFED@ABC?>=<89:;3 //GFED@ABC?>=<89:;4 //GFED@ABC5

��

Figure 2.2: An example of a UDFA where the states with two circles are the accepting

states

For a UDFA (v, w), where the states are numbered starting from zero, let

A(v, w) = {a− 1 | 1 ≤ a ≤ |v|, v(a) = 1}

and

B(v, w) = {b− 1 + |v| | 1 ≤ b ≤ |w|, w(b) = 1}.

Let n,m ∈ N+. If |A(v, w)| = n and |B(v, w)| = m is assumed, then

A(v, w) = {a1, . . . , an} and B(v, w) = {b1, . . . , bm}.

Since the strings accepted by UDFAs are sequences of the same symbol, we can

identify a string with its length. Then, the set of strings accepted by a given UDFA

will be represented by a subset of the natural numbers. Any natural number k that

belongs to such a subset represents the string of length k. Thus, we say that (v, w)

represents the unary regular language (URL, for short)

L(v, w) = {a1, a2, . . . , an} ∪ {b1 + |w|k, b2 + |w|k, . . . , bm + |w|k | k ∈ N} (2.1)

For example, the URL that is given by the automaton in Figure 2.2 is represented by

{1, 2} ∪ {3 + 3k, 4 + 3k | k ∈ N}. In the sequel we use a shorter notation where the set
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of (2.1) is given by

L(v, w) = {{ai, bj + |w|k}k∈N}i=1,2,...,n, j=1,2,...,m (2.2)

Without loss of generality, we will use the minimal UDFA (for short, MUDFA) that

represents a given URL to obtain the previous notation for the URLs, in this way, we

will have the minimal n and m, that will provide a unique representation for each URL

(since there is a unique MUDFA for any given URL).

2.1.2 Cyclic Unary Deterministic Finite Automata

A UDFA is cyclic if its initial phase is empty (see Figure 2.3). Then, instead of (λ,w),

we represent the CUDFA as a word w ∈ {0, 1}+. A language accepted by some CUDFA

is a CURL.

// WVUTPQRS0 // WVUTPQRS1 // . . . // WVUTPQRSn

ww

Figure 2.3: Structure of a CUDFA

Moreover, in this case, instead of B(λ,w), we represent the set of the accepting

states of the automaton as B(w) = {i − 1 | w(i) = 1}. Thus, it is clear that if

B(w) = {b1, . . . , bm} for some m ∈ N+, then 0 ≤ bi < |w| for all 1 ≤ i ≤ m.

Therefore, the notation for a CURL L(w), that is represented by the CUDFA w,

will be

L(w) = {b1 + |w|k, b2 + |w|k, . . . , bm + |w|k | k ∈ N}.

Thus a CURL is given by an infinite set of natural numbers, more precisely, by the

union of finitely many disjoint successions of natural numbers. In the sequel we use the

notation

L(w) = {{bi + |w|k}k∈N}i=1,...,m. (2.3)

In this thesis, we consider a CUDFA w as a genotype, and its accepted CURL L(w)

as the corresponding phenotype.
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2.2 Primitive Words and a Characterization of Minimal

Unary Deterministic Finite Automata

The results presented in this section are part of (70) in which I am first author1.

For a given alphabet V , a word w ∈ V + is said to be a primitive word if and only if

there does not exist a word u ∈ V + with |u| < |w| such that w = un with n ∈ N, n > 1.

The set of all primitive words over V is denoted by QV . If V is understood from the

context we omit the index V and write simply Q.

The next theorem characterizes the case in which a UDFA is minimal. In this case,

V = {0, 1}.

Theorem 1. Let v ∈ V ∗ and w ∈ V +. Then (v, w) is a minimal UDFA if and only if

w ∈ Q and v(|v|) 6= w(|w|).

Proof. Let (v, w) be a minimal UDFA, let us see that then w ∈ Q and v(|v|) 6= w(|w|).
First of all, it is shown w ∈ Q, i.e., there does not exist n, u such that w = un with

n > 1 and u ∈ {0, 1}+:

Let us suppose that w = un with n > 1 and u ∈ {0, 1}+. Let |u| = m, |w| = q and

|u|1 ≤ m.

Since w = un, we have w(j +mr) = u(j) for any 1 ≤ j ≤ m and 0 ≤ r ≤ n− 1.

Let A(v, u) = A(v, w) = {a1, . . . , ar} and B(v, u) = {b1, . . . , bt}. Then

B(v, w) = {b1, . . . , bt, b1 +m, . . . , bt +m,

b1 + 2m, . . . , bt + 2m, . . . , b1 + (n− 1)m, . . . , bt + (n− 1)m}

Thus,

L(v, u) = {{aj , bi + km}k∈N}j=1,...,r, i=1,...,t

and

L(v, w) = {{aj , bi + rm+ kq}k∈N | j = 1, . . . , r, i = 1, . . . , t, r = 0, . . . , n− 1}.

Since

(bi + rm) + kq = bi + rm+ knm = bi + (r + kn)m

for any i = 1, . . . , t, we have L(w) ⊆ L(u).

Since k = k′n+ r for some 0 ≤ k′ and r ≤ n− 1, we have

bi + km = bi + (k′n+ r)m = (bi + rm) + k′nm = (bi + rm) + k′q

1the rest of coauthors are my supervisors and gave hints, suggestions, and comments
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for any i = 1, . . . , t, which means L(u) ⊆ L(w).

Therefore L(w) = L(u). Because u represents the same language as w, we have

L(v, u) = L(v, w). Since |u| < |w|, the UDFA (v, w) is not minimal. Thus, if (v, w) is

a minimal UDFA, then w ∈ Q.

Now, let us see that if (v, w) is a minimal UDFA, then v(|v|) 6= w(|w|).
Let us suppose that v(|v|) = w(|w|). There are two possibilities: v(|v|) = w(|w|) = 1

or v(|v|) = w(|w|) = 0.

Let us suppose v(|v|) = w(|w|) = 1. Considering |v| = p+ 1 and |w| = q such that

|v|+ |w| = n+ 1, if the last state of w is removed and the automaton

(v′, w′) = (v(1 : p), v(p+ 1)w(1 : q − 1))

is considered, then the language represented by such an automaton, L(v′, w′), is:

{a1, . . . , ar−1, ar + qk, b1 + qk, . . . , bt−1 + qk | k ∈ N}

with |v′|+ |w′| = n.

Let us observe that L(v, w) = L(v′, w′). Since the only difference between both

languages are the sublanguages {ar, bt + qk} in L(v, w) and {ar + qk} in L(v′, w′),

L(v, w) = L(v′, w′) if and only if F = {ar, bt + qk | k ∈ N} = {ar + qk | k ∈ N} = S.

Firstly, F ⊆ S because ar = ar + q0 and

bt + qk = n+ 1 + qk = n+ 1 + q(k′ − 1) =

= n− q + 1 + qk′ = p+ 1 + qk′ = ar + qk′

with k′ ∈ N and k = k′ − 1.

Furthermore, S ⊆ F because

ar + qk′ = p+ 1 + qk′ = p+ 1 + q(k + 1) =

= p+ q + 1 + qk = n+ 1 + qk = bs + qk

with k ∈ N and k′ = k + 1.

Therefore L(v, w) = L(v′, w′). Then the automaton (v, w) is not minimal, because

its last state can be removed and the automaton (v(1 : p), v(p + 1)w(1 : q − 1)) still

represents the same language.

Now let us consider the case where v(|v|) = w(|w|) = 0. If the last state of w is

removed and the automaton (v(1 : p), v(p+ 1)w(1 : q − 1)) is considered, the language

represented by such an automaton is the same language as (v, w), it can be proved

analogously as before. Then the automaton (v, w) is not minimal because its last state
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can be removed and the automaton (v(1 : p), v(p + 1)w(1 : q − 1)) still represents the

same language.

Thus, if (v, w) is a MDFA, necessarily v(|v|) 6= w(|w|).
Let v ∈ V ∗, w ∈ Q and v(|v|) 6= w(|w|), let us see that then (v, w) is a minimal

UDFA.

Let us assume that (v, w) is not minimal. Then there exists a minimal UDFA

(q, p) accepting the same language as (v, w). Since (q, p) is minimal, we have that

|q|+ |p| < |v|+ |w| and moreover, by the proof of the previous implication, we also have

p ∈ Q and q(|q|) 6= p(|p|).
Let us suppose that |v| = |q|. Then, we have v = q. Then, vw|p| = vp|w|. Therefore,

w|p| = p|w|. By Lemma 1.9 in (64), w and p are powers of some word. Since w and

p are primitive words, we have w = p. Therefore, (q, p) = (v, w) in contrast to our

assumption that (v, w) is not minimal.

Let us suppose that |v| < |q|. Let r = |q| − |v|. Let r = k|w| + z for some k ≥ 0

and some z with 0 ≤ z ≤ |w| − 1. Since we can write w = uu′ for some words

u, u′ ∈ V + with |u| = z, we have |q| = |v| + k|w| + |u|. Therefore, qp|w| = vwkuw′|p|

where w′ = u′u. Thus, we have qp|w| = qw′|p|. As above, we have p = w′. Since

|q| + |p| < |v| + |w| = |v| + |w′| = |v| + |p|, we have |q| < |v| in contrast to our

assumption that |v| < |q|.
Let us suppose that |q| < |v|. Let r = |v| − |q|. Let r = k|p|+ z for some k ≥ 0 and

some z with 0 ≤ z ≤ |p| − 1. Since we can write p = uu′ for some words u, u′ ∈ V +

with |u| = z, we have |v| = |q|+ k|p|+ |u|. Therefore, vw|p| = qpkup′|w| where p′ = u′u.

Thus, we have vp′|w| = vw|p|. As above, we have w = p′. We also have v = qpku.

Thus, the last letter of v is equal to the last letter of w and since v(|v|) 6= w(|w|), it is

a contradiction.

We can particularize the previous theorem in the case of CUDFAs.

Corollary 1. Let w be a CUDFA. Therefore, w is a minimal CUDFA if and only if

w ∈ Q.
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Chapter 3

A Similarity Measure for Cyclic

Unary Regular Languages

The results presented in this chapter are part of (24) in which I am first author1.

As we said before, a measure of the similarity between CURLs is needed so as to

calculate how well an individual (a language) adapts to a given environment in order to

study the dynamics of the complexity of such individuals during the evolution. In this

chapter, we propose a similarity measure for CURLs by modifying the Jaccard similarity

coefficient and the Sørensen coefficient to measure the level of overlap between such

languages. This measure computes the proportion of strings that are shared by two or

more cyclic unary regular languages and is an upper bound of the Jaccard coefficient

and the Sørensen coefficient. By using such similarity measure, we define a dissimilarity

measure for cyclic unary regular languages that is a semimetric distance. Moreover, it

can be used for the non-cyclic case.

3.1 Introduction

URLs are regular languages over a unary alphabet. Due to their relation to many

number-theoretic results, as well as their difference from the general case (non-unary

regular languages), they are of particular interest in the study of state complexity.

Thus, some papers on state complexity of URLs have been published. For example, in

1authors by alphabetical order, the rest of coauthors are my supervisors and gave hints, suggestions,

and comments
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(40), deterministic unary automata, nondeterministic unary automata and probabilistic

unary automata accepting the same languages are compared with respect to their size.

In (43), the computational complexity of the nondeterministic automaton minimization

problem for finite and unary regular languages, if the input is a DFA, is investigated.

In (73), the nondeterministic state complexity of URLs and of their complements are

also compared. More studies related to URLs and state complexity can be seen in

(95; 96; 107).

A CURL is a URL that can be represented by a cyclic automaton. In (10), the

behavior of Hopcroft’s algorithm for minimizing CUDFAs is analyzated. The rela-

tionships between the combinatorial properties of a circular sturmian word and the

run of the Hopscroft’s algorithm on its associated cyclic automaton is investigated in

(21). Other properties of CURLs and unary nondeterministic finite automata have

been investigated in (32; 43; 56).

However, there is a lack of results that compare two (neither cyclic nor non-cyclic)

URLs based on their shared strings. As far as we know, there exist very few measures

of the overlap between two URLs or between two CURLs, if we compare it with the

amount of measures that there exist in the case of other types of languages. For exam-

ple, in (17), an iterative procedure to compute the relative entropy between two stochas-

tic deterministic regular grammars is proposed and in (18), approaches to compute a

similarity measure between distributions generated by probabilistic tree automata is

defined. In (81), mathematical distances between pairs of probabilistic context-free

grammar have been investigated. A distance measure to compare distributions that

are represented by stochastic DFA is presented in (79). Moreover, those few measures

of the overlap between regular languages that there exist, (9; 39; 60; 63; 114), are not of

interest for us, since they do not satisfy the principle: sets are more similar if they have

more elements in common. This will be show this in depth in the disscusion section.

On the other hand, if one considers dynamic systems or genetic algorithms, where

the populations are presented by unary regular sets (see e.g. (69; 70)), then the selection

process requires a comparison of such sets in terms of portion of shared strings. Thus

we are interested in a similarity measure for unary regular sets that satisfies such a

principle.
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3.1 Introduction

In the case of finite sets A and B the Jaccard coefficient and the Sørensen (or Dice)

coefficient defined by

JCA,B =
|A ∩B|
|A ∪B|

and SCA,B =
2 · |A ∩B|
|A|+ |B|

(3.1)

are well-known measures of similarity (see (110), (100), (1)). Obviously, the intuitive

idea behind these measures is that sets are more similar if they have more elements

in common. These measures cannot directly be used for infinite sets. Since we are

interested in infinite regular sets, the Jaccard and Sørensen coefficients cannot directly

be used for CURLs.

In this section, we introduced modified variants of these coefficients. But their

computations cannot directly be performed using a given representation of the CURLs

by their minimal automata; it needs a transformation to the representation of the

CURLs that has been presented in the previous section.

Thus, in this work, we propose a similarity measure for CURLs that computes the

overlap between two or more CURLs directly from the given representations by minimal

automata. Moreover, we prove that the similarity measure for CURLs proposed in

this work is an upper bound of the Jaccard coefficient and the Sørensen coefficient for

CURLs. Furthermore, if a sequence of CURLs approaches a certain CURL with respect

to one of the considered similarities, then this also holds for the other ones. Thus by

the relation between the measures it seems that a tendency can be seen earlier by using

the newly introduced measure.

Using the similarity measure, we also define a dissimilarity measure for CURLs.

That will be done in the same way as the Jaccard distance is defined by using the

Jaccard coefficient (in the case of finite sets). In contrast to the Jaccard distance, such

a dissimilarity measure for CURLs is not a metric distance, since the triangle inequality

is not satisfied. We prove that it is a semimetric distance.

Finally, we mention that we can also use the dissimilarity measure proposed in this

work in the case of non-cyclic URLs. Therefore, in general, we have a dissimilarity

measure for URLs (cyclic and non-cyclic). We show that the dissimilarity measure for

URLs is a symmetric distance (it does not satisfy the identity of indiscernibles) and

not a semimetric distance.
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3.2 A Similarity Measure for CURLs

3.2.1 Similarity between two Successions

It is natural to say that two successions have the similarity 0 if they have no numbers

in common. Therefore we are interested in the cases where the intersection of the two

successions of natural numbers is not empty.

Lemma 1. For each two natural successions A = {a+ bn}n∈N and B = {c+ dk}k∈N,

A ∩B 6= ∅ if and only if c− a is a multiple of gcd(b, d) (where gcd(b, d) is the greatest

common divisor of b and d).

Proof. a + bn = c + dk if and only if c − a = bn − dk. By the Main Theorem on gcd,

there is a solution in Z of this equation, if and only if c−a is a multiple of gcd(b, d).

Lemma 2. Let M be a CURL. Given A,B vM , A ∩B 6= ∅ if and only if A = B.

Proof. Let us suppose that A ∩ B 6= ∅. If we assume that A = {ai + bk}k∈N and

B = {aj + bk}k∈N, by Theorem 1, A ∩ B 6= ∅ if and only if |ai − aj | is a multiple of

gcd(b, b) = b. Since ai, aj < b, we have 0 ≤ |ai − aj | < b. Then |ai − aj | is a multiple of

gcd(b, b) = b if and only if |ai − aj | = 0, that is, A = B.

Let A = {a+ bn}n∈N and B = {c+ dk}k∈N be two natural successions. We use the

frequency in which the overlapped elements, i.e., elements which are in A as well as in

B, appear in A as the measure of the overlap (thus it reflects the portion of elements

of B in A).

Let

T = {k ∈ N | c− a
b

+
d

b
k ∈ N}

be the set of natural numbers such that the element c + dk of B is contained in A.

Furthermore, let t be the minimal number in T . We determine the amount that has

to be added to t in order to obtain another element of the set T . Thus, x ∈ N with
c− a
b

+
d

b
(t+ x) ∈ N is looked for. Since

c− a
b

+
d

b
(t+ x) ∈ N if and only if

c− a
b

+
d

b
t+

d

b
x ∈ N

and
c− a
b

+
d

b
t ∈ N, we have

c− a
b

+
d

b
t+

d

b
x ∈ N if and only if

d

b
x ∈ N if and only if

x =
b

gcd(b, d)
m for some m ∈ N.
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So, if T = {t+
b

gcd(b, d)
m | m ∈ N}, then the overlapped terms belong to

T ′ = {c− a
b

+
d

b
(t+

b

gcd(b, d)
m) | m ∈ N}.

Therefore the distance of two successive elements of T ′ is given by

c− a
b

+
d

b
(t+

b

gcd(b, d)
m)− [

c− a
b

+
d

b
(t+

b

gcd(b, d)
(m− 1))] =

d

gcd(b, d)
.

So, starting from t can be affirmed that a natural number that belongs to T ′ will be

found in A every
d

gcd(b, d)
terms.

Therefore,
gcd(b, d)

d
can be considered as the overlap of A with B. That is, we have

done a partition of the succession A into d disjoint subsets and gcd(b, d) words of them

belong to B.

Definition 1. The overlap of an infinite succession A = {a+ bn}n∈N with another one

B = {c+dk}k∈N, that we will call ISOA,B (for Infinite Successions Overlap), is defined

as:

ISOA,B =


gcd(b, d)

d
if A ∩B 6= ∅

0 in other case

Lemma 3. Let A = {a + bn}n∈N and B = {c + dk}k∈N be two natural successions.

Then A ⊆ B if and only if ISOA,B = 1.

Proof. ISOA,B = 1 if and only if gcd(b, d) = d if and only if b = du for some u ∈ N.

Since ISOA,B = 1 we have A ∩B 6= ∅ and thus, by Lemma 1, c− a = t · gcd(b, d) = td

for some t ∈ N. For n ∈ N, we get a+ bn = c+ dt+ dun = c+ d(t+ un), which proves

that any element of A is contained in B or equivalently, A ⊆ B.

If A ⊆ B, then for any n ∈ N, there exists m ∈ N such that a + bn = c + dm. In

particular, it holds for n = 1, that is, there exists m ∈ N such that a + b = c + dm.

Since c− a = td, we have b = d(t+m). Thus gcd(b, d) = d and ISOA,B = 1.

The similarity of two successions combines ISOA,B and ISOB,A.

Definition 2. The similarity measure between two infinite successions A = {a+bn}n∈N
and B = {c+ dk}k∈N, that we will call ISSA,B (for Infinite Successions Similarity), is

defined as:

ISSA,B =


ISOA,B + ISOA,B

2
if A ∩B 6= ∅

0 in other case

Given two infinite successions A and B, 0 ≤ ISSA,B ≤ 1, since 0 ≤ ISOA,B ≤ 1

and 0 ≤ ISOB,A ≤ 1 for any infinite successions A and B.
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3.2.2 The Proposed Similarity Measure for CURLs

In this section, we define the similarity measure for CURLs by using the similarity

measure between two successions that has been defined in the previous section.

Given two CURLs M and N , we have that M ∩N 6= ∅ if and only if there exist at

least A vM and B v N such that A ∩B 6= ∅.

Definition 3. Let M and N be two CURLs. We define the overlap of M with N , that

we will call URLOM,N (for Unary Regular Languages Overlap), as:

URLOM,N =


1

m

∑
AvM
BvN

ISOA,B if M ∩N 6= ∅

0 in other case

where m ∈ N is the number of successions of M .

By following the same reasoning as in the previous section, we define the similarity

measure between two CURLs as follows:

Definition 4. Let M and N be two CURLs. We define the similarity measure between

M and N , that we will call URLSM,N (for Unary Regular Languages Similarity), as:

URLSM,N =


URLOM,N + URLON,M

2
if M ∩N 6= ∅

0 in other case

Remark 1. Let M = {{ai + |v|k}k∈N}i=1,...,n and N = {{bj + |w|k}k∈N}j=1,...,m be the

two CURLs for some n,m ∈ N. In the particular case in which gcd(|v|, |w|) = 1, we

have

URLSM,N =

|w|1
|w|

+
|v|1
|v|

2
.

Moreover, in the particular case in which gcd(|v|, |w|) = |w|, we have

URLSM,N =

q

|v|1
+

q

|w|1
2

,

where q is the number of pairs {ai + |v|k}k∈N and {bj + |w|k}k∈N such that

{ai + |v|k}k∈N ∩ {bj + |w|k}k∈N 6= ∅

(and that is if and only if ai = bj).

32



3.2 A Similarity Measure for CURLs

Our definitions require that the regular sets R and S are given as sets M and N of

periodic sequences which are induced by the minimal automata of R and S. We now

prove that any other description as sets M ′ and N ′ of periodic sequences which are

induced by DFAs accepting R and S give the same similarity.

Theorem 2. Let M = {{ai + bk}k∈N}i=1,2,...,m and M = {{a′i + b′k}k∈N}i=1,2,...,m′

be two descriptions of the regular set R, and let N = {{ci + dk}k∈N}i=1,2,...,n and

N = {{c′i + d′k}k∈N}i=1,2,...,n′ be two descriptions of the regular set S. Then

URLSM,N = URLSM,N .

Proof. We first compute URLSM,N . Let us assume that there are q pairs (i, j) such

that {ai + bk} ∩ {cj + dk} 6= ∅. Then we get

URLOM,N =
1

m

∑
i,j

ISO{ai+bk},{cj+dk} =
1

m
· q · gcd(b, d)

d
(3.3)

and an analogous result for URLON,M taking n and b instead of m and d, respectively.

Thus

URLSM,N =

q · gcd(b, d)

md
+
q · gcd(b, d)

nb
2

=
q · gcd(b, d)(md+ nb)

2nmbd
. (3.4)

Now we prove that other special representations of the sets R and S give the same

value. Let z be the lowest common multiple of b and d. We set

g =
z

b
and h =

z

d
.

Then we also have

g =
d

gcd(b, d)
and h =

b

gcd(b, d)
. (3.5)

We now construct the successions

M ′ = {ai + vb+ kz | 1 ≤ i ≤ m, 0 ≤ v ≤ g − 1}k∈N

and

N ′ = {cj + v′d+ kz | 1 ≤ j ≤ n, 0 ≤ v′ ≤ h− 1}k∈N.

Thus we have ng successions in M ′ and mh successions in N ′. Obviously, M and M ′,

as well as N and N ′, describe the same regular languages. By Lemma 2, all successions

of M ′ and N ′ are pairwise disjoint. As above we get

URLOM ′,N ′ =
1

mg

∑
i,j,v,v′

ISO{ai+vb+kz},{cj+v′d+kz} =
q

mg
=
q · gcd(b, d)

md
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and an analogous result for URLON ′,M ′ which leads to

URLSM ′,N ′ =
q · gcd(b, d)(md+ nb)

2nmbd
=
q(mg + nh)

2nmgh
(3.6)

Therefore we have URLSM,N = URLSM ′,N ′ .

The same argumentation can be used if we consider representations M ′u and N ′u
which are based on a multiple u of z.

Let y be the lowest common multiple of b, d, b′, d′. Then we get

URLSM,N = URLSM ′
y ,N

′
y

and URLSM,N = URLS
M

′
y ,N

′
y
. (3.7)

Since M ′y and (M ′)′y describe R we get that

U = {ai+sb | 1 ≤ i ≤ m, 0 ≤ s ≤ u

b
−1} and U ′ = {a′i+tb′ | 1 ≤ i ≤ m′, 0 ≤ t ≤ u

b′
−1}

describe the set of all words in R of length at most y−1. Thus U = U ′ and consequently

M ′y = (M ′)′y (since we extend U and U ′ only by adding multiples of y). Analogously,

Ny = (N ′)y. Therefore, by (3.7),

URLSM,N = URLSM ′
y ,N

′
y

= URLS
M

′
y ,N

′
y

= URLSM,N .

Thus, in the sequel, we use the description which is most appropriate for our proofs.

We now present some elementary properties of the similarity measure, we particu-

larly show that it is a value between 0 and 1 (which is a desired property).

Lemma 4. 0 ≤ URLSM,N ≤ 1 for any two CURLs M and N .

Proof. Let M and N be two CURLs. The relation 0 ≤ URLSM,N is obvious.

Let M = {{ai+bk}k∈N}i=1,2,...,m and N = {{cj+dk}k∈N}j=1,2,...,n with n,m ∈ N+.

Let z be the lowest common multiple of b and d. Moreover, let

g =
z

b
=

d

gcd(b, d)
and h =

z

d
=

b

gcd(b, d)
.

Then we can describe M and N as

M = {A1,1, A1,2, . . . , A1,g, A2,1, . . . , A2,g, . . . , Am,1, . . . , Am,g}

with Ai,p = {ai,p + zk}k∈N, ai,p = ai + (p− 1)b for 1 ≤ i ≤ m, 1 ≤ p ≤ g,

N = {C1,1, C1,2, . . . , C1,h, C2,1, . . . , C2,h, . . . , Cn,1, . . . , Cn,h}

with Cj,l = {cj,l + zk}k∈N, cj,l = cj + (l − 1)d for 1 ≤ j ≤ n, 1 ≤ l ≤ h.
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Let Ai,p ∩Cj,t 6= ∅. Then by Lemma 1, ai,p − cj,t = gcd(z, z)s = zs for some s ∈ N.

Moreover, ai,p < z and cj,t < z implies |ai,p − cj,t| < z. Thus, necessarily ai,p = cj,t.

This implies immediately Ai,p ⊆ Cj,t. Then, by Lemma 3, ISOAi,p,Cj,t = 1. Moreover,

since all the cj,t are different, for any Ai,p vM , there exists at most one Cj,t v N such

that Ai,p ∩ Cj,t 6= ∅.
If Ai,p ∩ Cx,y = ∅, then ISOAi,p,Cx,y = 0. Thus we get

∑
Cj,tvN

ISOAi,p,Cj,t =

{
1 if Ai,p ∩N 6= ∅
0 if Ai,p ∩N = ∅

.

Now we obtain

URLOM,N =
1

mg

∑
Ai,pvM
Cj,tvN

ISOAi,p,Cj,t =
1

mg

∑
Ai,pvM

( ∑
Cj,tvN

ISOAi,p,Cj,t

)

≤ 1

mg

∑
Ai,pvM

1 =
1

mg
·mg = 1.

Analogously, we have URLON,M ≤ 1. Thus, by the definition of URLSM,N , we get

URLSM,N ≤ 1.

Lemma 5. Let M and N be CURLs. URLOM,N = 1 if and only if M ⊆ N .

Proof. We consider the presentations given in the proof of Lemma 4.

Let us suppose M ⊆ N . Since M ⊆ N if only if Ai,p v N for any Ai,p v M ,

we get Ai,p ∩ N 6= ∅ for any Ai,p v M . Therefore, by the proof of Lemma 4,∑
Cj,tvN

ISOAi,p,Cj,t = 1 for any Ai,p v M . Thus we obtain an equality in (3.8), which

proves that URLOM,N = 1.

Conversely, URLOM,N = 1 if and only if
∑
CvN

ISOA,C = 1 for any A vM . There-

fore, A ∩N 6= ∅ for any A ∈M . Consequently, for any A ∈M , there is a C ∈ N such

that A ∩ C 6= ∅. As in the proof of Theorem 4, we can show that A ∩ C 6= ∅ implies

A ⊆ C. Thus, for any A vM , there is a C v N with A ⊆ C. This implies A v N for

any A vM which gives M ⊆ N .

We have shown that, for any CURLs M and N , 0 ≤ URLSM,N ≤ 1. We will now

show that also the converse holds, i.e., every number x with 0 ≤ x ≤ 1 can be obtained

as a similarity.
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Theorem 3. The measure URLS is dense, i.e., for any (rational) number x ∈ [0, 1]

and any ε ≥ 0, there are CURLs M and N such that

|URLSM,N − x| ≤ ε.

Proof. Obviously, for the sequences M = {0 + 2k}k∈N and N = {1 + 2k}k∈N, we get

URLSM,M = 1 and URLSM,N = 0.

Let 0 < x < 1. Then we choose prime numbers p and q sufficiently large such that

p < q, xp ≤ p − 1 and
1

2p
+

1

2q
≤ ε. Then we also have xq ≤ q − 1. We now choose

m = dxpe and n = dxqe and

M = {{i+ pk}k∈N}i=1,2,...,m and N = {{j + qk}k∈N}j=1,2,...,n.

Since the greatest common divisor of p and q is 1 and any difference i− j, 1 ≤ i ≤ m

and 1 ≤ j ≤ n, is a multiple of 1, any pair of successions {i+ pk} and {j + qk} has an

non-empty intersection. Thus we get

URLSM,N =
URLOM,N + URLON,M

2
=

n
1

q
+m

1

p

2
=
np+mq

2pq
.

If we take into consideration that xp ≤ m ≤ xp+ 1 and xq ≤ n ≤ xq + 1, we get

x =
xpq + xqp

2pq
≤ np+mq

2pq
≤ (xp+ 1)q + (xq + 1)p

2pq
= x+

1

2p
+

1

2q
≤ x+ ε.

Now the statement follows immediately.

3.3 Jaccard Coefficient and Sørensen Coefficient for CURLs

3.3.1 Definition of a Jaccard Coefficient and Sørensen Coefficient for

CURLs

The Jaccard coefficient given in the Introduction is a well-known measure for the simi-

larity of finite sets. As we said before, we can not use this measure directly for CURLs

because both sets are infinite if the intersection is non-empty. In this section, we pro-

pose an appropriate definition of the Jaccard coefficient which can be used for CURLs.

Let

M = {{ai + bk}k∈N}i=1,...,m and N = {{cj + dk}k∈N}j=1,...,n

be two CURLs consisting of n and m sequences, respectively. Let

Ms,t = M ∩ {i | s ≤ i ≤ t} and Ns,t = N ∩ {i | s ≤ i ≤ t}
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be the subsets of M and N , consisting of all numbers greater or equal to s and smaller

or equal to t. Then a natural definition of a Jaccard coefficient would be

lim
t→∞

|M0,t ∩N0,t|
|M0,t ∪N0,t|

.

In order to use this definition we have to show that the limit exists. This will now be

done. Let z be the lowest common multiple of b and d. Then it is clear that

Mrz,(r+1)z−1 = M0,z−1 + rz = {y + rz | y ∈M0,z−1}

for all r ≥ 0. Hence, for t = rz + u,

|M0,t ∩N0,t| = r|M0,z−1 ∩N0,z−1|+ |M0,u ∩N0,u|,

|M0,t ∪N0,t| = r|M0,z−1 ∪N0,z−1|+ |M0,u ∪N0,u|.

Therefore we get

|M0,t ∩N0,t|
|M0,t ∪N0,t|

=
r|M0,z−1 ∩N0,z−1|+ |M0,u ∩N0,u|
r|M0,z−1 ∪N0,z−1|+ |M0,u ∪N0,u|

=
r|M0,z−1 ∩N0,z−1|

r|M0,z−1 ∪N0,z−1|+ |M0,u ∪N0,u|
+

|M0,u ∩N0,u|
r|M0,z−1 ∪N0,z−1|+ |M0,u ∪N0,u|

=
|M0,z−1 ∩N0,z−1|

|M0,z−1 ∪N0,z−1|+
|M0,u ∪N0,u|

r

+
|M0,u ∩N0,u|

r|M0,z−1 ∪N0,z−1|+ |M0,u ∪N0,u|

which implies

lim
t→∞

|M0,t ∩N0,t|
|M0,t ∪N0,t|

= lim
r→∞

|M0,z−1 ∩N0,z−1|

|M0,z−1 ∪N0,z−1|+
|M0,u ∪N0,u|

r

+
|M0,u ∩N0,u|

r|M0,z−1 ∪N0,z−1|+ |M0,u ∪N0,u|

=
|M0,z−1 ∩N0,z−1|
|M0,z−1 ∪N0,z−1|

.

Therefore we give the following definition.

Definition 5. For two cyclic unary regular languages M = {{ai + bk}k∈N}i=1,...,m and

N = {{cj + dk}k∈N}j=1,...,n, we define the Jaccard coefficient JCM,N of M and N by

JCM,N =
|M0,z−1 ∩N0,z−1|
|M0,z−1 ∪N0,z−1|

,

where z is the smallest common multiple of b and d.
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Let us see that the measure JC does not depend on the representation of the

CURLs.

Theorem 4. Let M = {{ai + bk}k∈N}i=1,2,...,m and M = {{a′i + b′k}k∈N}i=1,2,...,m′

be two descriptions of the regular set R, and let N = {{ci + dk}k∈N}i=1,2,...,n and

N = {{c′i + d′k}k∈N}i=1,2,...,n′ be two descriptions of the regular set S. Then

JCM,N = JCM,N .

Proof. Let z be the lowest common multiple of b and d, and u the lowest common

multiple of b, b′, d, d′. Then u = tz for some t ∈ N+. Then

|M0,u−1 ∩N0,u−1| = t|M0,z−1 ∩N0,z−1| and |M0,u−1 ∪N0,u−1| = t|M0,z−1 ∪N0,z−1|

and therefore

JCM,N =
|M0,u−1 ∩N0,u−1|
|M0,u−1 ∪N0,u−1|

.

Analogously,

JCM,N =
|M0,u−1 ∩N0,u−1|
|M0,u−1 ∪N0,u−1|

.

Now the equality JCM,N = JCM,N follows because we have M0,u−1 = M0,u−1 and

N0,u−1 = N0,u−1 since the same languages R and S are described.

We now determine JCM,N for two CURLs M = {{ai + bk}k∈N}i=1,...,m and

N = {{cj + dk}k∈N}j=1,...,n. Let us assume that there are q pairs (i, j) such that

{ai + bk} ∩ {cj + dk} 6= ∅.

Let g =
d

gcd(b, d)
and h =

b

gcd(b, d)
. We mention the following fact.

If the two successions M and N have a non-empty intersection, then

{ai, ai + b, a+ 2b, . . . ai + (g − 1)b} ∩ {cj , cj + d, cj + 2d, . . . , cj + (h− 1)d}

consists only of one element.

(Assume that the intersection contains at least two elements x and y. Without loss of

generality let x < y. Then

x = a+ x′b = c+ x′′d and y = a+ x′b+ y′b = c+ x′′d+ y′′d

which gives y′b = y′′d = p. Since b and d are divisors of p, we have p ≥ z. Thus y > z

in contrast to the choice of y.)
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We construct the sets M ′ and N ′ as in the proof of Theorem 2 and show that

U = M ′0,z−1∩N ′0,z−1 contains exactly q elements. By the fact given above, U has at most

q elements, since we have only q pairs of intersecting successions of M and N . However,

if the intersection of two pairs are equal, then ai1 +v1b = cj1 +v′1c = ai2 +v2b = cj2 +v′2c,

which gives by Lemma 2 that ai1 = ai2 and cj1 = cj2 , i.e., the two pairs coincide.

Furthermore, M ′0,z−1∪N ′0,z−1 contains mg+nh−q elements because we have mg+nh

successions and q elements are counted twice. Hence

JCM,N = JCM ′,N ′ =
q

mg + nh− q
. (3.8)

Obviously, 0 ≤ JCM,N ≤ 1 for all CURLs M and N . We now show the denseness

of the measure JC.

Theorem 5. For any rational number r ∈ [0, 1], there are CURLs M and N such that

JCM,N = r, i.e., the measure JC is dense.

Proof. If r = 0, we can choose M = {0 + 2k}k∈N and N = {1 + 2k}k∈N and then

JCM,N = 0.

Let r ∈ (0, 1] be a rational number, then r =
x

y
for any x, y ∈ N with x ≤ y.

Let b ∈ N such that b > y, let us define

M = {{i+ bk}k∈N}i=1,2,...,x and N = {{j + bk}k∈N}j=1,2,...,y

Since the greatest common divisor of b and b is b, given i ∈ {1, 2, . . . , x} and

j ∈ {1, 2, . . . , y}, {i+bk}k∈N and {j+bk}k∈N have a non-empty intersection if and only

if i− j = 0. Therefore, there are x pairs (i, j) such that i− j = 0.

Therefore, by the equation 3.8 taking into consideration that g = h = 1, we have

JCM,N =
q

xg + yh− q
=

x

x+ y − x
=
x

y

Now the statement follows immediately.

Analogously, we can consider the Sørensen coefficient as the limit (for t → ∞) of

the Sørensen coefficients of the initial parts M0,t and N0,t. This leads to the following

definition.

Definition 6. For two cyclic unary regular languages M = {{ai + bk}k∈N}i=1,...,m and

N = {{cj + dk}k∈N}j=1,...,n, we define the Sørensen coefficient SCM,N of M and N by

JCM,N =
2 · |M0,z−1 ∩N0,z−1|
|M0,z−1|+ |N0,z−1|

,
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where z is the smallest common multiple of b and d.

Moreover, using the same arguments as above, we show that this definition is

independent of the representation and that, for two cyclic unary regular languages

M = {{ai + bk}k∈N}i=1,...,m and N = {{cj + dk}k∈N}j=1,...,n,

SCM,N = SCM ′,N ′ =
2q

mg + nh
, (3.9)

where q is the number of pairs (i, j) such that {ai + bk} ∩ {cj + dk} 6= ∅, g =
d

gcd(b, d)

and h =
b

gcd(b, d)
.

Theorem 6. For any rational number r ∈ [0, 1], there are CURLs M and N such that

SCM,N = r, i.e., the measure SC is dense.

Proof. Any rational number r ∈ [0, 1] can be given in the form r =
2x

x+ y
with x ≤ y

(since r =
x

b
=

2x

2b
for some x ≤ b and then 2b = x + y for some y ≥ x). Now the

sets given in the proof of Theorem 5 and the considerations in that proof show the

statement.

3.3.2 Comparing the Measure URLS with the Jaccard and Sørensen

Coefficients

Now, given two CURLs M and N , let us compare the similarity measure URLSM,N

with the Jaccard coefficient JCM,N and the Sørensen coefficient SCM,N that has been

defined in the previous subsection.

Theorem 7. URLSM,N ≥ SCM,N ≥ JCM,N for any CURLs M and N .

Proof. Let M = {{ai + bk}k∈N}i=1,...,m and N = {{cj + dk}k∈N}j=1,...,n. Moreover, let

us assume that there are q pairs (i, j) such that {ai + bk} ∩ {cj + dk} 6= ∅, and let

g =
d

gcd(b, d)
and h =

b

gcd(b, d)
.

Obviously, (mg − nh)2 = (mg)2 − 2mgnh+ (nh)2 ≥ 0 which implies

(mg + nh)2 = (mg)2 + 2mgnh+ (nh)2 ≥ 4mgnh

or equivalently
q(mg + nh)

2mgnh
≥ 2q

mg + nh
,
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i.e., URLSM,N ≥ SCM,N by (3.4), (3.6) and (3.9).

Furthermore, mg ≥ q and nh ≥ q. Therefore mg + nh− 2q ≥ 0. By multiplication

with q and adding mgq+ nhq, we get 2q(mg+ nh)− 2q2 ≥ q(mg+ nh) or equivalently

2q

mg + nh
≥ q

mg + nh− q
,

i.e., SCM,N ≥ JCM,N by (3.8) and (3.8).

Corollary 2. Let M and N be two CURLs. Then URLSM,N = SCM,N = JCM,N if

and only if M = N .

Proof. Let us suppose M = N . By Lemma 5, we have M = N if and only if

URLOM,N = URLON,M = 1. Since URLOM,N =
q

mg
and URLOM,N =

q

nh
, we

have M = N if and only if q = mg = nh.

Since q = mg = nh if and only if qmg = (mg)2 and qnh = (nh)2, we have that

(mg)2 + (nh)2 = qmg + qnh.

Moreover,

(mg)2 + (nh)2 = qmg + qnh

if and only if

q((mg)2 + (nh)2)− q2(mg + nh) = 0

if and only if

q((mg)2 + (nh)2)− q2(mg + nh) + 2qnhmg = 2qnhmg

if and only if

q(mg + nh)(mg + nh− q) = 2qnhmg

if and only if

URLSM,N =
q(mg + nh)

2nhmg
=

q

mg + nh− q
= JCM,N .

The statement follows by Theorem 7

Theorem 8. Let M1,M2, . . .Mi . . . be an infinite sequence of CURLS. Then the

following three statements are equivalent

i) limi→∞ URLSMi,N = 1,

ii) limi→∞ SCMi,N = 1,

iii) limi→∞ JCMi,N = 1.
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Proof. iii) implies i). Assume that iii) holds. Thus, for any real number ε ≥ 0, there

is a natural number n such that 1 − JCMi,N ≤ ε for i ≥ n. Then by Theorem 7,

1− URLSMi,N ≤ ε for i ≥ n. Therefore i) holds.

ii) implies i) and iii) implies ii) can be shown analogously.

i) implies iii). Assume that i) holds. Then for any ε ≥ 0, there is a natural number

n such that 1 − URLSMi,N < ε for i ≥ n. If Mi and N contain m and n successions,

respectively, we get

1− q(mg + nh)

2mgnh
= 1−

( qmg

2mgnh
+

qnh

2mgnh

)
= 1− q

2nh
− q

2mg
< ε.

Thus

2− q

nh
− q

mg
< 2ε and (1− q

nh
) + (1− q

mg
) < 2ε.

Consequently,

1− q

nh
< 2ε and 1− q

mg
< 2ε,

or, equivalently,

mg − q < 2εmg and nh− q < 2εnh. (3.10)

Now we obtain

1− JCMi,N = 1− q

mg + nh− q
=
mg + nh− 2q

mg + nh− q
=

(mg − q) + (nh− q)
mg + nh− q

<
2εmg + 2εnh

mg + nh− q
= 2ε

mg + nh

mg + nh− q
(by (3.10))

= 2ε
1

1− q

mg + nh

< 4ε (because q ≤ mg, q ≤ nh, i. e.,
q

mg + nh
≤ 1

2
).

Thus iii) is valid, too.

By a combination of the shown implications the assertion follows.

3.4 A Dissimilarity Measure for CURLs

In this section, we will define a dissimilarity measure for CURLs by using the similarity

measure that was defined in the previous section. That will be done in the same way

as the Jaccard distance is defined by using the Jaccard coefficient.
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3.4 A Dissimilarity Measure for CURLs

Definition 7. Let n ∈ N+. Let M and N be two CURLs. We define the dissimilarity

measure between M and N , that we will call URLDM,N (for Unary Regular Languages

Dissimilarity), as

URLDM,N = 1− URLSM,N

where URLSM,N is the similarity measure between M and N .

Then, we can say that the dissimilarity measure between CURLs is the proportion

of strings that are not shared by such languages.

Given two CURLs M and N , 0 ≤ URLOM,N ≤ 1, we have 0 ≤ URLSM,N ≤ 1.

Then, 0 ≤ URLDM,N ≤ 1 as in the Jaccard distance case.

In contrast to the Jaccard distance, the dissimilarity measure is not a metric distance

since the triangle inequality is not satisfied. That can be proved by using the following

counterexample: if M is the set of the odd numbers, N is the set of the even numbers

and L is the set of the natural numbers, then

1 = URLDM,N > URLDM,L + URLDL,N = 0.

However, the dissimilarity measure for CURLs is a semimetric distance, i.e a func-

tion d satisfying d(x, y) ≥ 0, d(x, y) = 0 if and only if x = y, and d(x, y) = d(y, x). Let

us see that given two CURLs M and N , URLDM,N satisfies all the conditions to be a

semimetric:

a. URLDM,N ≥ 0 has been proved in the previous section.

b. Let us see that URLDM,N = 0 if and only if M = N .

First we have to show that URLDM,M = 0. URLDM,M = 0 holds if and only if

URLSM,M = 1. Since URLSM,M = URLOM,M =
1

m

∑
AvM
BvM

ISOA,B, A ∩ B 6= ∅

if and only if A = B (by Lemma 2) and ISOA,A = 1 for any A v M , we have

URLSM,M = 1.

Let us suppose that URLDM,N = 0 for some M 6= N . Without loss of generality,

let us assume that M * N , then URLOM,N < 1 (by Lemma 5). Therefore,

URLSM,N < 1 and it implies URLDM,N 6= 0. This is a contradiction, because

we supposed URLDM,N = 0. So, if URLDM,N = 0, then M = N .
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c. Let us see URLDM,N = URLDN,M . We have

URLSM,N =
URLOM,N + URLON,M

2
=
URLON,M + URLOM,N

2
= URLSN,M

3.5 Discussion

In this work, we have proposed a similarity measure for CURLs by modifying the

Jaccard similarity coefficient and the Sørensen coefficient. Moreover, we have defined

a dissimilarity measure for CURLs by using that similarity measure.

Moreover we can also use the similarity and dissimilarity measures defined in this

work for non-cyclic URLs. In that case, we consider the infinite set of strings that is

generated by the loop of its respective MUDFA, since its initial word contributes to the

language with only a finite number of strings, and we follow the same strategy of the

cyclic case.

For two URLs (cyclic or non-cyclic) M and N , URLDM,N = 0 if and only if M = N

(the identity of indiscernibles) is not always satisfied, as can be seen from the following

counterexample: If M = {1, 4 + 2n}n∈N and N = {2n}n∈N, then URLDM,N = 0 and

M 6= N . Thus, the dissimilarity measure for URLs is a symmetric distance and not a

semimetric distance.

As a possible application of the proposed measure we can consider grammatical

inference and retrieval theory. Evolutionary computation is an example of optimization

technique where the search needs to be informed by a measure that compares individuals

with a target. Inferring a CURL would mean just that, and this could be done with

URLS, JC or SC. Considering the best individual in each of the generations computed

by an evolutionary algorithm we would obtained a sequence of CURLs, in the form

required by Theorem 19. If the algorithm performs well, this sequence would eventually

converge to N with respect to some similarity (our measure, Sørensen and Jaccard

coefficient), then it tends to N with respect to the two other similarities, too. We

believe that a tendency can be seen easier by the use of our measure since it is greater

than the two other ones, and therefore it approaches to 1 earlier. Thus we think that

the new defined measure URLS is more appropriate in these circumstances, i.e., URLS

could be used as an indicator of convergence, outperfoming JC and SC.

Finally we mention that there are some proposals of distances d(R,S) of two (unary)

regular sets R and S, however, the corresponding similarities 1 − d(R,S) are not of
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interest for us, since the principle mentioned in the Introduction (sets are more similar

if the have more elements in common) is not satisfied by them, and we wanted to have

a similarity measures for CURLs which follows this intuitive idea.

As examples we mention the Bodnarchuk distance for arbitrary languages, the Baire

distance for unary regular languages, the Hamming distance and the information dis-

tance for cyclic unary regular languages.

The Bodnarchuk distance BD(R,S) of two sets R and S of non-empty words is

defined as

d(R,S) =

 0 if R = S
1

min{|w| | w ∈ (R \ S) ∪ (S \R)}
if R 6= S

(see (39)). Thus the distance is the inverse of the length of the shortest word which

gives a difference of the two languages. It is easy to see that BD(A,B) = 1 holds for

A = {a101n+i | n ≥ 0, i ∈ {1, 3, 4, 5, . . . 101}} and B = {a101n+i | n ≥ 0, 2 ≤ i ≤ 101},

i.e., their distance is maximal, and thus the similarity should be small, but these sets

have 99% of their elements in common, which intuitively gives similarity.

The Baire metric of two infinite sequences r = a1a2 . . . and s = b1b2 . . . over some

set is defined as

d(r, s) =

{
0 if r = s

1

2min{n|an 6=bn}
if r 6= s

(see (63)). A unary regular set R of words can be represented as infinite sequences

r = a1a2 . . . over {0, 1} where an = 1 if and only if an ∈ R. As in the the case of the

Bodnarchuk metric the sets A and B given above have a relatively large distance and

a large similarity, which contradicts the intuition.

In the case of CURLs, the sequences r and s can be given in the form r = uω and

s = vω where u and v have the same length, i.e., they are infinite powers of some finite

sequences of the same length. Then we can define the scaled Hamming distance of r

and s as the number of positions where u and v differ and divided it by the length of v

(by the division we ensure that the value belongs to the unit interval). However, now

the sets

A′ = {a100n+1 | n ≥ 0} and B′ = {a100n+2 | n ≥ 0}
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or equivalently, u = 1099 and v = 01098 have a small distance
1

50
, but no similarity

because they have no common element.

Essentially, the same holds for the information distance, which is given by the length

of the minimal program (in the sense of Kolmogorov complexity) which transforms u

to v (see (9))
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Chapter 4

Low Disruption Transformations

on Cyclic Automata

The results presented in this section are part of (25; 71) in which I am first author1.

As we said before, the most common operations that are used in evolutionary sys-

tems where the genotypes are sequences of symbols are the edit operations of substitu-

tion, deletion, and insertion of a symbol over a word. However, there is a lack of studies

concerning the disruption that such genetic operations produce in the genotype. We

study such a disruption in the case of the genotypes proposed in this thesis. In this

chapter, we extend the edit operations by introducing two new operations (partial copy

and partial elimination) inspired by biological gene duplication. We define a disruption

measure for an operation over a word by using the similarity measure defined in the

previous chapter and prove that whereas the traditional edit operations are disrup-

tive, partial copy and partial elimination are non-disruptive. Moreover, we show that

the application of only edit operations does not generate (with low disruption) all the

words over a binary alphabet, but this can indeed be done by combining partial copy

and partial elimination with the substitution operation.

4.1 Introduction

Edit operations of substitution, deletion, and insertion of a symbol over a word have

been extensively studied in literature and have been applied to many different kinds

1in (25), authors by alphabetical order, the rest of coauthors are my supervisors and gave hints,

suggestions, and comments, and in (71), the rest of coauthors gave hints, suggestions, and comments
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of problems. These are biologically inspired operations that are also known as point

mutation operations (20; 23).

They have been applied to the problem of transforming a word of finite length into

another word. Moreover, this case has been studied expanding the set of edit operations.

For example, in (86), the set of edit operations is extended to include the squashing and

expansion operations. Whereas in the squashing operation two (or more) contiguous

symbols of the first word can be transformed into a single symbol of the second word,

in the expansion operation a single symbol in the first word may be expanded into

two or more contiguous symbols of the second word. In (87; 88), the edit operations

together with the straightforward transposition of adjacent symbols are used in pattern

recognition. The theory of error-correcting codes of variable lengths treats errors that

can be modeled as substitutions, insertions or deletions of symbols ((28; 57)). In (6),

two novel operations, called node fusion and edge fusion, are introduced and are used

join with the tree edit operations to compare two RNA secondary structures coded in

the form of trees. Papers in which edit operations are used to compare sequences of

symbols can be seen in (80; 106).

Furthermore, there are many studies that endeavor to explain a number of

bioinspired evolutionary processes using edit operations. In (23), the concept of an

evolutionary system is introduced. This is a language generating device inspired by the

evolution of cell populations, and it is based on edit operations and string divisions.

The purpose of this system is to model some properties of evolving cell communities

at the syntactical level. In (20), a computational device called network of evolutionary

processors is proposed. It is based on evolutionary rules and communication within a

network. Such evolutionary rules are substitution, deletion, and insertion rules. The

generative power of evolutionary networks and many other properties have been widely

analyzed, (4; 5; 19; 27; 66; 67; 78). There have been several studies of molecular evolu-

tion models that incorporate base substitutions, insertions, and deletions ((74; 103)).

In (113), transposition and gene duplication are used join with the edit operations in

gene regulation studies.

However, to our knowledge, there are not many studies that analyze the disrup-

tive effects of the edit operations. Since non-random search methods benefits from a

low disruption in the application of operations to refine solutions, an analysis of how
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disruptive these operations are, and the proposal of new low disruptive operations is

necessary.

In this section, such a study of disruption of the edit operations when they are

applied over the genotypes proposed in this thesis is done. As we said before, we

use CUDFAs as genotypes and the corresponding accepted sets of words as pheno-

types. Moreover, we showed that the automata of this type can be described by words

over {0, 1}, where the zeros represent the non-accepting states of the automaton, and

the ones represent the accepting states of the automaton. Thus we can use the edit

operations to obtain changes of the genotypes which model the evolution. Obviously, by

biological reasons, the changes cannot be too drastic. Since any change of the genotype

results in a change of the phenotype, i. e., in a change of the corresponding regular sets,

we can measure the size of the change on the phenotype side. We use the similarity

measure between regular sets over unary alphabets, which was introduced in (24) and

has been presented in the previous chapter, to define the disruption given by operations

applied to genotypes. Intuitively, the disruption of an operation O with respect to a

word w is a pair (a, b) with a, b ∈ R, where a is the portion of words that are accepted

by w and are not accepted by O(w) and b is the portion of words that are accepted by

O(w) and are not accepted by w.

Now we are interested in the genotypes which can be obtained by iterated applica-

tions of edit operations where each application is accompanied by low disruption. We

determine the set of all such words which can be generated from a given word. The

result shows that not all words can be obtained.

However, if we use in addition two new bioinspired operations which have no disrup-

tion, more precisely disruption (0, 0), with respect to all words, then starting from any

w ∈ {0, 1}+, we can obtain all the words v ∈ {0, 1}+ that accept a non-empty language

where each step has low disruption. The proposed non-disruptive operations have been

inspired by gene duplication, an important genetic mechanism that plays an important

role in evolution (85; 116). Considering the binary word as a genome, duplication sim-

ply adds redundant information (in our case, to w ∈ {0, 1}+), keeping the associated

phenotype (the language accepted by w) unchanged. The genomic portion gained after

gene duplication provides a substrate for coding new functions (proteins, in biology)

by future alterations: substitutions, additions, deletions, or even being totally or par-

49



4. LOW DISRUPTION TRANSFORMATIONS ON CYCLIC
AUTOMATA

tially copied/eliminated again. In particular, partial copy/elimination may introduce

significant differences in the genome, but keeping the fitting level of the phenotype.

4.2 Definitions

We first define some operations over CUDFAs which are inspired by substitutions,

insertions, deletions and copying of molecules which occur in the evolution of biological

systems.

Throughout this section, V = {0, 1} and h is the mapping V → V with h(1) = 0

and h(0) = 1.

For any natural numbers m, p > 0, we set

T (m, p) = {w | w = (x1x2 . . . xm)p, xi ∈ V for 1 ≤ i ≤ m}.

Definition 8. For any natural numbers n,m, p > 0, j with 0 ≤ j ≤ n, i with 1 ≤ i ≤ n,

q > 1, and y ∈ V , we define

• the addition operation Aj,y : V n −→ V n+1 as

Aj,y(x1x2 . . . xn) = x1x2 . . . xjyxj+1 . . . xn,

• the partial copy operation PCp : T (m, p) −→ T (m, p+ 1) as

PCp((x1x2 . . . xm)p) = (x1x2 . . . xm)p+1,

• the elimination operation Ei : V n −→ V n−1 as

Ei(x1x2 . . . xn) = x1x2 . . . xi−1xi+1 . . . xn,

• the partial elimination operation PEq : T (m, q) −→ T (m, q − 1) as

PEq((x1x2 . . . xm)q) = (x1x2 . . . xm)q−1,

• the substitution operation Si : V n −→ V n as

Si(x1x2 . . . xn) = x1x2 . . . h(xi) . . . xn.
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Let A, E, S, PC, and PE, be the sets of all addition, elimination, substitution, partial

copy, and partial elimination operations, respectively. The operations in A, E and S

are called the edit operations.

In the sequel we assume |w| ≥ 2 if we apply the elimination operation since otherwise

we yield the empty word which does not correspond to a CUDFA.

In order to define the disruption of an operation transforming a word w into w′,

which are the genotypes, we need a measure which compare the corresponding pheno-

types L(w) and L(w′). We use the measure of similarity for CURLs defined in (24)

that has been presented in the previous chapter, which is intuitively the portion of the

words of L(w) but not in L(w′).

Taking into account Definition 3, we can define a notion which measures the change

of the phenotype L(w) to the phenotype L(w′) if w′ is obtained from w by the

application of an operation. We define it by two rational numbers where the first

one gives the difference from w to w′ and the second that from w′ to w. This is

analogous to the concepts of Recall and Precision in Information Retrieval. The preci-

sion is the fraction of the documents retrieved that are relevant to the user’s information

needs, while the recall is the fraction of the documents that are relevant to the query

and are successfully retrieved.

Definition 9. Let w ∈ V + be a CUDFA and O ∈ S∪A∪ E∪PC∪PE be an operation

such that O(w) is defined. We define the disruption D(O,w) of the operation O over

w as

D(O,w) = (1− URLOL(w),L(O(w)), 1− URLOL(O(w)),L(w)).

That is, the disruption of an operation O over w is a pair (a, b) with a, b ∈ R, where

a is the portion of words that are accepted by w and are not accepted by O(w) and b

is the portion of words that are accepted by O(w) and are not accepted by w.

If D(O,w) = (0, 0) for a given operation O and for all w, we will say that the

operation O is not disruptive.

4.3 Determination of the Disruption of the Operations

In this section, we study the disruption of the operations that have been defined in the

previous section.
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We start with a lemma which enables us to show the non-disruptiveness of partial

copy and partial elimination.

Lemma 6. For a CUDFA w ∈ V + and n ∈ N+, L(w) = L(wn).

Proof. Let B(w) = {a1, a2, . . . , am}. Then L(w) = {ai + |w|k}k∈N,1≤i≤m. Therefore,

we get

B(wn) = {a1, a2, . . . , am, a1 + |w|, a2 + |w|, . . . , am + |w|, . . .

. . . , a1 + (n− 1)|w|, a2 + (n− 1)|w|, . . . , am + (n− 1)|w|}.

Thus

L(wn) =
n−1⋃
j=0

{(ai + j|w|) + n|w|k}k∈N,1≤i≤m.

Obviously, L(wn) = L(w).

The next corollaries follow immediately.

Corollary 3. For any CUDFA w ∈ V + and n,m ∈ N+, L(wn) = L(wm).

Corollary 4. For any p ≥ 1 and q > 1, the operations PCp and PEq are not disruptive.

Let us study the disruption of the remaining operations.

Lemma 7. Let w ∈ V + be a CUDFA and i a natural number with 1 ≤ i ≤ |w|. If

|w|1 = m, then

i) D(Si, w) = (0,
1

m+ 1
) if we mutate a zero into a one,

ii) D(Si, w) = (
1

m
, 0) if we mutate a one into a zero.

Proof. Let B(w) = {a1, a2, . . . , am}. Then L(w) = {aj + |w|k}k∈N,1≤j≤m.

i) If we mutate a zero at the position i, then B(Si(w)) = B(w) ∪ {i − 1} and the

CURL represented by Si(w) is

L(Si(w)) = {aj + |w|k}k∈N,1≤j≤m ∪ {(i− 1) + |w|k}k∈N.

In this case, since a non-accepting state has been changed into an accepting state in w,

a portion of new words has been added to L(w). Since gcd(|w|, |w|) = |w|, for A v L(w)

and B v L(Si(w)), we have

ISOA,B =

{
1 if A ∩B 6= ∅
0 otherwise
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by Definition 1. Since the intersection of {as + |w|k}k∈N and {at + |w|k}k∈N is non-

empty if and only if t = s and {aj + |w|k}k∈N ∩ {(i− 1) + |w|k}k∈N = ∅ for 1 ≤ j ≤ m,

we get

URLOL(Si(w)),L(w) =
m

m+ 1
and URLOL(w),L(Si(w)) = 1.

and then

D(Si, w) = (0,
1

m+ 1
).

ii) If we mutate a one at the position i, then i−1 = at for some t, 1 ≤ t ≤ m. Thus,

we obtain B(Si(w)) = B(w) \ {at} and

L(Si(w)) = {a1+|w|k}k∈N∪· · ·∪{at−1+|w|k}k∈N∪{at+1+|w|k}k∈N∪· · ·∪{am+|w|k}k∈N.

By an analogous argumentation as in i), we obtain

URLOL(w),L(Si(w)) =
m− 1

m
and URLOL(Si(w)),L(w) = 1

and thus

D(Si, w)) = (
1

m
, 0).

Lemma 8. For any CUDFA w ∈ V + with |w|1 = m, any natural number i with

0 ≤ i ≤ |w|, and any y ∈ V , the disruption of the operation Ai,y is

D(Ai,y, w) = (1− m+ y

|w|+ 1
, 1− m

|w|
).

Proof. Let B(w) = {a1, a2, . . . , am}, again. Then L(w) = {aj + |w|k}k∈N,1≤j≤m. We

first discuss the case that at < i ≤ at+1 for some t, 1 ≤ t ≤ m− 1.

Let us assume that y = 1. Then

B(Ai,1(w)) = {a1, a2, . . . , at, i, at+1 + 1, at+2 + 1, . . . , am + 1}

and the CURL represented by Ai,1(w) is

L(Ai,1(w)) = {aj + (|w|+ 1)k}k∈N,1≤j≤t ∪ {i+ (|w|+ 1)k}k∈N
∪ {(aj + 1) + (|w|+ 1)k}k∈N,t+1≤j≤m.

Due to gcd(|w|, |w| + 1) = 1, for any A v L(w) and any B v L(Ai,1(w)), we have

A∩B 6= ∅ by Lemma 1, as well as ISOA,B =
1

|w|+ 1
and ISOB,A =

1

|w|
by Definition 1.
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Since we have m successions in L(w) and m+1 successions in L(Ai,1(w)) and therefore

m(m+ 1) different pairs (A,B) with A v L(w) and B v L(Ai,1(w)), we get

URLOL(w),L(Ai,y(w)) =
m+ 1

|w|+ 1
and URLOL(Ai,y(w)),L(w) =

m

|w|

by Definition 3. Thus, the disruption of Ai,1 on w is

D(Ai,1, w) = (1− m+ 1

|w|+ 1
, 1− m

|w|
) = (1− m+ y

|w|+ 1
, 1− m

|w|
).

Let us now assume that y = 0. Then

B(Ai,0(w)) = {a1, a2, . . . , at, at+1 + 1, at+2 + 1, . . . , am + 1}

and

L(Ai,0(w)) = {aj + (|w|+ 1)k}k∈N,1≤j≤t ∪ {(aj + 1) + (|w|+ 1)k}k∈N,t+1≤j≤m.

As above, we get A∩B 6= ∅ by Lemma 1, ISOA,B =
1

|w|+ 1
and ISOB,A =

1

|w|
for

any A v L(w) and any B v L(Ai,0(w)). This implies URLOL(w),L(Ai,0(w)) =
m

|w|+ 1

and URLOL(Ai,0(w)),L(w) =
m

|w|
. Therefore,

D(Ai,0, w) = (1− m

|w|+ 1
, 1− m

|w|
) = (1− m+ y

|w|+ 1
, 1− m

|w|
).

If i ≤ a1 or am < i, we can prove analogously the statement.

Lemma 9. Let w ∈ V + be a CUDFA, |w| ≥ 2, |w|1 ≥ 1, i a natural number with

1 ≤ i ≤ |w|, and y the i-th letter of w. Then D(Ei, w) = (1− |w|1 − y
|w| − 1

, 1− |w|1
|w|

).

Proof. Again, let B(w) = {a1, a2, . . . , am} and L(w) = {aj + |w|k}k∈N,1≤j≤m.

Let us assume that y = 1. Then i − 1 = at for some t, with 1 ≤ t ≤ m,

B(Ei(w)) = B(w) \ {at}, and the CURL represented by Ei(w) is

L(Ei(w)) = {aj + (|w| − 1)k}k∈N,1≤j≤t−1 ∪ {(aj − 1) + (|w| − 1)k}k∈N,t+1≤j≤m.

Since gcd(|w|, |w| − 1) = 1, we again have A ∩ B 6= ∅, ISOA,B =
1

|w| − 1
, and

ISOB,A =
1

|w|
for any A v L(w) and any B v L(Ei(w)). Analogously to the pre-

ceding proof (L(w) has m successions and L(Ei(w)) has m− 1 succcessions) we get

URLOL(w),L(Ei(w)) =
m− 1

|w| − 1
and URLOL(Ei(w)),L(w) =

m

|w|
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which implies

D(Ei, w) = (1− m− 1

|w| − 1
, 1− m

|w|
) = (1− m− y

|w| − 1
, 1− m

|w|
).

Let us now assume that y = 0. First we consider the case that at < i − 1 < at+1

for some t, 1 ≤ t ≤ m− 1. Then we get B(Ei(w)) = B(w) and

L(Ei(w)) = {aj + (|w| − 1)k}k∈N,1≤j≤t ∪ {(aj − 1) + (|w| − 1)k}k∈N,t+1≤j≤m.

Again, due to gcd(|w|, |w| − 1) = 1 we obtain as above

URLOL(w),L(Ei(w)) =
m

|w| − 1
and URLOL(Ei(w)),L(w) =

m

|w|

and

D(Ei, w) = (1− m

|w| − 1
, 1− m

|w|
) = (1− m− y

|w| − 1
, 1− m

|w|
).

The cases y = 0 and i− 1 < a1 or am < i− 1 can be handled analogously.

Therefore, the edit operations are disruptive operations. Moreover, for an edit

operation, the disruption is decreasing as the number of ones in the word is increasing.

4.4 Low Disruptions and Iterated Application of Opera-

tions

We now define the central notion of the chapter.

Definition 10. Let a CUDFA w ∈ V +, O ⊆ S ∪ A ∪ E ∪ PC ∪ PE, and a real number

λ, 0 < λ < 1, be given.

i) We say that a word v can be obtained with a disruption less than λ from w using

O if there exist operations O1, O2, . . . , Op ∈ O, p ≥ 0, such that

• v = Op(Op−1 . . . (O2(O1(w))) . . . ) and

• D(Oi, Oi−1(. . . (O2(O1(w)) . . . )) < (λ, λ) for any 1 ≤ i ≤ p.

ii) By LD(w,O, λ) we denote the set of all words v which can be obtained with a

disruption strictly less than λ from w using operations from O.

An important branch of the biological community supports the idea that during

evolution gradual accumulations of small genetic changes occur resulting in producing

small alterations in the phenotype; this permits the individual to stay adapted to the
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environment. From this point of view, those words which can be obtained in such a

way that in each step a low disruption occurs are the most interesting of the set of all

words which can be obtained from w by iterated applications of operations from O (e.g.

(23), (4) and other papers).

In Definition 10, we have made the natural supposition 0 < λ < 1. If λ = 1, then

any sequence of operations is an evolution with disruption at most 1, i.e., we allow all

sequences which coincides with the situation studied in previous papers. If λ = 0, no

change of the phenotype is possible, which is not of interest from the biological point

of view. By the biological motivation, we are only interested in the case of small λ, for

instance λ =
1

100
. In the sequel, we require 0 < λ ≤ 1

2
, which is sufficient from the

mathematical point of view to guarantee a low disruption.

The aim of this section is the determination of LD(w,O, λ) for some choices of O.

We start with two easy examples.

Let w = 10n for some n ≥ 2, 0 < λ <
1

2
and O = S ∪ A ∪ E. Then by Lemmas 7,

8, and 9, for any operation O from O, we have D(O,w) = (a, b) with a ≥ 1

2
or b ≥ 1

2
.

Thus, from w no word can be obtained with a disruption at most λ using O. Since we

allow that no operation has to be used, we obtain LD(w,O, λ) = {w}.
Let w = 0n for some n ≥ 1, 0 < λ <

1

2
and O = S ∪ A ∪ E ∪ PC ∪ PE. It is easy

to see that operations from S and of the form Ai,1 applied to w have a disruption at

least
1

2
. Moreover, by operations from PC and PE we can get all words only consisting

of zeros with no disruption (see Corollary 4). Hence LD(w,O, λ) = {0m | m ≥ 1}.
Obviously, the reason that in the first example no operation has low disruption

comes from the very small number of ones. If we change this situation, LD(w,O, λ)

can be different from {w} and can contain infinitely many words, as can be seen from

the following theorem.

Theorem 9. Let w ∈ V + be a CUDFA and 0 < λ ≤ 1

2
such that

1

|w|1 + 1
< λ.

Further, let O = S ∪A ∪ E. Then

LD(w,O, λ) = {v | |v|0 > 0,
1

|v|1 + 1
< λ} ∪ {1m | m ≥ 1} ∪ {w}.

Proof. Since
1

|w|1 + 1
< λ ≤ 1

2
, w contains at least one letter 1. Let |w|0 = t.

Let Z = {v | |v|0 > 0,
1

|v|1 + 1
< λ} ∪ {1m | m ≥ 1} ∪ {w}. We first show that any

word of Z belongs to LD(w,O, λ).
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This is obvious for w since no operation has to be applied (p = 0 in Definition 10).

Let us now suppose that v ∈ Z and |v|0 = q for some q ≥ 1, i.e., v 6= 1m for all

m ≥ 0. Moreover, by the definition of Z, we have
1

|v|1 + 1
< λ. Then we consider the

following finite sequence of operations:

• By appropriate substitution operations O1, O2, . . . , Ot ∈ S we mutate all zeros of

w. Therefore, Ot(Ot−1 . . . (O1(w)) . . . ) = 1|w|.

• Let b = ||v| − |w||.

– If |w| ≤ |v|, we choose Ot+1, Ot+2, . . . , Ot+b ∈ A to get

Ot+b(. . . (Ot+1(1
|w|)) . . . ) = 1|v|.

– If |w| > |v|, we choose Ot+1, Ot+2, . . . , Ot+b ∈ E to get

Ot+b(. . . (Ot+1(1
|w|)) . . . ) = 1|v|.

• By Ot+b+1, Ot+b+2, . . . , Ot+b+q ∈ S we mutate all the positions in which 1|v| has

a one and v has a zero and get Ot+b+q(. . . (Ot+b+1(1
|v|)) . . . ) = v.

Therefore, we have Ot+b+q(Ot+b+q−1(. . . (O2(O1(w))) . . . )) = v.

It remains to show that the disruption of each operation Oi, 1 ≤ i ≤ t+ b+ q, over

the word obtained immediately before is smaller than (λ, λ).

If 1 ≤ i ≤ t, then Oi increases the numbers of ones by 1. Thus, for 1 ≤ i ≤ t, we

have |Oi−1(. . . (O2(O1(w))) . . . )|1 > |w|1 and hence, by Lemma 7

D(Oi, Oi−1(. . . (O2(O1(w))) . . . )) = (0,
1

|Oi−1(. . . (O2(O1(w))) . . . )|1 + 1
)

≤ (0,
1

|w|1 + 1
) < (λ, λ).

Let t+ 1 ≤ i ≤ t+ b. If |w| ≤ |v|, Oi ∈ A adds a one to a word 1k for some k. Thus

Oi can be interpreted as a partial copy. By Corollary 4,

D(Oi, Oi−1(. . . (O2(O1(w))) . . . )) = (0, 0) < (λ, λ).

If |w| > |v|, Oi ∈ E can be interpreted as a partial elimination. By Corollary 4,

D(Oi, Oi−1(. . . (O2(O1(w))) . . . )) = (0, 0) < (λ, λ).
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For t + b + 1 ≤ i ≤ t + b + q, the operation Oi does not change the |v|1 ones of v.

Thus |Oi−1(. . . (O2(O1(w))) . . . )|1 ≥ |v|1 + 1 and hence, by Lemma 7

D(Oi, Oi−1(. . . (O2(O1(w))) . . . )) = (
1

|Oi−1(. . . (O2(O1(w))) . . . )|1
, 0)

≤ (
1

|v|1 + 1
, 0) < (λ, λ),

where the last inequality holds by v ∈ Z.

Therefore, for 1 ≤ i ≤ t+ b+ q, we have D(Oi, Oi−1(. . . (O2(O1(w))) . . . )) < (λ, λ).

If v = 1m for some m ≥ 1, then we only consider the operations O1, O2, . . . , Ot+b

from above, which produce 1m from w.

Thus it is shown that all words v ∈ Z belong to LD(w,O, λ), i.e., we have

Z ⊆ LD(w,O, λ).

In order to prove Z = LD(w,O, λ) it remains to show that Y = LD(w,O, λ) \ Z is

empty.

We introduce a partial order on V ∗ by v1 ≺ v2 if and only if |v1| < |v2| or the

conditions |v1| = |v2| and |v1|1 < |v2|1 hold.

If Y is not empty, then there is a minimal word y with respect to ≺ in Y . Since

y /∈ Z, |y|0 > 0 and
1

|y|1 + 1
≥ λ are valid.

Let O1, O2, . . . , Op be operations from O such that

– Op(. . . O2(O1(w)) . . . ) = y and

– D(Oj , Oj−1(. . . O2(O1(w)) . . . )) < (λ, λ) for 1 ≤ j ≤ p.
We consider the step y = Op(x) where x = Op−1(. . . O2(O1(w)) . . . ). Let m = |x|1.

We discuss the possible cases for Op.

Case 1. Op = Ai,0 for some i. If x 6= 1g for all g ≥ 1, then |x| < |y|, |x|0 > 0, and
1

|x|1 + 1
=

1

|y|1 + 1
≥ λ. Therefore x ∈ Y and x ≺ y in contrast to our choice of a

minimal y. Therefore x = 1g for some g ≥ 1. Then |x| = |x|1 = g = m and by Lemma

8

D(Op, x) = (1− m

m+ 1
, 1− m

m
) = (

1

m+ 1
, 0) ≥ (λ, 0)

(because
1

m+ 1
=

1

|y|1 + 1
≥ λ by y ∈ Y ), i.e., the last step does not satisfy the

requirement for a disruption less than λ.

Case 2. Op = Ai,1. Then x satisfies |x| < |y| and |x|0 = |y|0 > 0 and
1

|x|1 + 1
=

1

|y|1
>

1

|y|1 + 1
≥ λ which contradicts the minimality of y.

Case 3. Op = Ei for some i.
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If we cancel a letter 1, thenm = |y|1+1 and |x|0 = |y|0 ≥ 1 and |x| ≥ |x|1+1 = m+1.

Since (m− 1)(|x| −m− 1) ≥ 0 or equivalently 1− m− 1

|x| − 1
≥ 1

m
, the first component of

D(Op, x) satisfies

1− m− 1

|x| − 1
≥ 1

m
=

1

|y|1 + 1
≥ λ

in contrast to the choice of the operations.

If we cancel a zero, then |x|0 ≥ 2 and hence |x| ≥ m + 2. Furthermore, |y|1 = m.

Since m(|x| −m − 1) ≥ 0 or equivalently 1 − m

|x|
≥ 1

m+ 1
, the second component of

D(Op, x) satisfies

1− m

|x|
≥ 1

m+ 1
=

1

|y|1 + 1
≥ λ,

which contradicts our assumption again.

Case 4. Op = Si. By the choice of y, we have to change a one into a zero. Hence

m = |y|1 + 1. Moreover, the first component of D(Op, x) satisfies
1

m
=

1

|y|1 + 1
≥ λ.

We have a contradiction, again.

Further operations have not to be discussed by the choice of O. Since we got a

contradiction in each case, our assumption that Y is non-empty is false.

From a biological point of view, the tendency of the complexity through the evolu-

tion has been a increasing tendency. For that reason, we could think that in order to

find a parallelism with biology, it is logical that we have to increase the length of the

words. Therefore we give the following corollary.

Corollary 5. i) Let w ∈ V + be a CUDFA and 0 < λ ≤ 1

2
such that

1

|w|1 + 1
< λ, and

let O = S ∪A. Then

LD(w,O, λ) = {v | |w| ≤ |v|, |v|0 > 0,
1

|v|1 + 1
< λ} ∪ {1m | m ≥ |w|} ∪ {w}.

ii) Let w ∈ V + be a CUDFA and 0 < λ ≤ 1

2
such that

1

|w|1 + 1
< λ, and let O = S∪PC.

Then

LD(w,O, λ) = {v | |w| ≤ |v|, |v|0 > 0,
1

|v|1 + 1
< λ} ∪ {1m | m ≥ |w|} ∪ {w}.

Proof. i) For|w| ≤ |v|, we have used only operations from S∪A in the proof of Theorem

9.

ii) The addition operations used add a 1 to a word only consisting of ones. Hence, there

is an operation from PC which has the same effect.
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Let

Z ′ = {v | |w| ≤ |v|, |v|0 > 0,
1

|v|1 + 1
< λ} ∪ {1m | m ≥ |w|} ∪ {w}.

If O1 ⊆ O2, then LD(w,O1, λ) ⊆ LD(w,O2, λ) for all w ∈ V ∗ and 0 < λ < 1. All

words that belong to LD(w, S ∪A ∪ E, λ) but not to Z ′ are shorter than w. Since the

operations from O do not decrease the length, those words cannot be obtained. Hence,

LD(w,O, λ) = Z ′.

If we allow operations of PE in addition to those from S ∪ PC, we get a case where

all words of interest (i.e., all words describing a CUDFA which accepts a non-empty

language) can be obtained with low disruptions from a given word w.

Theorem 10. Let w ∈ V + be a CUDFA with |w|1 ≥ 1 and 0 < λ ≤ 1

2
, and let

O = S ∪ PC ∪ PE. Then

LD(w,O, λ) = V + \ {0m | m ≥ 1}.

Proof. Let w ∈ V + be a word with |w| = m and |w|1 = r > 0, and let v ∈ V + be a

word with |v| = n and |v|1 = s > 0.

For a multiple y = lcm(m,n)z, z ∈ N+, of the lowest common multiple of m and

n, we set z′ =
y

m
and z′′ =

y

n
. We choose y sufficiently large, i.e., z sufficient large,

such that
1

rz′
< λ and

1

sz′′
< λ. Then we construct the following finite sequence of

operations.

• We choose O1, O2, . . . , O y
m
−1 ∈ PC such that any Oi adds a copy of w. Therefore

we obtain O y
m
−1(O y

m
−2 . . . (O1(w)) . . . ) = wz

′
.

• Let t be the number of positions in which wz
′

has a zero and vz
′′

has a one.

We choose the operations O y
m
, O y

m
+1, . . . , O y

m
+t−1 ∈ S, such that those zeros are

changed into ones. Let us obtain w = O y
m
+t−1(. . . (O y

m
(wz

′
)) . . . ).

• Let q be the number of positions in which w has a one and vz
′′

has a zero. We

choose the operations O y
m
+t, O y

m
+t+1, . . . , O y

m
+t+q−1 ∈ S such that those ones are

mutated into zeros and obtain

vz
′′

= O y
m
+t+q−1(. . . (O y

m
+t(w)) . . . ).

• We choose O y
m
+t+q, O y

m
+t+q+1, . . . , O y

m
+t+q+ y

n
−2 ∈ PE such that any operation

O y
m
+t+q+j cancels one copy of v. Obviously, then

v = O y
m
+t+q+ y

n
−2(. . . (O y

m
+t+q(v

z′′)) . . . ).
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Therefore, O y
m
+t+q+ y

n
−2(O y

m
+t+q+ y

n
−3(. . . (O2(O1(w))) . . . )) = v.

We now calculate the disruption for any step where we apply one of the previous

operations.

Let 1 ≤ i ≤ y

m
− 1. Then D(Oi, Oi−1(. . . (O2(O1(w))) . . . )) = (0, 0) < (λ, λ) by

Corollary 4.

Let
y

m
≤ i ≤ y

m
+ t− 1. Since any operation Oi changes a zero into a one, i.e., we

increase the number of ones, and |wz′ |1 = rz′, we get |Oi−1(. . . (O2(O1(w))) . . . )|1 ≥ rz′

and

D(Oi, Oi−1(. . . (O2(O1(w))) . . . )) = (0,
1

|Oi−1(. . . (O2(O1(w))) . . . )|1 + 1
)

< (0,
1

rz′
) < (λ, λ).

Let
y

m
+ t ≤ i ≤ y

m
+ t+ q− 1. Since Oi changes a one into a zero, but sz′′ ones of

w are not changed, we have |Oi−1(. . . (O2(O1(w))) . . . )|1 ≥ sz′′ and

D(Oi, Oi−1(. . . (O2(O1(w))) . . . )) = (
1

|Oi−1(. . . (O2(O1(w))) . . . )|1
, 0)

≤ (
1

sz′′
, 0) < (λ, λ).

Let
y

m
+ t+ q ≤ i ≤ y

m
+ t+ q +

y

n
− 2. Then, by Corollary 4

D(Oi, Oi−1(. . . (O2(O1(w))) . . . )) = (0, 0) < (λ, λ).

Therefore, we have

D(Oi, Oi−1(. . . (O2(O1(w))) . . . )) < (λ, λ)

for 1 ≤ i ≤ y

m
+ t+ q +

y

n
− 2.

It remains to show that we cannot obtain words 0m with m ≥ 1. If we

assume the contrary, then there is a number k such that there are some operations

O1, O2, . . . , Op ∈ PC ∪ PE ∪ S with

0k = Op(Op−1 . . . (O2(O1(w))) . . . )

and

D(Oi, Oi−1(. . . (O2(O1(w)) . . . )) < (λ, λ) for 1 ≤ i ≤ p. (4.1)

Without loss of generality we can assume that

Oj(Oj−1 . . . (O2(O1(w))) . . . ) /∈ {0m | m ≥ 1}
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holds for 1 ≤ j < p (otherwise the word Oj(Oj−1 . . . (O2(O1(w))) . . . ) ∈ {0m | m ≥ 1}
is considered instead of 0k). Thus Op is a substitution operation which replaces a

one by a zero and Op−1(Op−2 . . . (O2(O1(w))) . . . ) contains exactly once the letter 1.

Hence, we have D(Op, Op−1(Op−2 . . . (O2(O1(w))) . . . )) = (1, 0) by Lemma 7 which is

a contradiction to (4.1).

We note that the operations of PE are not so common in biology as the edit

operations and those from PC. Thus we now look for a result where we only use

the edit operations together with that of PC.

Theorem 11. For any word w with |w|1 > 0 and any λ with 0 < λ ≤ 1

2
,

LD(w,PC ∪ S ∪A ∪ E, λ) = {v | |v|0 > 0,
1

|v|1 + 1
< λ} ∪ {1m | m ≥ 1} ∪ {w}.

Proof. Let |w|1 = m ≥ 1. Then there is a number r ∈ N+ such that
1

mr
< λ. Using

r − 1 times operations from PC which copy w, we get wr. Obviously, |wr|1 = mr, and

thus
1

|wr|1
< λ. All the disruptions of these operations are (0, 0) by Corollary 4.

Again, let Z = {v | |v|0 > 0,
1

|v|1 + 1
< λ}∪{1m | m ≥ 1}∪{w}. Starting from the

word wr, by Theorem 9, for any word v ∈ Z, we can construct a sequence of operations

O1, O2, . . . , Op from S ∪A ∪ E such that

• v = Op(Op−1 . . . (O2(O1(w
r))) . . . ) and

• D(Oi, Oi−1(. . . (O2(O1(w)) . . . )) < (λ, λ) for any 1 ≤ i ≤ p.

This proves v ∈ LD(w,PC∪ S∪A∪E, λ). Therefore Z ⊆ LD(w,PC∪ S∪A∪E, λ). As

in the part of the proof of Theorem 9, we can show that LD(w,PC∪S∪A∪E, λ)\Z = ∅
(in the notation of that proof, the operations from PC cannot be used for Op by the

choice of y).

In this section, we have proved that the expressive capability of the set of operations

{S,PC,PE} is higher than the expressive capability of {S,A,E}, {S,A}, {S,PC}, and

{S,A,E,PC} if low disruption is kept. This is because with the set of operations

{PC,PE} any length can be obtained without disruption, and then with the operations

S, that have a very low disruption in most cases, we get the correct symbol at each

position.
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4.5 Comparing the Operations with respect to Disruption

In the preceding section, for two given words w and v and a given set of operations, we

have constructed a sequence of operations O1, O2, . . . , Ot such that

Ot(Ot−1(. . . (O2(O1(w))) . . . )) = v

and, for each operation Oi, 1 ≤ i ≤ t, the disruption of Oi over

Oi−1(Oi−1(. . . (O1(w)) . . . ))

is limited by (λ, λ) for some small λ. From an algorithmic point of view, one can be

interested in short such sequences. Ignoring the lowness of the disruption, there are

some nice algorithms which determine a shortest sequence O1, O2, . . . , Ot of operations

from S∪A∪E such that Ot(Ot−1(. . . (O2(O1(w))) . . . )) = v (see, e.g., (44)). Obviously,

a greedy algorithm, which also considers the disruption, chooses an operation with a

disruption as large as possible in each step. In this section, we show that our choices

of operations do the converse, i.e., we mostly choose operations with almost minimal

disruption on the current intermediate word. Hence, it seems that our choices are not

optimal with respect to the length of sequence of operations which transform a word w

into a word v with limited disruption in each step.

In order to show the above mentioned aspect of our choices, we compare the

operations with respect to disruption.

Definition 11. Let O and P be two operations over a CUDFA w ∈ V + with disruption

D(O,w) = (a, b) and D(P,w) = (c, d) with a, b, c, d ∈ R. We say that O is at most as

disruptive as P over w if a ≤ c and b ≤ d, and we write D(O,w) ≤ D(P,w). If a < c

and b ≤ d or a ≤ c and b < d, then we say O is less disruptive than P over w and

write D(O,w) < D(P,w).

In the sequel, let S, A, and E be arbitrary operations in S, A, and E, respectively.

Lemma 10. For any CUDFA w ∈ V + with |w| 6= |w|1 > 1, we have

D(S,w) ≤ D(E,w).

Proof. Let us assume that |w|1 = m. Then |w| ≥ m+ 1 by assumption.

By Lemma 9, we have D(E,w) = (1− m− y
|w| − 1

, 1− m

|w|
) where y ∈ V is the eliminated

symbol.
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Let S be an operation which mutates a zero into a one. According to Lemma 7,

we know that D(S,w) = (0,
1

m+ 1
). It is trivial that 0 ≤ 1 − m− y

|w| − 1
. Moreover,

1

m+ 1
≤ 1− m

|w|
if and only if |w| ≥ m+ 1.

Let S be an operation which mutates a one into a zero. Then D(S,w) = (
1

m
, 0). It

is trivial that 0 ≤ 1− m

|w|
. Moreover,

1

m
≤ 1− m− y

|w|+ 1
if and only if (m− 1)|w| ≥ m(m− y − 1) + 1 if and only if |w| > m

(note that m > 1).

Therefore the inequality D(S,w) ≤ D(E,w) holds for any CUDFA w ∈ V + with

|w| 6= m.

If, in addition to the suppositions of Lemma 10, we assume that |w| ≥ |w|1 + 2,

then we get the stronger relation D(S,w) < D(E,w). This follows from the fact that,

in this case, 0 < 1− m− y
|w| − 1

and 0 < 1− m

|w|
.

Lemma 11. For any CUDFA w ∈ V + with |w| ≥ |w|1 + 3 and |w|1 > 1 or with

|w| ≥ |w|1 + 2 and |w|1 > 2, D(S,w) < D(A,w).

Proof. Let us assume that |w|1 = m.

By Lemma 8, D(A,w) = (1− m+ y

|w|+ 1
, 1− m

|w|
) where y ∈ V is the added symbol.

Let S be an operation which mutates a zero into a one. According to Lemma 7,

we know that D(S,w) = (0,
1

m+ 1
). It is trivial that 0 < 1 − m+ y

|w|+ 1
. Moreover,

1

m+ 1
≤ 1 − m

|w|
if and only if |w| ≥ m + 1 which is satisfied by our assumptions

concerning |w| and m = |w|1.
Let S be an operation which mutates a one into a zero. Then we have

D(S,w) = (
1

m
, 0).

It is trivial that 0 < 1− m

|w|
. Moreover,

1

m
≤ 1− m+ y

|w|+ 1
if and only if |w| ≥ m+

my + 1

m− 1
,

and the latter condition is satisfied by our assumptions concerning |w| and m = |w|1.
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4.5 Comparing the Operations with respect to Disruption

By Lemmas 10 and 11, to ensure low disruption, substitution operations have to be

preferred to addition and elimination operations. This justifies the choices in the proof

of Theorem 9.

We now compare elimination and addition operations.

Lemma 12. For any CUDFA w ∈ V + with |w|0 ≥ 1 and |w|1 ≥ 1, we have

i) D(E,w) < D(A,w) if the eliminated and the added symbol is a zero, and

ii) D(A,w) < D(E,w) if the eliminated and the added symbol is a one.

Proof. Let m = |w|1. By our assumption, |w| ≥ |w|1 + 1 and hence |w| ≥ 2.

i) Since 0 is the added and eliminated symbol, by Lemmas 8 and 9, we have the

disruptions D(A,w) = (1 − m

|w|+ 1
, 1 − m

|w|
) and D(E,w) = (1 − m

|w| − 1
, 1 − m

|w|
).

Since 1− m

|w| − 1
< 1− m

|w|+ 1
if and only if 1 ≤ m and 2 ≤ |w|, the inequality of the

statement holds.

ii) Since 1 is the added and eliminated symbol, by Lemmas 8 and 9, we have the

relations D(A,w) = (1− m+ 1

|w|+ 1
, 1− m

|w|
) and D(E,w) = (1− m− 1

|w| − 1
, 1− m

|w|
). Since

1− m+ 1

|w|+ 1
< 1− m− 1

|w| − 1
if and only if m < |w|, the inequality holds.

The following statements show that it is natural to use partial copies before substi-

tutions and partial eliminations after substitutions in order to ensure small disruptions

(see the proof of Theorem 10).

Theorem 12. For any CUDFA w ∈ T (n, p) with |w|0 ≥ 1, |w|1 ≥ 1, n ≥ 1, and p > 0,

we have

• D(S, PCp(w)) < D(S,w),

• D(E,PCp(w)) < D(E,w) if the eliminated symbol is a one and

D(E,PCp(w)) > D(E,w) if the eliminated symbol is a zero,

• D(A,PCp(w)) < D(A,w) if the added symbol is a zero and

D(A,PCp(w)) > D(A,w) if the added symbol is a one.

Proof. We know D(PCp, w) = (0, 0). Let us suppose w = vp for some v ∈ V + and

p > 0, and let us assume |v| = n and |v|1 = m. Then |w| = np, |w|1 = mp,

|PCp(w)| = np+n and |PCp(w)|1 = mp+m. Since |w|1 < |PCp(w)|1, it is trivial that

D(S, PCp(w)) < D(S,w) by Lemma 7.
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Let the eliminated symbol be one. Since 1− mp+m− 1

np+ n− 1
< 1− mp− 1

np− 1
if and only

if m < n, the inequality D(E,PCp(w)) < D(E,w) holds by Lemma 9.

Let the eliminated symbol be zero. Since 1− mp+m

np+ n− 1
> 1− mp

np− 1
if and only

if m > 0, the inequality D(E,PCp(w)) > D(E,w) holds by Lemma 9.

Let the added symbol be zero. Since 1 − mp+m

np+ n+ 1
< 1 − mp

np+ 1
if and only if

m > 0, the inequality D(A,PCp(w)) < D(A,w) holds by Lemma 8.

Let the added symbol be one. Since 1 − mp+m+ 1

np+ n+ 1
> 1 − mp+ 1

np+ 1
if and only if

m < n, the inequality D(A,PCp(w)) > D(A,w) holds by Lemma 8.

Theorem 13. For any CUDFA w ∈ T (n, p) with |w|0 ≥ 1, |w|1 ≥ 1, n ≥ 1, and p > 1,

we have

• D(S, PEp(w)) > D(S,w),

• D(E,PEp(w)) < D(E,w) if the eliminated symbol is a zero and

D(E,PEp(w)) > D(E,w) if the eliminated symbol is a one,

• D(A,PEp(w)) < D(A,w) if the added symbol is a one and

D(A,PEp(w)) > D(A,w) if the added symbol is a zero.

Since the proof of this theorem is similar to the proof of the previous one, it is left

to the reader.

4.6 Discussion

In this paper, we started the investigation of iterated applications of some bioinspired

operations with the additional requirement that the disruption is (very) small in each

step. In one case (Theorem 10) we were able to generate all words which correspond

to non-empty regular languages. However, from a biological point of view, the other

results are also satisfactory because the genotypes have to contain a lot of information,

i.e., the words under consideration have to be long and to contain a sufficiently large

number of ones. This means that the assumptions of Theorem 9 are satisfied and all

words of biological interest can be obtained by Theorems 9 and 11.

In the literature, one can find nice algorithms to determine the minimal number of

edit operations which transform a given word w into another given word v. It remains

to search for good algorithms where the additional requirement of low disruption in any
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step is satisfied. Note that the sequences proving the existence of such transformations

with low disruptions (constructed in the proofs of Theorems 9, 10, and 11) seem to be

not optimal by Section 4.5.

Finally, a future research line will be to study whether the results presented in this

paper are also satisfied for more complex devices than CUDFAs.
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Chapter 5

Generating Primitive Words

In the previous chapter, we have shown that in spite of the edit operations are the most

common genetic operations that are used in evolutionary systems, they produce a high

disruption in the genotypes defined until now in this thesis (binary words). For that

reason, we extended them by introducing two operations inspired by biological gene

duplication. Despite reducing such a disruption, these operations do not preserve the

minimality of automata, thus individuals with the same complexity can be represented

by automata with very different number of states and this seems not to be very logical

from a biological point of view.

For that reason, a representation of the genotypes over which the genetic operations

do not cause such problems was one of the most important aims of the thesis. In this

chapter, two different ways of generating primitive words are presented. The first

approach consists of the definition of a set of operations inspired by biological gene

duplication that preserve primitivity of words. A large subset of binary primitive words

can be obtained by using sequences of these operations as genotypes. Since genetic

operations can be applied over these sequences and the minimality of the automata

is preserved, these will be the genotypes used to study the complexity during the

evolution. The second approach consists in a non-grammatical method that is based on

a characterization of the non-primitive words. By using this approach, the application

of the genetic operations is not as natural as in the previous approach. In spite of

this approach is not used to define the genotypes, it is still interesting as it provides a

relation between number theory and primitive words.
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5.1 Introduction

Primitive words have been widely studied in the literature. There are a lot of papers

on relations of QV to other language families such as the families of the Chomsky

hierarchy (e.g. in (33) and (93), it has been shown that QV is not a deterministic as

well as not an unambiguous context-free language, in (32; 94), it has been shown that

QV is not a regular language, in (54) some connections to regular languages are given),

polyslender languages (see (34)) and to some languages and language families related

to codes (see e.g. (108)). Also, context-free languages have been proposed consisting of

non-primitive words (53; 62). Moreover, there are papers on combinatorial properties

of QV and subsets of primitive words, (7; 16; 45). Some grammars that generate QV

have also been proposed (e.g. Kunimochi proposed a monotone grammar for QV in

(61), and in (35) a Marcus contextual grammar for QV is defined).

There are some papers where it was investigated whether the application of homo-

morphisms to primitive words leads to primitive words in all cases or leads to primitive

words with a finite number of exceptions or to non-primitive words in all cases; we

refer to (50; 76; 77; 90). In (99), homomorphisms are studied which preserve the

property to be a Lyndon word or to be border-free (a word w is a Lyndon word if and

only if any non-empty proper suffix of w is greater than w with respect to the lexico-

graphic order; it is border-free if there is no non-empty word which is a proper prefix

as well as a proper suffix of w); it is shown that such homomorphisms preserve primi-

tivity, too. Substitutions form another operation which was investigated with respect

to preservation of primitivity. There were substitutions of very short subwords in the

focus, especially point mutations (deletions, insertions and substitutions of one letter)

were studied. We refer to (89) for details. A further study in this direction concerns

insertions (see (49; 58)).

As we said before, in this chapter, two different ways of generating primitive words

are proposed. The first one is based on applying a sequence of operations preserving

primitivity of words and the second one is based on a relation between QV and number

theory.
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5.2 Some Operations Preserving Primitivity of Words

5.2 Some Operations Preserving Primitivity of Words

The results presented in this section are part of (26) in which I am first author1.

As it is shown before, there is only a small number of results concerning the closure

of QV under operations. Obviously, there is a large variety of operations from which

one can expect that QV is closed under them (since the portion of primitive words is

very high). In this section we consider some operations where essentially, from a given

word w, the word ww′ is constructed where w′ is a modified copy of w or a modified

mirror image of w. The modifications are of such a form that the edit distance of w

and w′ is very small or very large (i.e., it is very near to the length of w).

We have two reasons for this investigation. The first one is of combinatorial nature.

Obviously, ww is not primitive for all w. We are interested in conditions for changes

of the second copy w to w′ such that ww′ is primitive for all w. Especially, how many

changes or deletions or insertions of letters are necessary and how many such operations

are possible. For example, we shall determine all possible transformation where the edit

distance of w and w′ is at most two and primitivity is preserved.

The second reason comes from the theory of dynamic systems (as we have explained

before). In the papers (69; 70) dynamical systems based on regular languages has

been proposed. The regular languages are essentially described by primitive words.

Since in dynamical systems one needs mutations in order to develop the system, one is

interested in devices which describe primitive words and allow mutations. Here the use

of operations which preserve primitivity is of interest. Then a primitive word can be

given as a sequence of operations; and a mutation is the replacement of one operation

by another one or a deletion or insertion of an operation in the sequence. This ensures

primitivity of the word obtained from the mutated sequence of operations. Obviously, it

is not necessary to generate all primitive words, however, the set of generated primitive

words should contain a good approximation of any primitive word where the quality of

approximations is determined by the dynamic system (especially its fitness function).

We have chosen the operations under which QV is closed in such a way that, if the

underlying alphabet V consists of two letters, then by the operations we can generate

1authors by alphabetical order, the rest of coauthors are my supervisors and gave hints, suggestions,

and comments
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all primitive words of length ≤ 11 (as can be shown by computer calculations) and a

sufficient large amount of primitive words of the length up to twenty.

Thus this section can also be considered as a continuation of the investigations of

devices generating only primitive words (see e.g. (31)).

5.2.1 Some Notation and Facts

For a word w = x1x2 . . . xn ∈ V + with xi ∈ V for 1 ≤ i ≤ n, we define the mirror

image wR by wR = xnxn−1 . . . x1. Given two words w = x1x2 . . . xn ∈ V + and

w′ = y1y2 . . . yn ∈ V + with xi, yi ∈ V for 1 ≤ i ≤ n, the Hamming distance d(w,w′) is

defined by d(w,w′) = |{i | xi 6= yi}| and the edit distance ed(w,w′) of w and w′ is the

minimal number of changes, deletions and insertions of letters in order to transform w

into w′.

Throughout this section we assume that V has at least two elements. If V is

understood from the context we omit the index V and write simply Q.

We recall three facts (see (64), (108), (7)) which will be used in the sequel.

Lemma 13. For any words v, v′ ∈ V ∗, vv′ ∈ Q if and only if v′v ∈ Q.

Lemma 14. For two non-empty words u and v, uv = vu if and only if there is a word

z such that u = zn and v = zm for some natural numbers n and m.

Lemma 15. In a free monoid V ∗, the equation ambn = cp, where a, b, c ∈ V ∗ and

m,n, p ≥ 2, has only trivial solutions, where a, b and c are powers of some word in V ∗.

Lemma 16. (Fine-Wilf Theorem) Let u, v ∈ V + and n,m ≥ 2. If un and vm have a

common prefix of length at least |u|+ |v| − gcd(|u|, |v|), then u and v are powers of the

same primitive word.

The following statement holds trivially.

Lemma 17. If w ∈ Q, then also wR ∈ Q.

Lemmas 13 and 17 can be interpreted as follows: If we apply a cyclic shift or the

mirror image to a primitive word, then we obtain a primitive word, again. Thus cyclic

shifts and reversal are operations which preserve primitivity.

Lemma 18. For any x ∈ V , y ∈ V and z ∈ V ∗, if xz = zy, then x = y.
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Proof. If z = λ, then x = y immediately. If z = a1a2 . . . an with ai ∈ V for 1 ≤ i ≤ n,

then x = a1, a1 = a2, a2 = a3, . . . an−1 = an, an = y and consequently x = y.

In the sequel we shall use the following notation. If w = w1w2 . . . wr = z1z2 . . . zs

for some words w1, . . . wr, z1, . . . , zs ∈ V ∗ such that |w1w2 . . . wi| = |z1z2 . . . zj | for some

i and j, we write

w1w2 . . . wi|wi+1wi+2 . . . wr = z1z2 . . . zj |zj+1zj+2 . . . zs,

i.e., by the symbol | we mark a certain position in the word. (Some authors write

(w,w′) = (z, z′) instead of w|w′ = z|z′.) Mostly, | will mark the middle of a word of

even length, or it will be put after the m-th letter if the word has odd length 2m− 1.

5.2.2 Operations with an Almost Duplication

Obviously, the word ww obtained from w by a duplication leads from any word w to

a non-primitive word. In order to obtain primitive words from a primitive word w one

has to perform some changes in the second occurrence of w, i.e., one has to consider

words of the form ww′ where w′ differs only slightly from w. In most cases the edit

distance of w and w′ will be at most 2, and thus ww′ can be considered as an almost

duplication of w.

We start with the case where we only change some letters to obtain w′ from w.

Theorem 14. i) Let w be a primitive word of some length n and w′ an arbitrary

word of length n such that the Hamming distance d(w,w′) is a power of 2, then ww′ is

primitive, too.

ii) If d is not a power of 2, then there are a primitive word w and a word w′ with

d(w,w′) = d such that ww′ is not a primitive word.

Proof. i) Obviously, |ww′| is even. Let us suppose ww′ /∈ Q, that is, there exists p ∈ N,

p > 1, and v ∈ V + of length at least 2 such that ww′ = vp.

If p is even, then w = w′ = v
p
2 since |w| = |w′|. Thus d(w,w′) = 0 which contradicts

the assumption on the Hamming distance of w and w′.

If p is odd, i.e., p = 2m + 1 for some m ≥ 1, then |v| is even (since otherwise

|v|p = |ww′| would be odd). Thus there are words v′ and v′′ of length
|v|
2

such that

v = v′v′′. Then we get w = vmv′ = (v′v′′)mv′ and w′ = v′′vm = v′′(v′v′′)m.

Then d(w,w′) = (2m+ 1)d(v′, v′′). Since 2m+ 1 is an odd number, d(w,w′) is not

a power of 2 in contrast to our supposition.
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ii) Let d be not a power of 2. Then there is an odd number q > 1 and a number p

such that d = qp. Let q = 2m + 1 for some m ≥ 1. We now set v′ = 10p, v′′ = 11p,

w = (v′v′′)mv′, and w′ = (v′′v′)mv′′. Obviously, w is primitive,

d(w,w′) = (2m+ 1)d(v′, v′′) = (2m+ 1)p = qp = d

and ww′ = (v′v′′)2m+1 /∈ Q.

By part ii) of the preceding theorem, if w is a primitive word and d(w,w′) is not

a power of 2, in general, ww′ is not a primitive word. However, if we require that the

changes occur in special positions it is possible to obtain preservation of primitivity.

As an example we give the following operation.

Definition 12. For any odd natural numbers n ≥ 3, any alphabet V , and any mapping

h : V → V with h(a) 6= a for all a ∈ V , we define the operation On,h : V n → V 2n by

On,h(x1x2 . . . xn) = x1x2 . . . xnh(x1)x2 . . . xi−1h(xi)xi+1 . . . xn−1h(xn)

where i =
n+ 1

2
.

Theorem 15. For any odd natural number n 6= 5, any primitive word q of length n,

and any mapping h : V → V with h(a) 6= a for all a ∈ V , On,h(q) is a primitive word.

Proof. Let w = x1x2 . . . xn with xj ∈ V for 1 ≤ j ≤ n and i =
n+ 1

2
. Then

On,h(x1x2 . . . xn) has an even length.

Let us suppose that On,h(w) /∈ Q, that is, there exist a p ≥ 2 and v ∈ Q such that

On,h = vp.

If p is even then

v
p
2 = x1x2 . . . xn−1xn = h(x1)x2x3 . . . xi−1h(xi)xi+1xi+2 . . . xn−1h(xn).

Thus xi = h(xi), which is a contradiction.

Thus p is odd, say p = 2m+ 1 for some m ≥ 1. As above there are words v, v1 and

v2 such that v = v1v2 and |v1| = |v2| and

x1 . . . xn−1xn|h(x1)x2 . . . xi−1h(xi)xi+1 . . . xn−1h(xn) = (v1v2)
mv1|v2(v1v2)m.

Since v1 starts with x1 (first occurrence) and ends with xn (last occurrence in the

first part), v1 = x1v
′
1xn and analogously, v2 = h(x1)v

′
2h(xn). Therefore we have that

On,h(w) has the form

(x1v
′
1xnh(x1)v

′
2h(xn))mx1v

′
1xn|h(x1)v

′
2h(xn)(x1v

′
1xnh(x1)v

′
2h(xn))m.
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Since the letters xi and xn do not occur in the first occurrence of v, by the definition of

On,h, the last letter of the first occurrence of v1 (in the first part of the word) and last

letter of the first occurrence of v2 in the second part coincide, i.e., xn = h(xn) which is

a contradiction.

The supposition n ≥ 5 in Theorem 15 is necessary since the statement does not

hold for n = 3 as can be seen from the following example. Let q = aba ∈ Q. Then

O3,h(q) = ababab = (ab)3 /∈ Q.

We now discuss some operations where the edit distance of w to w′ is at most 2

and at least one deletion or one insertion is performed to obtain w′; more precisely, we

consider

(a) the deletion of an arbitrary letter,

(b) the deletion of an arbitrary letter and the change of an arbitrary remaining letter,

(c) the insertion of an arbitrary letter,

(d) the insertion of an arbitrary letter and the change of an arbitrary letter of w.

We now give the formal definition of these operations.

Definition 13. For any natural numbers n, i, j, i′ with 1 ≤ i ≤ n, 0 ≤ i′ ≤ n, 1 ≤ j ≤ n
and i 6= j, letters x, y, z ∈ V with x 6= y, and a word w = x1x2 . . . xn, xi ∈ V , of length

n, we define the following operations

Dn,i, Dn,i,j,x,y : V n → V 2n−1 and In,i′,z, In,i′,z,j,x,y : V n → V 2n+1

by

Dn,i(x1x2 . . . xn) = x1x2 . . . xnx1x2 . . . xi−1xi+1xi+2 . . . xn,

Dn,i,j,x,y(x1 . . . xn) =


x1 . . . xnx1 . . . xi−1xi+1 . . . xj−1yxj+1 . . . xn xj = x, i < j

x1 . . . xnx1 . . . xj−1yxj+1 . . . xi−1xi+1 . . . xn xj = x, i > j

undefined otherwise

,

In,i′,z(x1x2 . . . xn) = x1x2 . . . xnx1x2 . . . xi′zxi′+1xi′+2 . . . xn,

In,i′,z,j,x,y(x1 . . . xn) =


x1 . . . xnx1 . . . xi′zxi′+1 . . . xj−1yxj+1 . . . xn xj = x, i′ < j

x1 . . . xnx1 . . . xj−1yxj+1 . . . xi′zxi′+1 . . . xn xj = x, i′ > j

undefined otherwise

.

Theorem 16. If n ≥ 2, 1 ≤ i ≤ n, and q is a primitive word of length n, then

Dn,i(q) ∈ Q also holds.
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Proof. Let q = uav for some u, v ∈ V ∗ and a ∈ V . If |q| = 1, i.e., q = a, then

Dn,i(q) = a ∈ Q.

If |q| ≥ 2, then D|q|,|u|+1(q) = uavuv. Let us suppose that uavuv /∈ Q. Then

(vu)2a /∈ Q by Lemma 13. Let (vu)2a = zm for some z ∈ V + and some m ≥ 2. Thus

(vu)2 is a common prefix of (vu)2 and zm. Since

|uv|+ |z| = |uv|+ 2|uv|+ 1

m
≤ |vu|+ 2|uv|+ 1

2
< 2|vu|+ 1,

we have

|vu|+ |z| − gcd(|vu|, |z|) < (2|vu|+ 1)− 1 = 2|vu| = |(vu)2|.

By Lemma 16, we obtain (vu)2 = wk and (vu)2a = zm = wl for some w ∈ V + and

some numbers k and l. Obviously, w = a. Hence u and v are powers of a and thus q is

a power of a. This contradicts the primitivity of q.

Theorem 17. If w ∈ V + and Dn,i,j,x,y(w) is defined, then Dn,i,j,x,y(w) ∈ Q holds.

Proof. We first discuss Dn,n,j,x,y. Let w = x1x2 . . . xn. Then

Dn,n,j,x,y(w) = x1x2 . . . xj−1xxj+1xj+2 . . . xnx1x2 . . . xj−1yxj+1xj+2 . . . xn−1.

Let us assume that Dn,n,j,x,y(w) /∈ Q. Then there is a word v ∈ V + such that

Dn,n,j,x,y(w) = vp for some p ≥ 2. Since Dn,n,j,x,y(w) has odd length, p and the

length of v are odd numbers. Let p = 2m + 1 for some m ≥ 1. Thus there are words

v1 ∈ V + and v2 ∈ V + such that v = x1v1v2, k − 1 = |v1| = |v2| and

x1x2 . . . xj−1xxj+1xj+2 . . . xn|x1x2 . . . xj−1yxj+1xj+2 . . . xn−1 = vmx1v1|v2vm.

Then |v| = 2k − 1. We set s = 2k − 1. We distinguish some cases.

Case 1. Let 1 ≤ j ≤ k − 1. Then by definition of Dn,n,j,x,y,

x1v1 = x1x2 . . . xj−1xxj+1 . . . xk−1xk = z1xz2xk

and

v2 = x1x2 . . . xj−1yxj+1 . . . xk−1 = z1yz2.

Thus, we get,

v = z1xz2xkz1yz2.

If m ≥ 2, the first part of the word is

z1xz2xkz1yz2z1xz2xkz1yz2v
m−2z1xz2xk (5.1)
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and that of the second part is

z1yz2z1xz2xkz1yz2z1xz2xkz1yz2v
m−2 (5.2)

and these two words differ in the (|z1xz2xkz1yz2z1|+ 1)-st letter, which contradicts the

definition of Dn,n,j,x,y. If m = 1, the first and second part are

z1xz2xkz1yz2z1xz2xk and z1yz2z1xz2xkz1yz2,

respectively, and we get a contradiction as above.

Case 2. Let j = k. Then the k-th letter in the second part is y. On the other hand, it

is x1 since there starts the word v. Thus x1 = y. This gives

x1v1 = x1x2 . . . xk−1xk = yzx, v2 = x1x2 . . . xk−1 = yz and v = yzxyz

with z = x2x3 . . . xk−1. Then the first and second part are

yzxyzyzxyzvm−2yzx and yzyzxyzyzxyzvm−2,

respectively. We obtain zx = yz by looking on the words starting in the position |z|+3.

Thus by Lemma 18, x = y in contrast to the definition of Dn,n,j,x,y.

Case 3. Let k + 1 ≤ j ≤ 2k − 1. Then v = x1v1v
′
2xv
′′
2 . Moreover, |v′2| = j − k − 1.

Furthermore, y stands in the j-th position of v′2xv
′′
2x1v1, i.e., x1v1 = x1v

′
1yv
′′
1 with

|v′1| = j − k − 1. Therefore v = x1v
′
1yv
′′
1v
′
2xv
′′
1 and |v′1| = |v′2| and |v′′1 | = |v′′2 |. Then we

get for the second part

x1v
′
1yv
′′
1v
′
2yv
′′
2x1v

′
1yv
′′
1v
′
2xv
′′
2x2s−1x2s . . . xn

by the definition of Dn,n,j,x,y and from the form

v′2xv
′′
2x1v

′
1yv
′′
1v
′
2xv
′′
2v

m−1

given by our assumption.

Considering the words which start in the position (|x1v′1yv′′1 |+1) and in the position

(|x1v′1yv′′1v′2y|+ 1), respectively, we see that v′1 = v′2 = z and v′′1 = v′′2 = z′. Looking on

the subwords starting in the first position and in the position |v′1|+ 2, we get x1z = zx

and yz′ = xx1. By Lemma 18, x1 = x and y = x1, which contradicts x 6= y.

Case 4. Let j = hs + q for some h ≥ 1 and 1 ≤ q ≤ k − 1. Then xj = x is the q-th

letter of v. Thus v = v′1xv
′′
1v2 with |v′1| = q − 1.

We now compute the position of y in v. Since the second part starts with v2 of

length k − 1 and hs + q = k − 1 + (h − 1)s + s + q − (k − 1) = k1 + (h − 1)s + k + q,
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y is the (k + q)-th letter of v. Therefore v = v′1xv
′′
1v
′
2yv
′′
2 with |v′1| = |v′2|. Moreover,

|v′′1 | = |v′′2 | + 1. Now we get easily the same situation as in Case 1; thus we get (5.1)

and (5.2) and a difference in the (|z1|+ 1)-st position.

Case 5. Let j = hs + k for some h ≥ 1. Then x is the k-th letter of v. We compute

the position of y in v. Since the second part starts with v2 of length k− 1 and we have

hs+ k = k− 1 + hs+ k− (k− 1), y is the first letter of v. Therefore we get v = yzxyz

as in Case 2, which leads to a contradiction.

Case 6. Let j = hs + q for some h ≥ 1 and k + 1 ≤ q ≤ 2k − 1. Then xj = x is

the q-th letter of v. Thus v = x1v1v
′
2xv
′′
2 with |x1v1v′2| = q − 1 ≥ k. Furthermore,

|v′′2 | = 2k − 1− q.
We now compute the position of y in v. Since the second part starts with v2 of

length k − 1 and hs + q = k − 1 + hs + q − (k − 1), y is the (q − k + 1)-st letter of v.

Therefore

v = x1v
′
1yv
′′
1v
′
2xv
′′
2 with |x1v′1| = q − k.

Therefore |v′′1 | = k − (q − k + 1) = 2k − 1 − q. Hence |v′′1 | = |v′′2 | and consequently

we have |v′1| = |v′2|. Therefore we have exactly the situation of Case 3, which leads to

contradiction.

Let us now consider i = 1, i.e., the operation Dn,1,j,x,y. By the first part of this

proof

Dn,n,n−j+1,x,y(w
R) = xnxn−1 . . . x1xnxn−1 . . . xj+1yxj−1xj−2 . . . x2 ∈ Q,

by Lemma 17,

x2x3 . . . xj−1yxj+1xj+2 . . . xnx1x2 . . . xn ∈ Q,

and by Lemma 13

x1x2 . . . xnx2x3 . . . xj−1yxj+1xj+2 . . . xn = Dn,1,j,x,y(w) ∈ Q.

We now consider the case j < i. We set

w = xi+1xi+2 . . . xnx1x2 . . . xi.

Moreover, let xj = x. By the first part of this proof we get

Dn,n,n−i+j,x,y(w) = xi+1 . . . xnx1 . . . xixi+1 . . . xnx1 . . . xj−1yxj+1 . . . xi−1 ∈ Q.

Hence, by Lemma 13

x1 . . . xixi+1 . . . xnx1 . . . xj−1yxj+1 . . . xi−1xi+1 . . . xn = Dn,i,j,x,y(w) ∈ Q.

If i < j we can prove that Dn,i,j,x,y(w) ∈ Q analogously to the case j < i using Dn,1,j,x,y

instead of Dn,n,j,x,y.
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Theorem 18. If q is a primitive word of length n, 0 ≤ i ≤ n and z ∈ V , then

In,i,z(q) ∈ Q.

Proof. Let q be a primitive word of length n and a ∈ V . Let u be the prefix of q

of length i and q = uv. Then In,i,a(w) = uvuav. If uvuav /∈ Q, we can derive a

contradiction as in the proof of Theorem 16.

Theorem 19. If q ∈ Q and In,i,z,j,x,y(q) is defined, then In,i,z,j,x,y(q) ∈ Q.

Proof. Let w = x1x2 . . . xj−1xxj+1xj+2 . . . xn. Then

In,n,a,j,x,y = x1x2 . . . xnx1x2 . . . xj−1yxj+1xj+2 . . . xna.

If we assume that In,n,a,j,x,y is not in Q, then

x1 . . . xj−1yxj+1 . . . xnax1 . . . xn = Dn+1,n+1,j,y,x(x1 . . . xj−1yxj+1 . . . xna) /∈ Q,

which is a contradiction to Theorem 17. The general case can be obtained using Lemmas

13 and 17.

Let ww′ be given with ed(w,w′) = 1. Then w′ is obtained by a change (i.e.,

d(w,w′) = 1 = 20), either by a deletion or by an insertion. By the Theorems 14, 16

and 18, ww′ is in Q provided that w ∈ Q. If ed(w,w′) = 2 we have again ww′ ∈ Q if

two changes, or a deletion and a change, or a change and an insertion are performed

(by Theorems 14, 17 and 19). In the remaining cases, in general, primitivity is not

preserved. Performing two deletions we can get a non-primitive word, as can be seen

from w = 110p1 which results in 110p1110p1 and gives 110p110p = (110p)2 /∈ Q if we

delete the first and last letters of the second copy (note that the statement holds for any

length n ≥ 4 since it holds for any p ≥ 1). The same holds for two insertions; e.g. the

duplication 10p10p of w = 10p ∈ Q yields 10p110p1 = (10p1)2 by inserting a 1 before

and after the second copy of 10p. Furthermore, if we cancel the first letter and insert a

1 before the last 0 in the duplication 110110 of 110 ∈ Q, we get 110110 = (110)2 /∈ Q,

again.

Therefore we have a complete picture for the case that the edit distance is at most

2.
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5.2.3 Concatenation of an Almost Mirror Image

In this section, again, we consider words of the form ww′. However, instead of an

almost copy w′ of w we choose w′ in such a way that the Hamming/edit distance of w′

and the mirror image wR is small.

We start with the remark that, in general, for a primitive word w, wwR is not a

primitive word. For example, if we concatenate 100110 and its mirror image, we obtain

100110011001 = (1001)3 /∈ Q. Moreover, if we delete one letter in wR, the obtained

operation is not primitivity preserving as can be seen from the following counterexam-

ple. Let w = 01001. Since wR = 10010, wwR = 0100110010. If we delete the first

letter of wR, then we obtain 010010010 = (010)3 /∈ Q.

We define formally three operations which are analogous to some with a small

Hamming distance d(w,w′) considered in the preceding section.

Definition 14. For any natural numbers n, i, j with 1 ≤ i ≤ n and 2 ≤ j ≤ n, all

letters x, y ∈ V with x 6= y, and a word w = x1x2 . . . xn, xi ∈ V , of length n, we define

the following operations

Mn,i,x,y : V n → V 2n, and M ′n,j,x,y : V n → V 2n−1

by

Mn,i,x,y(x1x2 . . . xn) =

{
x1x2 . . . xnxnxn−1 . . . xi+1yxi−1xi−2 . . . x1 xi = x

undefined otherwise
,

M ′n,j,x,y(x1x2 . . . xn) =

{
x1x2 . . . xnxnxn−1 . . . xj+1yxj−1xj−2 . . . x2 xj = x

undefined otherwise
.

For all odd natural numbers n, all mappings h : V → V with h(a) 6= a for all a ∈ V , and

all words w = x1x2 . . . xn, xi ∈ V , of length n, we define the operation O′n,h : V n → V 2n

by

O′n,h(x1x2 . . . xn) = x1x2 . . . xnh(xn)xn−1 . . . xi+1h(xi)xi−1xi−2 . . . x2h(x1)

where i =
n+ 1

2
.

Theorem 20. If w ∈ Q such that Mn,i,x,y(w) is defined, then Mn,i,x,y(w) ∈ Q also

holds.
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Proof. Let w = x1x2 . . . xn. Then

w′ = Mn,i,x,y(w) = x1x2 . . . xi−1xxi+1xi+2xnxnxn−1 . . . xi+1yxi−1xi−2 . . . x1.

Let u1 = x1 . . . xi−1 and u2 = xi+1 . . . xn. Then

w = u1xu2 and w′ = u1xu2u
R
2 yu

R
1 .

Let us assume that w′ /∈ Q. Then w′ = vp for some p ≥ 2 and some word v ∈ V +.

If p is even, then

v
p
2 = u1xu2 = uR2 yu

R
1 . (5.3)

We now count the number of occurrences of x and get

|u1xu2|x = |u1|x + 1 + |u2|x

and

|uR2 yuR1 |x = |uR2 |x + |uR1 |x = |u2|x + |u1|x.

Thus

|u1xu2|x 6= |uR2 yuR1 |x

which contradicts (5.3).

If p is odd, say p = 2m + 1 for some m ≥ 1, then w′ = vmv1v2v
m where v = v1v2

and |v1| = |v2|. If i > |v|, then by the construction of w′ we get w′ = vzvR with

z = vm−1v1v2v
m−1 and by our assumption (w′ = v2m+1) we have w′ = vzv. Therefore

v = vR. Now let i ≤ |v|. Then v1 and v2 and v satisfy the following conditions:

• v2 = vR1 (by construction),

• vR2 = ((v1)
R)R = v1,

• vR = (v1v2)
R = vR2 v

R
1 = v1v2 = v.

Hence in both cases we have v = vR. This implies

(w′)R = (vp)R = (vR)p = vp = w′.

Thus x = y in contrast to our supposition.

Theorem 21. If w ∈ Q such that M ′n,j,x,y(w) is defined, then M ′n,i,x,y(w) ∈ Q also

holds.
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Proof. Let w = x1x2 . . . xn. Then

M ′n,j,x,y(w) = x1x2 . . . xnxnxn−1 . . . xj+1yxj−1xj−2 . . . x2.

Obviously, |M ′n,j,x,y(w)| = 2n− 1, i.e., the length of M ′n,j,x,y(w) is odd.

If M ′n,j,x,y(w) is not a primitive word, then M ′n,j,x,y(w) = vp for some primitive word

v of odd length and some odd number p with p ≥ 3, say p = 2m + 1 with m ≥ 1. As

in the preceding proofs we get v = v1xnv2 with

M ′n,j,x,y(w) = vmv1xn|v2vm = (v1xnv2)
mv1xn|v2(v1xnv2)m

and |v1| = |v2|. Let |v1| = q, i.e., |v| = 2q + 1.

Let 2 ≤ j ≤ 2q+1. Then considering the (m+1)-st factor v of M ′n,j,x,y(w), we obtain

v = v1xn|v2 = x1x2 . . . xqxn|xnxq . . . x2. Let z = x2x3 . . . xqxn. Then v = x1zz
R. On

the other hand, for 2 ≤ j ≤ 2q + 1, by definition of M ′n,j,x,y(w), M ′n,j,x,y(w) does not

end with (zzR)R = zzR. Thus we have a contradiction to the fact that M ′n,j,x,y(w) ends

with v and therefore with zzR.

Let j = 2q + 2. Then the (2q + 2)-nd letter of w is x. Moreover, the (2q + 2)-nd

letter of w is the first letter of the second factor v of M ′n,j,x,y(w) which is x1. Hence

x = x1. On the other hand, by the definition of M ′n,j,x,y(w), counting from the end,

y is the (2q + 1)-st letter of M ′n,j,x,y(w), which means that y is the first letter of the

last factor v of Mn,j,x,y(w). Thus y = x1. Hence we get x = y in contradiction to the

definition of M ′n,j,x,y.

Let 2q + 3 ≤ j ≤ n. Then we can derive a contradiction by analogous argument (if

m(2q + 1) < j ≤ n, then we get v = v1xnv2 = x1zz
R by considering the first factor v1

and the last factor v2 in M ′n,j,x,y(w)).

Finally in this section, we give a result which is the counterpart of Theorem 15. We

omit the proof which can be given in analogy to the proof of Theorem 15.

Theorem 22. For any odd natural number n ≥ 5, any primitive word q of length n,

and any mapping h : V → V with h(a) 6= a for all a ∈ V , O′n,h(q) is a primitive word.

2

5.2.4 Further Operations with an Almost Duplication of Length

First in this section, we discuss the situation where w′ in ww′ is obtained from w or

wR by large changes.
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If we change all letters in the second part, primitivity is not preserved in general.

For instance, if we take the primitive word w = 100110, then by changing all letters

of w we obtain 100110011001 = (1001)3 /∈ Q; and starting with the primitive word

w = 10010110 and changing all letters of wR we get 1001011010010110 = w2 /∈ Q.

Theorem 23. Let w and w′ be two words of length n such that n−d(w,w′) is a power

of 2, then ww′ is a primitive word.

Proof. The proof can be given in a way analogous to the proof of Theorem 14.

The following definition and result are analogies to Dn,n and Theorem 16.

Definition 15. For any natural numbers n, any natural number i with 1 ≤ i ≤ n, and

any homomorphism h : V ∗ → V ∗ with h(a) 6= a and h(h(a)) = a for all a ∈ V , we

define the operation Dn,h : V n → V 2n−1 by

Dn,h(x1x2 . . . xn) = x1x2 . . . xnh(x1x2 . . . . . . xn−1).

Theorem 24. For any natural numbers n, any natural number i with 1 ≤ i ≤ n, any

homomorphism h : V ∗ → V ∗ with h(a) 6= a and h(h(a)) = a for all a ∈ V , and any

w ∈ Q, Dn,h(w) ∈ Q also holds.

Proof. Let w = x1x2 . . . xn with xj ∈ V for 1 ≤ j ≤ n. Then

Dn,h(x1x2 . . . xn) = x1x2 . . . xnh(x1 . . . xn−1)

has an odd length.

Let us suppose that Dn,h(w) /∈ Q, that is, there exist a p ≥ 2 and v ∈ Q such that

Dn,h(w) = vp.

Thus p is odd, say p = 2m+ 1 for some m ≥ 1. As above there are words v, v1 and

v2 such that v = v1xnv2 and

x1x2 . . . xn|h(x1 . . . xn−1) = (v1xnv2)
mv1xn|v2(v1xnv2)m.

Since |(v1xnv2)mv1| = |v2(v1xnv2)m|, |v1| = |v2|.
Furthermore v2 = h(v1) by definition of Dn,h. Therefore we get

x1x2 . . . xn|h(x1 . . . xn−1) = (v1xnh(v1))
mv1xn|h(v1)(v1xnh(v1))

m.

Thus (h(v1)h(xn)v1)
mh(v1) = h(v1)(v1xnh(v1))

m, that is,

(h(v1)h(xn)v1)
mh(v1) = (h(v1)v1xn)mh(v1).

Hence h(xn)v1 = v1xn. Therefore, by Lemma 18, h(xn) = xn in contrast to the

supposition concerning h.
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By Theorem 23, from a word w ∈ Q we obtain a primitive word ww′ where w′ is

constructed from w by changing all letters except one letter. This result does not hold

for the mirror image, i.e., if one concatenates w with its mirror image and changes all

letters of the mirror image besides one letter, in general, one does not obtain a primitive

word. For example, if w = 11100 ∈ Q and i = 3, then we obtain

1110011100 = (11100)2 /∈ Q.

However, if we restrict to special positions, then the corresponding statement is true,

as shown by the following two theorems.

Definition 16. For any natural numbers n and i with 1 ≤ i ≤ n and any homomor-

phism h : V ∗ → V ∗ with h(a) 6= a for all a ∈ V , we define the operations

Mn,1,h, Mn,n,h : V n → V 2n

by

Mn,1,h(x1x2 . . . xn) = x1x2 . . . xnxnh(xn−1xn−2 . . . x1),

Mn,n,h(x1x2 . . . xn) = x1x2 . . . xnh(xnxn−1 . . . x2)x1.

Theorem 25. For any n ≥ 2, any homomorphism h : V ∗ → V ∗ with h(a) 6= a for all

a ∈ V and any w ∈ Q, Mn,1,h(w) ∈ Q also holds.

Proof. Let w = x1x2 . . . xn, where xi ∈ V . Then

Mn,1,h(w) = x1x2 . . . xn−1xnxnh(xn−1xn−2 . . . x1)

has an even length.

Let us suppose that Mn,1,h(w) /∈ Q, that is, there exists a p ∈ N, p > 1, and v ∈ Q
such that x1x2 . . . xn−1xnxnh(xn−1xn−2 . . . x1) = vp.

If p is even and p > 2, then v
p
2 = w and

p

2
≥ 2, which contradicts w ∈ Q. If p = 2,

then x1x2 . . . xn−1xnxnh(xn−1xn−2 . . . x1) = v2, that is,

v = x1x2 . . . xn−1xn = xnh(xn−1xn−2 . . . x1).

Then xn = x1 and xn = h(x1), which is a contradiction.

If p is odd, then p = 2m + 1 for some m ≥ 1 and v = x1v
′xnv

′′ with v′, v′′ ∈ V ∗,
which can be shown as in the proof of Theorem 17. Since

x1 . . . xn−1xn|xnh(xn−1xn−2 . . . x1) = vmx1v
′|xnv′′vm, |v′| = |v′′|.

We distinguish the cases v′ 6= λ 6= v′′ and v′ = λ = v′′.

Supposing v′ 6= λ 6= v′′ and v′ = y1 . . . yr and v′′ = z1 . . . zr. Then
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x1 . . . xn−1xn|xnh(xn−1xn−2 . . . x1)

= (x1y1 . . . yrxnz1 . . . zr)
mx1y1 . . . yr|xnz1 . . . zr(x1y1 . . . yrxnz1 . . . zr)m

and yr = xn. Since h(x1y1y2 . . . yr) = zrzr−1 . . . z1xn by construction, h(yr) = xn,

which contradicts yr = xn

Supposing v′ = λ = v′′, we get

x1 . . . xn−1xn|xnh(xn−1xn−2 . . . x1) = (x1xn)mx1|xn(x1xn)m,

which implies xn = x1 and xn = h(x1), so it is a contradiction.

Therefore Qn,1,h(w) ∈ Q.

Theorem 26. For any n ≥ 2, any homomorphism h : V ∗ → V ∗ with h(a) 6= a for all

a ∈ V and any w ∈ Q, Mn,n,h(w) ∈ Q also holds.

Proof. Let w = x1x2 . . . xn. Let us assume that Mn,n,h(w) /∈ Q. Then there is a word

v ∈ V +and a natural number p ≥ 2 such that Mn,n,h(w) = vp.

If p = 2, then v = x1x2 . . . xn = h(xnxn−1 . . . x2)x1. Hence x1 = h(xn) and xn = x1,

which is a contradiction. If p > 2 and even, then w = v
p
2 ∈ Q in contrast to our

supposition.

If p is odd, i.e., p = 2m + 1 for some m ≥ 1, then there are words v1 and v2 with

v = v1v2, |v1| = |v2| and

x1x2 . . . xn|h(xnxn−1 . . . x2)x1 = vmv1|v2vm.

Let k = |v1|. Then

v1 = x1x2 . . . xk and v2 = h(xkxk−1 . . . x2)x1

by definition of Mn,n,h. Thus x2k+1 = x1 and h(x2k+1) = x1 in contrast to the required

property of h that h(a) 6= a for all a ∈ V .

We now define an operation where we duplicate the word, but the copy is shifted

some positions to the left. Hence, on one hand, no change is done in the copy, but

on the other hand, the position of the letters are changed essentially. An analogous

operation is performed where we shift an almost completely changed version of the

word.

Definition 17. For any natural numbers n and i with 1 ≤ i ≤ n − 1, we define the

operation Sn,i : V n → V 2n by

Sn,i(x1x2 . . . xn) = x1x2 . . . xix1x2 . . . xnxi+1xi+2 . . . xn.
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Theorem 27. For any natural numbers n ≥ 2 and i with 1 ≤ i ≤ n− 1 and any word

q ∈ Q of length n, Sn,i(q) ∈ Q also holds.

Proof. Let q = ww′ ∈ Q with w = x1x2 . . . xi−1 and w′ = xixi+1 . . . xn, where xj ∈ V
for 1 ≤ j ≤ n. Then Sn,i(q) = www′w′.

Assume www′w′ /∈ Q, that is, there exist a p ∈ N, p > 2 and v ∈ Q such as

www′w′ = vp, that is, w2(w′)2 = vp. It is known, by Lemma 15, w = uk, w′ = ul, and

v = um. Since ww′ ∈ Q and ww′ = uk+l, we have a contradiction.

Therefore www′w′ ∈ Q.

We mention that an analogous statement does not hold, if one uses the mirror image

instead of a copy. The following example shows that then primitivity is not preserved.

Let w = 01 and i = 1; using the mirror image and shifting it by one position to the left

we get 0101 /∈ Q.

Finally in the following theorem we present some operations which, together with

the above operations, allow the generation of all primitive words of length ≤ 11 (as can

be shown by computer calculations) and of a considerable amount of primitive words

of length up to twenty.

Theorem 28. Let w ∈ Q be a primitive word of length n ≥ 2 and x ∈ V and y ∈ V
two different letters of V .

i) Then wxn and wxn−1 and wxyn−2 are in Q, too.

ii) If n is even, then w(xy)(n−2)/2x and w(xy)(n−2)/2y are primitive words, too.

Proof. We omit the easy proofs for i).

ii) We only prove the statement for w(xy)(n−2)/2x; the other proof can be given analo-

gously.

Let us assume that w(xy)(n−2)/2x /∈ Q. Then there is a word v ∈ V + such that

w(xy)(n−2)/2x = vp for some p ≥ 2. Since w(xy)(n−2)/2x has odd length, p and the

length of v are odd numbers. Let p = 2m + 1 for some m ≥ 1. Thus there are

v1, v2 ∈ V + such that

v = v1v2, |v1| = |v2|+ 1 and w|(xy)(n−2)/2x = vmv1|v2vm.

By w(xy)(n−2)/2x = v2m+1, v = (xy)kx for some k ≥ 1, and then v1 = (xy)r,

v2 = (xy)r−1x and

w|(xy)(n−2)/2x = ((xy)kx)m(xy)r|(xy)r−1x((xy)kx)m.

Since the (n+ 2(r− 1) + 2)-nd letters in both representations differ, we have a contra-

diction.
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5.2.5 Conclusions

In this section, some operations that preserve primitivity of words have been presented.

They are summed up in Table I.

Thus, we have the next theorem.

Theorem 29. For any operation O given in Table I, if w ∈ Q, then O(w) ∈ Q.

5.3 A Non-Grammatical Method to Generate the Set of

Primitive Words

The results presented in this section are part of (68) in which I am first author1.

Since the main interest in generating QV comes from the possibility of figuring

out the classification of QV , most efforts to generate QV materialized as grammatical

methods. In order to open a new line of research, we propose a non-grammatical

generative method for QV that is based on a characterization of the non-primitive

numbers. For such a purpose, we will define a non-primitive number in a given base

and of a given length as a number whose representation in that base is a non-primitive

word with that length.

In the characterization of the non-primitive numbers we will show that a number is

primitive if and only if it and zero are not congruent modulo certain numbers. Moreover,

we will identify the generalized Fermat-Mersenne numbers with such moduli (that is,

moduli under which a primitive number and zero are not congruent).

5.3.1 Some Notation

Let V be an alphabet such that |V | = q, with q ∈ N+. Then, the largest possible

number of words of length n over V is qn.

Let q ∈ N+. We notate the set of the q distinct symbols of the base-q numeral

system as B(q), that is to say, B(q) = {0, 1, . . . , q − 1}. Since, for any non-trivial

alphabet V , with |V | = q, we can define a bijection V → B(q), we can transform any

word w ∈ V + into the base-q representation of an integer. Moreover, since, for any

q ∈ N+, we can transform the base-q representation of a given integer into that integer,

we can transform any word w ∈ V + into an integer.

1the other author is my supervisor and gave hints, suggestions, and comments
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Without loss of generality, we can assume that V = B(q) for any q ∈ N+. Therefore,

the words over the alphabet V , with |V | = q, will be base-q representation of integers.

Definition 18. Let m, q ∈ N+ and n ∈ N. We say that the integer n is a primitive

number in base q and length m if its base-q representation is a primitive word of length

m over the alphabet V with |V | = q. We will say that n ∈ PNq,m.

We say that n is a non-primitive number in base q and length m if n is not a

primitive number in base q and length m. We will say that n ∈ nPNq,m.

In the sequel we shall use the following notation. We denote the base-q representa-

tion of an integer by (n)q and we will say that (n)q ∈ B(q)+. Let (n)q, (m)q ∈ B(q)+,

then (n)q(m)q = (nm)q is the multiplication in base-q.

If (n)q ∈ B(q)+ and (n′)q′ ∈ B(q′)+ are the base-q and the base-q′ representations

of an integer, respectively, then we will say that (n)q = (n′)q′ . Moreover, in the sequel,

we assume n = (n)10 for any integer n.

Remark 2. Let q, n ∈ N+. Let V be the alphabet with |V | = q. Let V ∗n the set of all

the possible words of length n over V . The words of V ∗n are the base-q representations

of the set of integers {0, . . . , qn − 1}.

From now on, we will consider that adding zeros on the left side of a number in any

base does not modify its value.

Finally, in (30) the generalized Fermat-Mersenne numbers have been defined as

Gq,p,n = q(p−1)n + q(p−2)n + · · ·+ qn + 1 =
qpn − 1

qn − 1
. (5.4)

where q, p, n ∈ N+.

5.3.2 Some Remarks and First Results

In this section, we will present some results which are used in the sequel.

Theorem 30. Given q, p, n ∈ N+, Gq,p,n ∈ nPNq,pn, that is to say, the base-q repre-

sentation of Gq,p,n is a word w ∈ V with |V | = q, w = vp with v ∈ V + and p a natural

number, p > 1, and |v| = n.

Proof. If we generalize Equation 13 in (30), for any base q, then we get

(Gq,p,n)10 = ((10n−1)p−11)q.
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Moreover, ((10n−1)p−11)q = ((0n−11)p)q, then

(Gq,p,n)10 = ((0n−11)p)q.

Therefore, it is clear that the base-q representation of Gq,p,n is a word w ∈ V with

|V | = q, w = vp (v = 0n−11) and |v| = n.

Theorem 31. Given q, p, n ∈ N+ and k ∈ N+ with k < qn, then kGq,p,n ∈ nPNq,pn.

Proof. First of all, let us see that if k < qn, then kGq,p,n is a number in base q and

length pn. By Remark 2, that is to say, kGq,p,n ≤ qpn − 1.

By Equation 5.4, Gq,p,n =
qpn − 1

qn − 1
, then we get

kGq,p,n ≤ (qn − 1)
qpn − 1

qn − 1
= qpn − 1.

Now, we will see that kGq,p,n is a non-primitive number, that is to say, its base-q

representation is a non-primitive word.

Let us suppose that (k)10 = (x1 · · ·xn)q with xi ∈ B(q) for any i = 1, . . . , n (that

is, k < qn). Since (Gq,p,n)10 = ((10n−1)p−11)q, we have

(x1 · · ·xn)q((10n−1)p−11)q = ((x1 · · ·xn)p)q.

Therefore, if k < qn, then kGq,p,n ∈ nPNq,pn.

Corollary 6. Let q, p, n, k ∈ N+. If k ≥ qn, kGq,p,n is not a number of length pn.

Proof. Since kGq,p,n ≥ qn
qpn − 1

qn − 1
> qpn − 1, by Remark 2, we have kGq,p,n is not a

number of length pn.

Theorem 32. Let q, p, n, p′, n′ ∈ N+. If n = kn′ for some k ∈ N+ and pn = p′n′, then

Gq,p′,n′ = Gq,k,n′Gq,p,n

that is, Gq,p′,n′ is a multiple of Gq,p,n.

Proof. Let k ∈ N+ be such that n = kn′. Since pn = p′n′, we get

Gq,k,n′Gq,p,n =
qkn

′ − 1

qn′ − 1
· q

pkn′ − 1

qkn′ − 1
= Gq,p′,n′ .
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5.3.3 The Proposed Generative Method

In this section, we show a characterization of the non-primitive numbers that will be

used as a method to generate the set of primitive words.

5.3.3.1 Characterization of the Non-Primitive Numbers

Given n ∈ N+, we will classify the non-primitive numbers of length n. We define the set

of all the divisors of n that are different from n as div(n) = {m < n | m ∈ N+ and m|n}.

Theorem 33. Let m, q ∈ N+ and n ∈ N. If n ∈ nPNq,m, then there exist k, p, d ∈ N+,

with k < qd and m = pd, such that n = kGq,p,d.

Proof. Since n ∈ nPNq,m, we have (n)10 = (vp)q for some v ∈ B(q)+ with |v| = d and

some p ∈ N+ such that m = pd. Let us suppose v = x1 . . . xd with xi ∈ B(q) for any

i ∈ {1, . . . , d}.
Then, we have

(n)10 = ((x1 . . . xd)
p)q = (x1 . . . xd)q((10d−1)p1)q = (k)10(Gq,p,d)10

with (k)10 = (x1 . . . xd)q.

Now, we enunciate a corollary that is more precise than the previous theorem.

Corollary 7. Let m, q, s ∈ N+, n ∈ N and div(m) = {d1, d2, . . . , ds}. If n ∈ nPNq,m,

then there exist k, pi ∈ N+ and di ∈ div(m), with k < qdi, m = pidi and di - dj for any

dj ∈ div(m) with i 6= j, such that n = kGq,pi,di.

Proof. By using Theorem 33, we know that if n ∈ nPNq,m, then there exist k, p, d ∈ N+,

with k < qd and m = pd, such that n = kGq,p,d. Since m = pd, we trivially have

d ∈ div(m).

On the other hand, by using Theorem 32, we know that given q, p, n, p′, n′ ∈ N+. If

n = k′n′ for some k′ ∈ N+ and pn = p′n′, then Gq,p′,n′ = Gq,k′,n′Gq,p,n.

Therefore, if n = kGq,pi,di for any di ∈ div(m) such that di | dj for some dj ∈ div(m)

with i 6= j, then

n = kGq,pi,di = kGq,k′,diGq,pj ,dj = k′′Gq,pj ,dj

where k′′ = kGq,k′,di . Let us see that k′′ < qdj . Since k < qdi , we have

k′′ = kGq,k′,di ≤ (qdi − 1)
qk

′di − 1

qdi − 1
= qk

′di − 1 = qdj − 1.

If dj - dk for any dk ∈ div(m) with dj 6= dk, then we have finished. If dj | dk for some

dk ∈ div(m) with j 6= k, then we repeat the same process as before.
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Now, we can enunciate a characterization of the non-primitive numbers by using

the previous results and the following definition.

Definition 19. Let m, q, s ∈ N+, n ∈ N and div(m) = {d1, d2, . . . , ds}. We define the

representative numbers of base q and length m as

Rq,m = {Gq,pi,di | m = pidi and di - dj for any dj ∈ div(m) with i 6= j}.

Theorem 34 (Characterization Theorem). Let m, q ∈ N+ and n ∈ N. Then the natural

number n ∈ nPNq,m if and only if n = kGq,p,d for some natural number k with k < qd

and some Gq,p,d ∈ Rq,m.

5.3.3.2 Selection of the Moduli

In this section, we will define the moduli under which a primitive number and zero are

not congruent. This will provide a generative method for the set of primitive numbers.

It will be used to define a non-grammatical method to generate the language of the

primitive words.

By using the characterization theorem of the non-primitive numbers, we can enun-

ciate the next theorem, that is a characterization of the primitive numbers.

Theorem 35. Let m, q ∈ N+ and n ∈ N. Then n ∈ PNq,m if and only if n is not a

multiple of any Gq,p,d ∈ Rq,m.

Let m,n ∈ N+. Since m being a multiple of n means that m ≡ 0 (mod n), we can

enunciate the previous theorem using moduli.

Theorem 36. Let m, q ∈ N+, n ∈ N and Rq,m = {r1, . . . , rt}. Then n ∈ PNq,m if and

only if n 6≡ 0 (mod ri) for any i ∈ {1, . . . , t} .

Given m, q ∈ N+ and using the previous theorem, we can generate PNq,m. Since,

for any n ∈ PNq,m, we have (n)10 = (w)q for some w ∈ V + with |V | = q, we can

generate all the primitive words of length m over such an alphabet V .

5.3.4 A Property of Symmetry for the Non-Primitive Numbers

We have defined a non-grammatical method to generate the language of the primitive

words over any non-trivial alphabet, that is the main aim of this work. In this Section,

we will describe a property of the non-primitive numbers.
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Let us suppose m, q ∈ N+. We will see that the distribution of the distances between

two consecutive non-primitive numbers in base q and length m is symmetric.

Let Rq,m = {r1, . . . , rt}. By Theorem 34, we know that n ∈ N belongs to nPNq,m

if and only if n = kri for some natural number k with k < qdi , with di ∈ div(m), and

some ri ∈ Rq,m. Moreover, by Remark 2, the words in V ∗m, with |V | = q, are the base-q

representations of the set of integers {0, . . . , qm − 1}.
Therefore, since we want to see that the distribution of the distances between two

consecutive numbers in nPNq,m is symmetric, let us see that qm − (x + 1) belongs to

nPNq,m for any number x in the first half of {0, . . . , qm − 1} that belongs to nPNq,m.

Let x be a number in the first half of {0, . . . , qm − 1} that belongs to nPNq,m.

Since x ∈ nPNq,m, there exists a natural number ki, with ki < qdi and m = pidi, and

ri ∈ Rq,m such that x = kiri. Let us see that qm − (x + 1) ∈ nPNq,m, that is, there

exist a rj ∈ Rq,m and kj < qdj such that qm − (x+ 1) = kjrj .

Let us suppose that ri = Gq,pi,di for some pi, di ∈ N+.

Let kj = qdi − (ki + 1) and rj = ri. Then

kjrj = kjri = (qdi − (ki + 1))ri = (qdi − 1)ri − kiri = (qm − 1)− kiri = qm − (x+ 1).

Therefore, we can say that the distribution of the distances between two consecutive

numbers in nPNq,m is symmetric. In Figure 5.1, we show two graphic representations

of this symmetry. The distances between any two consecutive numbers in nPNq,m can

be observed in the y-axis of the figures.

Figure 5.1: Distances between pairs of consecutive non-primitive numbers in base 2 and

lengths 15 and 12, respectively.

As a complementary result, it can be demonstrated that the distribution of the

distances between two consecutive numbers in PNq,m is symmetric.
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5.3.5 Conclusions

In this section, we have defined a non-grammatical method to generate the language of

the primitive words over any non-trivial alphabet. Such a method is different from the

other well-known methods to generate Q based on grammatical methods. Moreover,

since our method is based on the generation of primitive numbers by using moduli, it

provides a relation between Q and number theory.

As we pointed out, the main interest in generating Q comes from the interest in

establishing the class of the language Q, and for that reason, all the generative methods

of Q that have been defined until now, are grammatical methods. What it is proposed

here goes beyond a new way to generate the language Q. Since basic arithmetic opera-

tions can be formulated in a grammatical way (so are moduli), it is possible to convert

this method to a grammar that generates Q. This grammar can shed light about the

class of the language Q in Chomsky’s hierarchy. In general, different numerical me-

thods (i.e., other connections between number theory and Q) could be sketched, and

converted to grammatical formalisms, yielding new insights on this intricate problem

of formal languages.
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Table I: These operations are defined for any natural numbers n, i, j, k, i′ and i′′ with

1 ≤ i ≤ n, 1 ≤ j ≤ n, 2 ≤ k ≤ n, 0 ≤ i′ ≤ n, 1 ≤ i′′ ≤ n− 1 and i 6= j, letters x, y, z ∈ V
with x 6= y, a word w = x1x2 . . . xn ∈ V + of length n, and the mapping h : V → V with

h(1) = 0 and h(0) = 1.

In,i′,z(w) = x1x2 . . . xnx1x2 . . . xi′zxi′+1xi′+2 . . . xn for n ≥ 2

In,i′,z,j,x,y(w) =


x1 . . . xnx1 . . . xi′zxi′+1 . . . xj−1yxj+1 . . . xn xj = x, i′ < j

x1 . . . xnx1 . . . xj−1yxj+1 . . . xi′zxi′+1 . . . xn xj = x, i′ > j

undefined otherwise

Dn(w) = x1x2 . . . xnh(x1x2 . . . . . . xn−1) for n ≥ 2

Mn,i,x,y(w) =

{
x1x2 . . . xnxnxn−1 . . . xi+1yxi−1xi−2 . . . x1 xi = x

undefined otherwise

M ′n,k,x,y(w) =

{
x1x2 . . . xnxnxn−1 . . . xk+1yxk−1xk−2 . . . x2 xk = x

undefined otherwise

for n ≥ 2

Sn,i′′(w) = x1x2 . . . xi′′x1x2 . . . xnxi′′+1xi′′+2 . . . xn, for n ≥ 2

Dn,i(w) = x1x2 . . . xnx1x2 . . . xi−1xi+1xi+2 . . . xn, for n ≥ 2

Dn,i,j,x,y(w) =


x1 . . . xnx1 . . . xi−1xi+1 . . . xj−1yxj+1 . . . xn xj = x, i < j

x1 . . . xnx1 . . . xj−1yxj+1 . . . xi−1xi+1 . . . xn xj = x, i > j

undefined otherwise

for n ≥ 2

Mn,1(w) = x1x2 . . . xnxnh(xn−1xn−2 . . . x1) for n ≥ 2

Mn,n(w) = x1x2 . . . xnh(xnxn−1 . . . x2)x1 for n ≥ 2

z1(w) = wxn for n ≥ 2

z2(w) = wxn−1 for n ≥ 2

z3(w) = wxyn−2 for n ≥ 2

On(w) = x1x2 . . . xnh(x1)x2 . . . xi−1h(xi)xi+1 . . . xn−1h(xn), where i =
n+ 1

2
,

for odd n ≥ 5

O′n(w) = x1x2 . . . xnh(xn)xn−1 . . . xi+1h(xi)xi−1xi−2 . . . x2h(x1), where i =
n+ 1

2
,

for odd n ≥ 5

z4(w) = w(xy)(n−2)/2x for even n

z5(w) = w(xy)(n−2)/2y for even n
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Chapter 6

Dynamics of the Complexity

Now, we have enough elements to study the dynamics of the complexity during the

evolution of CURLs that try to adapt to a given environment.

In Section 6.1, we show some preliminary studies on the behavior of the complexity

by using a simple framework and two different approaches. The first one uses a greedy

algorithm and the edit operations over binary words. The second one uses a genetic

algorithm and the edit operations over sequences of the operations that preserve the

minimality that were defined in the previous chapter. We will see that although the

behavior of the complexity is increasing in both of them, in the second approach,

the correlation between the similarity to the environment and the complexity of the

individual is stronger. This will be the definitive push to choose the sequences of

operations preserving primitivity as the representation of the genotypes.

In Section 6.2, an artificial ecosystem of CURLs is defined by using the elements

presented in the previous chapters, where genotypes are sequences of the operations

that preserve primitivity. By using this complex ecosystem, we can study, as well

as other features, the different components that affect such an increasing behavior

of the complexity during the evolution. For example, we have found: (1) a strong

correlation between the evolving complexity of the population and the complexity of

the environment, and (2) that predatory behavior promotes a higher complexity of the

individuals.
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6.1 Dynamics of the Complexity in the Evolution of Finite

Automata

The results presented in this section are part of (70) in which I am first author1.

6.1.1 Introduction

The evolution of formal systems and, in particular, of finite automata, has been widely

studied. This study can be done from either an analytical or empirical point of view.

In (20), a computational device called network of evolutionary processors is proposed.

It is based on evolutionary rules and communication within a network. The generative

power of evolutionary networks is discussed in (4; 5; 19; 27; 66; 67; 78). Grammatical

inference is the problem of inferring a grammar from a set of positive samples which

the grammar should generate, and a set of negative samples which the grammar should

not generate (see (29)). Evolutionary computation (see (8)), mainly genetic algorithms,

are widely used with this purpose. For example, in (65; 92), genetic algorithms infer

regular languages, and in (55), context-free languages are inferred.

The study of the evolution of a formal system can also be biologically motivated.

In (23), the concept of an evolutionary system is introduced. This is a language

generating device inspired by the evolution of cell populations, and it is based on

edit operations and string divisions. The purpose of this system is to model some

properties of evolving cell communities at the syntactical level. On the other hand,

finite state machines (FSMs, for short) have been applied to model organisms. In (97),

a new approach to evolve such artificial organisms is presented. FSMs learn a navi-

gation and searching task in heterogeneous environments. The authors report on the

formation of different species. Moreover, grammatical inference methods are expected

to find some grammatical structures hidden in biological sequences, (104).

Although (as the previous papers show) many properties in the evolution of formal

systems have been analyzed, as far as we know, the behavior of the complexity during

such an evolution has not been studied. The main reason for that lack of results is

that the complexity is a complex concept in itself. The term “complexity” presents so

many variations that it is only valid in specific situations. This means that measuring

the complexity is an abstract estimation that depends on the context in which it is

1the rest of coauthors are my supervisors and gave hints, suggestions, and comments
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used. For that reason, in the course of history, different complexity measures have

been considered. Some well-known approaches are Kolmogorov-Chaitin-Solomonoff’s

measure (59) and Shannon’s entropy (105). However, none of them provide a good

method to address the problem of measuring the complexity. Shannon’s entropy is

defined as the amount of information of the genome of an organism, but that definition

has a problem: a text with the same length as the human genome that has been

obtained by combining the letters A, T, C and G might represent more information

than the genome. Kolmogorov-Chaitin-Solomonoff’s measure is defined as the length

of the shortest program that is necessary to generate a text, but such a measure is not

computable.

Since we need an objective complexity measure to study the behavior of the com-

plexity in the evolution of a formal system, as we explained before, we will use the set

of CURLs. In this way, state complexity can be used.

Thus, we will start with a population of CURLs (individuals) that will try to adapt

to a given environment (represented by another CURL). In order to calculate how

well an individual adapts to the environment, we use the measure of the similarity for

CURLs defined in (24) and has been introduced in Section 3.

In this section, we propose two different approaches to study the behaviour of

the complexity during the evolutionary process in which a set of CURLs adapts to a

given environment (another CURL). The first one will use a greedy algorithm and the

edit operations (substitution, elimination and addition of a symbol over a word) over

binary words. The second one will use a genetic algorithm and the edit operations over

a sequence of operations that preserve the minimality of the CUDFAs (genotypes) of

the population during the evolution (consequently, in this case, the CUDFAs of the

initial population and of the environment will be also minimal) that was presented in

the previous chapter.

6.1.2 Edit Operations

The usual operations over words are the edit operations, i.e., addition, elimination and

substitution of a symbol. They were introduced in Definition 4.2 in Chapter 4.

As we mentioned there, we represent the sets of all possible additions, eliminations

and substitutions as A, E and S, respectively. Thus, the operations in A, E and S are

called the edit operations.
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6.1.3 Evolution of Similarity and Complexity under Edit Operations

over Binary Words

Since we have a formal framework, in which an objective complexity measure (the state

complexity) is defined, if a dynamics over this framework is introduced, then a study

about the dynamics of the complexity can be done.

The main objective in this section is the study of the behaviour of the complexity

during the process in which CURLs (the individuals) are approaching to a much more

complex CURL (the environment) by applying some operations over their genotypes.

We will say that a given CUDFA is close to another CUDFA if the language represented

by both of them is similar.

As a first attempt, we propose the next method that uses a greedy algorithm and

the edit operations over the binary words that represents the CUDFAs, that is to say,

the genotypes (in this section, V = {0, 1}). As we said before, the CURL represented

by a given CUDFA will be considered as its corresponding phenotype.

6.1.3.1 Greedy Algorithm

The similarity measure for CURLs introduced in (24) is used. Given a CUDFA w ∈ V +,

we notate the CURL represented by w as L(w). We start with the following definition.

Definition 20. Let v, w ∈ V + be two CUDFA and O ⊆ S ∪ A ∪ E. We define the

highest similarity set of operations from O for v and w, HS(v, w,O), as

HS(v, w,O) = {O ∈ O | URLSL(O(v)),L(w)

= max
O′∈O

(URLSL(O′(v)),L(w))}.

Let us see that by using substitution and addition operations, we can obtain an

individual that is completely adapted to the environment by using a greedy algorithm.

Theorem 37. Let p a prime number and O = S ∪ A. For any v, w ∈ V + with

|v|+ 1 < |w| = p and |w|1 < |w|, there exists a sequence of operations

O1, O2, . . . , Ox ∈ O with x = |v|0 + |w|0 + |w| − |v| − 1

such that

w = Ox(Ox−1 . . . (O2(O1(v))) . . . )
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6.1 Dynamics of the Complexity in the Evolution of Finite Automata

and

Oi ∈ HS(Oi−1(. . . (O2(O1(v)) . . . ), w,O)

for 1 ≤ i ≤ x.

Proof. Let L(v) = {{ai + |v|k}k∈N}i=1,...,n and L(w) = {{bj + |w|k}k∈N}j=1,...,m for

some n,m ∈ N.

Since |w| = p, |v| < |w| and p is a prime number, we have gcd(|v|, |w|) = 1. Thus,

URLSL(v),L(w) =

|w|1
|w|

+
|v|1
|v|

2
(see Remark 1).

Given an operation O ∈ O, we notate O(v) = v′.

Let us suppose O ∈ S.

• If we change a zero into a one, then |v′|1 = |v|1 + 1 and |v′| = |v|. Therefore,

URLSL(v′),L(w) =

|w|1
|w|

+
|v|1 + 1

|v|
2

> URLSL(v),L(w).

• If we change a one into a zero, then |v′|1 = |v|1 − 1 and |v′| = |v|. Therefore,

URLSL(v′),L(w) =

|w|1
|w|

+
|v|1 − 1

|v|
2

< URLSL(v),L(w).

Let us suppose O ∈ A.

• If we add a one, then |v′|1 = |v|1 + 1. Therefore,

URLSL(v′),L(w) =

|w|1
|w|

+
|v|1 + 1

|v|+ 1

2
≥ URLSL(v),L(w).

The equality is satisfied when |v|1 = |v|, that is, when v = 1k for some k ∈ N.

• If we add a zero, then |v′|1 = |v|1. Therefore,

URLSL(v′),L(w) =

|w|1
|w|

+
|v|1
|v|+ 1

2
< URLSL(v),L(w).

We now compare the similarities obtained after applying any of the operations over

v. Let O and O′ be a substitution of a zero into a one and an addition of a one,

respectively. Then, by the above calculations,

URLSL(O(v)),L(w) =

|w|1
|w|

+
|v|1 + 1

|v|
2

>

|w|1
|w|

+
|v|1 + 1

|v|+ 1

2
= URLSL(O′(v)),L(w).
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Taking into consideration that substitutions of a one into a zero and additions of a

zero, lead to smaller similarities, we get

HS(v, w,O) = {O ∈ S | O changes a zero into a one},

Following the same reasoning and using the sequence of operations

O1, O2, . . . , O|v|0 ∈ S

that changes a zero into a one in each step, we get

O|v|0(. . . (O2(O1(v))) . . . ) = 1|v|

and

Oi ∈ HS(Oi−1(. . . (O2(O1(w)) . . . ), w,O)

for 1 ≤ i ≤ |v|0.
If we have a word of the form 1s for some s, then we cannot change a zero into a

one. Thus, by the above calculations,

HS(1s, w,O) = {O ∈ A | O adds a one}

for any |v| ≤ s ≤ |w| − 1. Therefore, using the sequence of operations

O|v|0+1, . . . , O|v|0+|w|−|v|−1 ∈ A

that adds a one in each step, we get

O|v|0+|w|−|v|−1(. . . (O|v|0+1(1
|v|) . . . ) = 1|w|−1.

Now, we have r = 1|w|−1.

• If we add a one, then v′ = 1|w| and q = |w|1. Therefore, by Remark 1

URLSL(v′),L(w) =

|w|1
|w|

+
|w|1
|w|1

2
=

|w|1
|w|

+
|w| − 1

|w| − 1

2
= URLSL(r),L(w).

• If we add a zero in a position in which w has a zero (we know that there exists

at least a zero in w because |w|1 < |w|), then q = |w|1. Therefore, by Remark 1

URLSL(v′),L(w) =

|w|1
|w| − 1

+
|w|1
|w|1

2
>

|w|1
|w|

+
|w| − 1

|w| − 1

2
= URLSL(r),L(w).
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• If we change a one into a zero, we have URLSL(v′),L(w) < URLSL(v),L(w) as above.

Therefore,

HS(1|w|−1, w,O) = {O ∈ A | O adds a zero in a position in which w has a zero}.

Thus, O|v|0+|w|−|v| ∈ A.

Now, we have r = 1t01u for some t, u ∈ N∪{0} such that t+u+1 = |w|. Therefore,

|r| = |w|, |r|1 = |w| − 1 and q = |w|1. Thus,

URLSL(r),L(w) =

v |w|1|w|−1 +
|w|1
|w|1

2
.

• If we change a one into a zero, then |v′|1 = |r|1 − 1 = |w| − 2.

– If w has a zero in that position, then q′ = |w|1. Therefore,

URLSL(v′),L(w) =

|w|1
|w| − 2

+
|w|1
|w|1

2
> URLSL(r),L(w).

– If w has not a zero in that position, then q′ = |w|1 − 1. Therefore,

URLSL(v′),L(w) =

|w|1 − 1

|w| − 2
+
|w|1 − 1

|w|1
2

< URLSL(r),L(w).

• If we change a zero into a one, then |v′|1 = |r|1 + 1 = |w|.

– If w has a one in that position, then q′ = |w|1 + 1. Therefore,

URLSL(v′),L(w) =

|w|1 + 1

|w|
+
|w|1 + 1

|w|1
2

> URLSL(r),L(w).

This is not our case of study, since r has an only one and it is in a position

in which w also has a zero.

– If w has not a one in that position, then q′ = |w|1. Therefore,

URLSL(v′),L(w) =

|w|1
|w|

+
|w|1
|w|1

2
< URLSL(r),L(w).

• If we add a one, then |v′|1 = |r|1 + 1 = |w| and |v′| = |w|+ 1. Therefore,

URLSL(v′),L(w) =

|w|1
|w|

+
|w|
|w|+ 1

2
> URLSL(r),L(w).
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• If we add a zero, then |v′|1 = |r|1 = |w| − 1 and |v′| = |w|+ 1. Therefore,

URLSL(v′),L(w) =

|w|1
|w|

+
|w| − 1

|w|+ 1

2
> URLSL(r),L(w).

Let us compare the similarities obtained after applying any of the operations over r.

Let O ∈ S change a one into a zero in a position in which w has a zero.

• Let O′ ∈ A be such that a one is added. Then

URLSL(O(r)),L(w) =

v |w|1|w|−2 +
|w|1
|w|1

2
>

|w|1
|w|

+ v
|w|
|w|+ 1

2
= URLSL(O′(r)),L(w).

• Let O′ ∈ A be such that a zero is added. Then

URLSL(O(r)),L(w) =

|w|1
|w| − 2

+
|w|1
|w|1

2
>

|w|1
|w|

+
|w| − 1

|w|+ 1

2
= URLSL(O′(r)),L(w).

Therefore,

HS(r, w,O) = {O ∈ S | O changes a one in a position in which w has a zero}.

Thus, using the sequence of operations

O|v|0+|w|−|v|+1, . . . , O|v|0+|w|−|v|+|w|0−1 ∈ S

that change a one into a zero in a position in which w has a zero, we get

O|v|0+|w|−|v|+|w|0−1(. . . (O|v|0+|w|−|v|+1(r)) . . . ) = w

and, for 1 ≤ i ≤ |w|, O|v|0+|w|−|v|+i is in the highest similarity set of

O|v|0+|w|−|v|+i−1(. . . (O|v|0+|w|−|v|+1(r)) . . . ).

We have observed computationally the same behavior when w has not a prime

length. For the theoretical proof of the general case, we would have to consider a

lot of different cases in dependence of the gcd between the length of the environment

and the length of the currently evolved individual. Thus, we take into account the

computational results to assert that the previous theorem seems to be satisfied in the

general case.
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Let us study the case in which O ⊆ S ∪A ∪ E, that is, the elimination operation is

also included. Let us see that in this case, we can not ensure that we will be able to be

adapted completely to the environment, at least in a reasonable time. This is because

the algorithm can get stuck in the set of words consisting of only ones whose lengths

are between one and |w| − 1. Given O ∈ S and O′ ∈ E,

URLSL(O(v)),L(w) > URLSL(O′(v)),L(w)

can be proved as in the previous theorem. Therefore, we obtain the word 1|v| by

using the previous greedy algorithm. Since given O′ ∈ E and O′′ ∈ A, we have

URLSL(O′(v)),L(w) = URLSL(O′′(v)),L(w), thus the greedy algorithm chooses words con-

sisting of only ones whose lengths can variate without limits between one and |w| − 1

and in some cases, it does not reach the length of w.

Therefore, using O = S ∪ A any individual can be completely adapted to any

environment. The behaviour of the complexity by using this approach is always as

figure 6.1 shows. We start with a individual of a certain complexity (usually very

low) and after applying the substitutions of all the zeros into ones, a word with only

ones that have state complexity one is obtained. This complexity remains during a

lot of steps until the length of the environment is reached. In this point, we obtain a

word r = 1t01u for some t, u ∈ N ∪ {0} and the complexity experiments a huge jump.

Thus, very similar individuals show very different states complexities (individuals in the

generation 29 and 30 in figure 6.1). The main reason for this is that the edit operations

do not preserve the primitivity of words. Thus, we propose a second method that

preserves primitivity.
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Figure 6.1: Complexity and fitness shown by the greedy algorithm which transforms

the CUDFA 01 into the CUDFA 001110111010101101110101010100. Each time an

operation is applied the graphic on the right axis shows the similarity (fitness) between the

corresponding word and the environment and the graphic on the left axis shows the com-

plexity of the corresponding word.

6.1.4 Evolution of Similarity and Complexity under Edit Operations

over Sequences of Operations Preserving Primitivity

We have shown that by using the previous method, the behaviour of the complexity

is quite limited. Moreover, in some cases, very similar individuals show very different

states complexities. The main reason for this is that the edit operations over binary

words do not preserve the minimality of the genotypes (the primitivity of the words)

during the process. For that reason, we propose another method in which operations

that preserve the primitivity are used.

We will use a genetic algorithm and the edit operations over sequences of operations

that preserve the primitivity defined in Section 5.2 (and summed up in Table I) that

represent the minimal CUDFA.

6.1.4.1 Genetic Algorithm

Genetic algorithms are a particular branch of evolutionary computation that were

originally introduced by Holland in (48). They are implemented in a computer simula-

tion in which a population of abstract representations (called genotypes) of candidate

solutions (called individuals or phenotypes) to an optimization problem evolves toward

better solutions.
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Let us see the representation of a minimal CUDFA that we will use in this section,

i.e, in this method, the genotypes will not be binary words as in the previous one.

Thus, the genotype of an individual is defined by a vector v ∈ C ×Ok where

• C = {0, 1} is the zygote of the individual (i.e., its initial cell),

• O is the set of operations listed in Table I plus the operation N(w) = w for

any word w ∈ V +. These operations preserve primitivity of words and had been

defined in (26). Ok defines the k operations, k ≥ 1, which apply to the zygote of

the individual to develop into its phenotype.

Thus, the genotype of an individual is a vector (x,O1, . . . , Op) of size at least two

(i.e., at least one operation has to be applied) where w = Op(. . . (O2(O1(x))) . . . ). Each

component of such a vector is a gene.

For example, the vector (0,M1,1,0,1, I2,1,1, D5,3) is the genotype of the individual

L(011010101) since

D5,3(I2,1,1(M1,1,0,1(0))) = 010110111.

Since the zygotes are primitive words, and the operations in O preserve primitivity,

the genotypes are primitive words, and consequently, by Corollary 3, all the genotypes

are minimal CUDFAs.

Thus, in this method, we restrict the framework to the subset of all minimal

CUDFAs which can be generated by the operations. First of all, a set of 500 CURLs

(the initial population) with a small complexity (2 or 3) is randomly generated, i.e, the

sequence of operations that represents each minimal CUDFA (genotype) is generated

with a uniform distribution such that each operation is equally likely to be chosen.

By using a genetic algorithm (GA, for sort), the population (where each individual

is a minimal CUDFAs) gets adapted to a given environment (a CURL with a much

higher complexity, around 20 states, which is also randomly generated by using the

operations). The adaptation of an individual to the environment (i.e. its fitness) is

measured as the similarity between the languages that they represent. Thus, the be-

haviour of the complexity during this process will be studied.

Mutation is the only genetic operation which is used in the GA. Crossover has not

been included, because we have empirically seen that it introduces a high disruption in

the descendants, which differ 75% in average from their parents.

105



6. DYNAMICS OF THE COMPLEXITY

Three types of mutation have been implemented: changing, deleting and adding a

gene (the edit operations). The position of the gene that will be mutated is selected

with uniform probability. In the case in which a gene is added, or changed, the new

gene will be chosen randomly with uniform probability.

In each generation, the population is ranked by fitness. Thus, those individuals in

the upper half of the rank will be selected to be mutated. At most one mutation is

applied to each selected individual in each generation. The mutation that will be applied

is chosen in the following way: whereas in every 5 generations one of the three mutations

is randomly chosen with uniform distribution, in the intervening generations, changing

a gene is the only mutation that can be chosen. A mutated individual is considered as

an offspring. If the offspring obtained after mutating a selected individual is not a valid

individual (that is to say, some operation of its sequence of genes is not defined for its

corresponding word), then the selected individual will be considered as the offspring.

The individuals in the lower half of the rank are replaced by the mutated indivi-

duals (the offspring). Selection will leave 500 individuals for the next generation. The

GA stops when the best individual of the population is, at least, 90% similar to the

environment.

Simulation results (see figure 6.2) show how the adaptation of the individuals to

the environment increases continuously. Frequently, a run ends up after some few

generations with a solution that approaches 95% of the environment. Furthermore, the

behaviour of the average complexity of the population is increasing. In particular, in

the first half of the generations, an increment of the complexity of the fittest individual

of the population can be observed and it correlates with the increment of the maxi-

mum fitness (similarity). That is to say, almost every time the fitness increases, the

complexity increases too. Thus, until this point, there exists a strong correlation be-

tween the fitness and the complexity of the best individual. Finally, when an individual

is found which equals the complexity of the environment, the complexity remains un-

changed while the maximum fitness continues increasing.
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Figure 6.2: Complexity and fitness shown by the genetic algorithm using

001110111010101101110101010100 as the environment. The graphics on the right and

the left axis respectively show the fitness and the complexity of the best individual in each

generation.

6.2 Complexity Dynamics in Evolving Populations of Cyclic

Automata

The results presented in this section are part of (69) in which I am first author1.

6.2.1 Introduction

Darwin described the process of natural selection more than 150 years ago. Although

natural selection does not guarantee that organisms will increase in complexity as

they evolve, it is apparent that the complexity of certain lineages has increased during

evolution (12; 47; 75). For that reason, measuring the tendency of the complexity

during the evolution is a problem that has been tried to be solved for many years by

artificial life researchers, (11). To study such a tendency, complexity needs to be both

rigorously defined and measurable (2).

Many scientists have modeled evolving artificial ecosystems that exhibit dynamics

comparable in some way to the dynamics of biological evolution to make a case for or

against a trend in the evolution of complexity. The main reason for this is that some

of the multiple features of biological systems, included complexity, can be explained by

1the other author is my supervisor and gave hints, suggestions, and comments
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using quantifiable measures over such artificial ecosystems. Partial differential equa-

tions systems have been the most common approach to ecological modeling despite

presenting a big number of limitations (mainly related to the difficulty of adding new

features and the requirement of deep mathematical knowledge to analyze them). As

alternative to these limitations, individual-based models (IbMs, for short) has been

extensively used in ecological modeling (see (13; 14; 15; 22; 37; 41; 42; 46; 91; 98; 101)),

mainly, since the review of Huston et al. appeared two decades ago, (51). IbMs can

simulate very complex populations due to the huge storage ability and processing speeds

available in nowadays computer simulations.

Different complexity measures have been considered in IbMs when the tendency

of the complexity has been studied. This is due to complexity is a complex concept

in itself. The term “complexity” presents so many variations that it is only valid in

specific situations. This means that measuring the complexity is an abstract estimation

that depends on the context in which it is used. Many papers that refer to comple-

xity in IbMs use the number of genes as measure of complexity, (52; 111). Although,

they usually obtain that under certain conditions the tendency of the complexity is

increasing, whether or not the number of genes in an organism’s genome is an appro-

priate measure of biological complexity has been questioned. In (109), it is mentioned

that the recent flurry of completed genome sequences, including our own, suggests that

this is not necessarily the case. Rather surprisingly, it turns out that the Caenor-

habditis elegans worm has 18, 424 genes in its genome, the Drosophila melanogaster

fruit fly 13, 601, the Arabidopsis plant about 25, 498, and humans about 35, 000.

The amount of information of the genome of an organism has been quantified using

the Shannon’s entropy, but this approach has a problem: an accurate calculation would

require unavailable information on fitness weight of each nucleotide in the genomic

DNA. A modified Shannon’s entropy has been used as complexity measure in (3; 84),

but still it is mentioned that it can be measured only approximately. More statistical

measures are collected in (38).

McShea presented complexity in (72) as a broad term covering four independent

types. For each type, some measures are described. This division makes more difficult

to study the tendency of the complexity. In (112), the complexity of individual tasks

is measured by using the shortest possible coding for an algorithm capable of resolving
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the tasks, that is to say, the algorithmic complexity. Since such a measure is not

computable, a rough measure of the algorithmic complexity is used.

A definition of complexity based on algebraic automata theory and a mathematical

axiomatization of complexity developed is proposed by Nehaniv in (82). Thus, the com-

plexity measure is defined as the number of levels in a hierarchical decomposition for

a given automaton. Since decompositions are not unique, the shortest possible decom-

position is chosen. The proposed definition has the benefit that it is mathematically

rigorous, however, determining the size of the shortest decomposition turns out to be a

very difficult problem. To avoid this problem, the holonomy decomposition method is

used, (36). It is a particular decomposition method that is computationally accessible

although in not the shortest decomposition.

Thus, it is seems that none of the proposed complexity measures provides a ri-

gorous method to address the problem of measuring the complexity. However, state

complexity over regular languages is a well-known and an objective complexity measure.

Since, independently of the chosen representation of a given regular language, the mi-

nimal deterministic finite automaton that represents it can be always deterministically

calculated, state complexity constitutes a rigorous complexity measure.

For that reason, as we explained before, we propose a formal framework in which

state complexity can be used. In this way, by using this rigorous complexity mea-

sure, objective studies of the complexity dynamics will be done. Thus, in the proposed

artificial ecosystem, a population of CURLs with low complexity is placed in an artifi-

cial ecosystem that is compounded of a set of CURLs (usually with high complexity)

randomly placed in a torus, we have called them subenvironments. The individuals

compete by inert (obtained from the subenvironments) and non-inert resources (depre-

dation between individuals).

Thus, in this section, we propose a IbM consisting of CURLs in which objective

studies of complexity and population dynamics can be done.

6.2.2 Description of the Model

In general lines, in the proposed model, individuals attempt to process resources from

the environment to get enough energy to leave offspring.
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6.2.2.1 Individuals

As we said before, an individual is a CURL L(w) where w ∈ Q. The genotype of an

individual L(w) is defined as in Section 6.1.4.1 by a vector v ∈ C ×Ok.

As we said before, all the genotypes are minimal CUDFAs.

6.2.2.2 Environment

In the proposed model, space is represented as a discrete two-dimensional torus where

its side length is a parameter in the model, D. Each point of the space can contain

at most one individual. According to a parameter Ne of the model, Ne CURLs are

randomly located in the space. They will provide the resources of the environment that

will be called inert resources. Each of them sets a local environment (subenvironment)

and has associated a natural number n. This natural number will be used to locate in

the environment the inert resources that will be provided by the subenvironment. We

will say that it is the derivation of the subenvironment.

By equation (2.3), we know that the set of strings that belong to a given CURL is a

subset of the natural numbers. Thus, Nc random natural numbers of each subenviron-

ment are randomly located in the environment according to a two-dimensional normal

distribution with mean and standard derivation the position and the derivation of the

corresponding subenvironment, respectively. We will say that each subenvironment has

generated Nc inert resources.

We will say that an individual L(w) processes a given inert resource, when the

inert resource is a natural number that belongs to the CURL L(w) represented by the

minimal CUDFA w. If an individual processes an inert resource, then the inert resource

is removed and the corresponding subenvironment generates another inert resource that

is randomly located in the same way as before.

6.2.2.3 Energy

Individuals gain and lose energy during evolution by processing resources and leaving

offspring.

Processing resources Let us see some definitions.
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Definition 21. Let w ∈ Q be a CUDFA and let L(w) be the CURL (individual)

represented by w. Given an inert resource n ∈ N, we say that L(w) processes n if

and only if n ∈ L(w).

An example can be seen in Figure 6.3, where black circles are the accepting states

of the automaton. The automaton transits in the counterclockwise direction.

Figure 6.3: Since the CURL represented by 01010000 is L(01010000) = {1+8k, 3+8k}k∈N

and 9 ∈ L(01010000), the individual L(01010000) processes 9.

Definition 22. Given an individual L(w) with w ∈ Q and an inert resource n ∈ N, we

define the energy consumed by L(w) when it attempts to process n as

Ec(L(w), n) = α
β

n

where α is the energy that the individual consumes when transits to a non-accepting

state (it is a parameter of the model) and β is the number of non-accepting states to

which the individual transits before accepting or rejecting the string of length n. We

define the energy acquired by L(w) from n as

Ea(L(w), n) = 1− Ec(L(w), n).

After attempting to process an inert resource, the energy of the individual will be

updated in the following way.

Definition 23. Given an individual L(w) with w ∈ Q and an inert resource n ∈ N,

the energy of L(w) after attempting to process n in the evaluation t is defined as

Et(L(w)) = Et−1(L(w))p(L(w), n)1/γ +R

where p(L(w), n) = 1− d(L(w), n) being d(L(w), n) the Euclidean distance between the

positions of L(w) and n, γ ∈ N is a parameter of the model and

R =

{
Ea(L(w), n) if n ∈ L(w)

−Ec(L(w), n) in other case

Note that the nearer the individual is to the resource, the smaller the amount of

energy that the individual loses in the journey to approach the inert resource is.
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Having offspring After an individual has attempted to process a resource, it will

try to leave offspring. This will be possible if it has enough energy to do it.

Definition 24. Given an individual L(w) with w ∈ Q, its number of descendants in

the evaluation t is defined as

NDt(L(w)) = [Et(L(w))]

where [x] is the nearest integer function.

If NDt(L(w)) > 0 for some individual L(w) in the evaluation t, then L(w) is

replaced by its offspring in the population. Descendants are mutated copies of their

predecessors (we will see this in the next section).

Let us suppose that an individual L(w) has p descendants {d1, . . . , dp} in the eva-

luation t, then

Et(di) =
Et(L(w))

NDt(L(w))

for any i = 1, . . . , p.

Offspring are randomly located in the environment according to a two-dimensional

normal distribution with mean the predecessor position and standard derivation
D

100
(that is to say an 1% of D). If the position that has been randomly assigned to a certain

descendant is already occupied by another individual, then the descendant dies.

6.2.2.4 Mutation Operations

Since descendants are mutated copies of the genotypes of their predecessors, let us

see the types of mutations that can be applied and their rates. As in the previous

section, since we have empirical evidences of crossover introduces a high disruption in

the descendants, mutation is the only genetic operation which is used in the GA.

Three types of mutation have been implemented: changing a gene, deleting a gene

and adding a gene. The position of the gene that will be mutated is selected with

uniform probability between the second and the last component of the vector that

represents the genotype of the individual (that is, the zygote can not be mutated). In

the case in which a gene is added or changed, the new gene will be chosen from O

randomly with uniform probability.

In order to obtain an descendant, at most one mutation is applied to the correspon-

ding predecessor. The mutation that will be applied is randomly chosen with uniform
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distribution. Once the operation has been chosen, it will be applied depending on its

application rate.

If the descendant obtained after mutating a selected individual is not a valid in-

dividual (that is to say, some operation of its sequence of genes is not defined for its

corresponding word), then the selected individual will be considered as the descendant.

6.2.3 Experiments

Matlab programming language has been used to implement the algorithm and simula-

tions have been performed in a computer cluster of 32 CPUs (2 GHz).

Nc has been settled to 100 (variations of this parameter have not significant effect

in the simulation results as processed inert resources are replaced by new ones). For

each subenvironment, its derivation is randomly generated in the range

{[D/50], [D/50] + 1, . . . , 2[D/50]}.

α has been settled to 0.5 (since smaller and higher values of α cause massive extinction

of the population with a higher probability). The application rates of the operations

are 1 in the case of the changing operation and 0.01 in the case of both the deleting and

the adding operations (since these are more disruptive than the changing operation). γ

has been settled to 2 (if γ = 1, then individuals do not need to be near to the resource

to get enough energy to leave offspring and if γ > 2, then the energy that individuals

lose in the journey to approach a resource is too much and hardly they get enough

energy to leave offspring).

Once Ne CURLs have been randomly located in the environment and Ne ·Nc natural

numbers have been generated by them, the initial population is generated. This consists

of 500 individuals such that their genotypes are vectors v ∈ C ×O (that is to say, only

one operation is applied over the zygote). Moreover, E0(L(w)) = 0 for any individual

L(w) in the initial population.

Each time, an individual is randomly chosen from the population. The selected

individual attempts to process a resource to get enough energy to leave offspring. After

processing a resource the individual gains energy, the inert resource is removed from the

environment and a new inert resource is generated by the same subenvironment that

generated the removed inert resource. Moreover, if the individual has enough energy
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to leave offspring, then its descendants will be included in the population and the pre-

decessor will be removed. In the case in which the individual has not enough energy to

leave offspring, the energy of the individual will be updated (according to definition 23)

and the set of inert resources in the environment does not change. Individuals with

negative energy are removed from the population. All this process, from the individual

is selected to its energy is updated and descendants (if they exist) are located in the

environment, will be called evaluation.

The algorithm will stop either when the size of the population does not increase in

20.000 evaluations or when the size of the population has increased, but the individuals

distribution remains almost the same.

In order to use the usual terminology of evolutionary algorithm, we will consider

that one generation has gone by when 1000 evaluations have been performed.

6.2.3.1 Simulation Results

Since individuals can only gain energy from inert resources, the individuals of the

population tend to assemble around the subenvironments. Thus, when there is a unique

subenvironment, then finally the whole population is concentrated in the same area

of the environment (around the unique subenvironment). This can be observed in

Figure 6.4, where the circle represents two standard deviations from the position of the

subenvironment (it accounts for about 95% of the inert resources that can be generated

by the subenvironment) and the black points are the individuals of the population.

Moreover, population size undergoes a big decreasing in the first generations and

after that, its behavior is increasing until it remains almost unchanged at the end (it can

be seen in Figure 6.5). This is due to both the spatial limitation (each point of the space

can contain at most one individual) and individuals that are far from subenvironments

need a lot of energy to cross the path to reach an inert resource.

The state complexity of a CURL is defined as the number of states of the minimal

CUDFA that represents it. Thus, we can study the behavior of the complexity of the

population during the evolution. We have observed that the behavior of the average

complexity is increasing (it can be seen in Figure 6.5).

Similar results have been obtained when Ne > 1. Figure 6.6 shows how the indivi-

duals are concentrated around the different subenvironments. Moreover, some subenvi-

ronments are empty due to none individual has been able to process the inert resources
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(a) (b)

(c) (d)

Figure 6.4: Figures a, b, c and d show generation 0, 2, 5 and 69, respectively, in an

experiment where D = 100 and Ne = 1.

generated by it in the first evaluations and the individuals which are fitted to other

subenvironments hardly can move far from them because they would lose energy in the

journey. In this case, although the average complexity and the population size have

the same behavior as when Ne is smaller, an increment in the population size and a

decrement in the average complexity have been observed. That is to say, the bigger the

number of subenvironments is, the slower the average complexity increases. We will

study this later.

Moreover, similar results can be observed in experiments in which D > 100.

In order to study the diversity dynamics, some preliminary studies of the dynamics

of the species during the evolution have been done. We say that two individuals belong

to the same species if and only if they are at least 90% similar. For this purpose, the

similarity measure for CURLs defined in (24) has been used. In general, it has been

obtained that the number of species increases during the evolution until it remains
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Figure 6.5: The graphics on the right and the left axis respectively show average com-

plexity of the population and population size during the evolution of the experiment shows

in Figure 6.4.

almost constant. In general, this behaviour is directly proportional to the behaviour of

the population size. This can be seen in Figure 6.7.

6.2.3.2 Inserting Depredation in the Model

In this section, we will introduce depredation in the model as a way of studying the

effects of having interactions between individuals. That is to say, individuals not only

are able to gain energy from inert resources, but also from processing other indivi-

duals. Therefore, we will say that individuals are non-inert resources. Thus, in this

case, there are two types of resources available in the environment: non-inert resources

(individuals) and inert resources (generated by the subenvironments).

Therefore, in this case, along with the processing of inert resources, an individual

L(w) can:
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(a) (b)

(c) (d)

Figure 6.6: Figures a, b, c and d show generation 0, 3, 10 and 136, respectively, in an

experiment where D = 100 and Ne = 10.

• attack another individual: L(w) attempts to process another individual (non-inert

resource) of the population.

• react before the attack of another individual: L(w) also attacks the individual

that is attacking it.

The previous definition of genotype is extended by adding two new genes related to

the predatory behavior of individuals. Now, the genotype of an individual L(w) is de-

fined by a vector v ∈ C×Ok×T 2 where T = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

T 2 defines the predatory behavior of L(w). The first component indicates the depre-

dation rate, that is to say, the probability of L(w) attempts to process either an inert

or a non-inert resource and the second component indicates the reaction rate, that is

to say, the probability of L(w) reacts before the attack of another individual.
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Figure 6.7: Population size and number of species in an experiment with ten subenvi-

ronments.

Thus, the genotype of an individual L(w) is a vector (x,O1, . . . , Op, t1, t2) of size

at least four where w = Op(. . . (O2(O1(x))) . . . ) with depredation rate t1 and reaction

rate t2.

For example, the individual L(011010101) with depredation rate 0.9 (it tries to

process mostly non-inert resources) and reaction rate 0.5 (it reacts only half the time

of being attacked) is represented by the vector (0,M1,1,0,1, I2,1,1, D5,3, 0.9, 0.5).

An individual L(w) attempts to process either an inert or a non-inert resource

depending on its depredation rate. Since, in this case, individuals can also gain energy

from non-inert resources, let us see some definitions of how to calculate it.

Definition 25. Let L(w) be an individual, with w ∈ Q, and let L(w′) be a non-inert

resource, with w′ ∈ Q. Let S = {ni ∈ N | ni ∈ L(w′) for any i = 1, . . . , δ}, i.e., S is

a sample set of L(w′) = {bi + |w′|k | bi ∈ B(w′), k ∈ N}, the numbers are randomly

chosen from {bi + |w′|k | bi ∈ B(w′), 1 ≤ k ≤ m} with uniform probability, where δ

and m are a parameters in the model. We define the energy consumed by L(w) when
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attempt to process L(w′) as

E′c(L(w), L(w′)) =

∑
n∈N Ec(L(w), n)

||N ||

where N = {ni ∈ M | ni /∈ L(w)}. We define the energy acquired by L(w) from L(w′)

as

E′a(L(w), L(w′)) =

∑
n∈AEa(L(w), n)

||A||
where A = M −N .

In the experiments, δ and m have been settled to 10 and 100, respectively. Higher

values of δ and m have not significant effects in the simulation results but the compu-

tation time increases noticeably. However, smaller values of δ and m promote that the

complexity of the individuals remains almost unchanged during the whole evolution,

that is to say, complex individuals hardly can emerge.

An individual L(w′) does react or not before the attack of another individual L(w)

depending on its reaction rate. If w′ = w, then nothing happens.

Definition 26. Given an individual L(w) and a non-inert resource L(w′), with w 6= w′,

a. if L(w′) does not react, then the energy of L(w) after attempting to process L(w′)

in the evaluation t is defined as

Et(L(w)) = Et−1(L(w))p(L(w), L(w′))1/γ +R

where

R =

{
E′a(L(w), L(w′)) if E′a(L(w), L(w′)) ≥ 0

−E′c(L(w), L(w′)) in other case

Moreover, if E′a(L(w), L(w′)) ≥ 0, then the individual L(w′) is removed from the

population.

b. if L(w′) reacts, then the energy of L(w) after attempting to process L(w′) in the

evaluation t and the energy of L(w′) after being attacked by L(w) in the evaluation

t are defined as

• if E′a(L(w), L(w′)) ≥ E′a(L(w), L(w′)), then

Et(L(w)) = Et−1(L(w))p(L(w), L(w′))1/γ + E′a(L(w), L(w′))

Et(L(w′)) = Et−1(L(w′))− E′c(L(w), L(w′))
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• if E′a(L(w), L(w′)) ≤ E′a(L(w), L(w′)), then

Et(L(w′)) = Et−1(L(w′)) + E′a(L(w), L(w′))

Et(L(w)) = Et−1(L(w))p(L(w), L(w′))1/γ − E′c(L(w), L(w′))

• if E′a(L(w), L(w′)) = E′a(L(w), L(w′)), then

Et(L(w)) = Et−1(L(w))p(L(w), L(w′))1/γ − E′c(L(w), L(w′))

Et(L(w′)) = Et−1(L(w′))− E′c(L(w), L(w′))

where d(L(w), L(w′)) is the Euclidean distance between the positions of L(w) and

L(w′).

We take note that the attacked individual, L(w′), is always stationary (the depreda-

tor approaches it), therefore, it does not lose energy by displacement. In Figure 6.8, an

example in which an individual L(w) acquires energy by processing a non-inert resource

that reacts can be seen.

Figure 6.8: The individual L(w) with w = 01010000 attacks the non-inert resource

L(w′) with w′ = 000111 and it reacts. S and S′ are the sample sets of L(w) and L(w′),

respectively. Thus, the energy of both individuals will be updated by using definition 26b.

Essentially, we divide the experiments with depredation into two groups:

• non-fixed rates: both the depredation and the reaction rate of the individuals in

the initial population are greater or equal to zero and can be mutated during the

evolution by the mutation operations.
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• fixed rates: both the depredation and the reaction rate of the individuals in the

initial population are greater than zero and fixed during the whole evolution.

Now, mutations will be applied in the following way. Let v be the genotype of an

individual L(w). As before, the position of the gene that will be mutated is selected

with uniform probability between the second and the last component of v. In the case

in which the selected position is between the second and the (| v | −2)-nd component of

v, the mutation is applied as showing before. However, in the case in which the selected

position is between the last two component of v, only the changing operation can be

applied and the new gene will be chosen from T randomly with uniform probability.

Thus, in this section, we will study some properties of the model when depredation

happens (either starting with individuals with rates greater than zero or with rates zero

but mutating them during the evolution).

In this case, individuals can gain energy from both inert and non-inert resources

(it is shown in Figure 6.9). For that reason, although the individuals continue placed

in the neighborhood of some subenvironments, they are not so condensed in the center

of them than before. The reason for this is that in this case, with depredation, some

of them do not need to go near to a subenvironment to find a resource as they can

attempt to process other individuals that are in their neighborhoods. However, there

are not isolated communities of only depredation, that means, it is necessary that in

the community both depredators and non-depredators coexist. In order to differentiate

the depredation rate of each individual of the population, we will use points of different

colors depending on the depredation rate of the individual. The used palette of colors

goes from blue to red passing for green that correspond to depredation rate values from

0 to 1, respectively.

Figure 6.10 shows the last generation (the behavior during the evolution is similar

to the case without depredation and for that reason is not shown) of an experiment in

which the same environment as in Figure 6.4 has been used, but in this case, both the

depredation and the reaction rate of the individual in the initial population are zero

and they are mutated during the evolution. It can be observed that the individuals

accumulation around the subenvironment is smaller and moreover, there are individuals

that are placed further from the subenvironment than before. Similar results has been

obtained in experiments where both the depredation and the reaction rate are greater

than zero in the initial population and they are mutated during the evolution.
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definition 26a is used
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Figure 6.9: The diagram shows how the energy of a selected individual L(w) is updated

where r, r′ ∈ [0, 1] are randomly generated in each evaluation.

Figure 6.10: Generation 76 of an experiment in which the same environment as in

Figure 6.4 has been used, but depredation has been introduced.

The behavior of population size is the same as in experiments without depredation

(see Figure 6.11). Moreover, the behavior of the average complexity of the individuals
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in the population is also increasing, but in this case, more complex individuals than

before are obtained (see Figure 6.11). That is to say, the non-fixed predatory component

propitiates individuals more complex. This will be studied later.

Figure 6.11: The graphics on the right and the left axis respectively show average com-

plexity of the population and population size during the evolution of the experiment shows

in Figure 6.10.

Similar results have been obtained when Ne > 1. Figure 6.12 shows the last

generation of an experiment in which the same environment as in Figure 6.6 has been

used, but in this case, both the depredation and the reaction rate of the individual in

the initial population are zero and they are mutated during the evolution. It can be

observed how, in this case, the individuals are located not only around the different

subenvironments. Moreover, although in the first evaluations individuals are coexisting

in a certain subenvironment, they have the possibility of moving into other subenvi-

ronments during the evolution. This is due to depredators do not need to be near to

a subenvironment to gain energy. In this case, more generations are necessary to the

population size stops growing. Moreover, as in the case without depredation, although
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the average complexity and the population size have the same behavior as when Ne is

smaller, an increment in the population size and a decrement in the average complexity

have been observed.

Figure 6.12: Generation 140 of an experiment in which the same environment as in

Figure 6.6 has been used.

In experiments with non-fixed depredation and reactive rate, we have observed that

the population evolves to an attractor. This attractor moves to the left in the phase

space (where the degrees of freedom are the average depredation rate and the average

reaction rate) when the number of subenvironments increases. Figure 6.13 shows how

in an experiment with Ne = 1 the attractor is the set in which the average depredation

rate is between 0.4 and 0.6 and the average reaction rate is between 0.5 and 0.7.

Finally, we have observed that when both the depredation and the reaction rate are

greater than zero in the initial population and fixed during the evolution, the nearer

the rates are to one, the smaller the average complexity of the population is. Moreover,

the higher the rates are, the more groups of individuals coexisting far away from the

subenvironments exist. Thus, the increasing of population size does not stop until the
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Figure 6.13: 3D and 2D histograms: average depredation rate vs average reaction rate.

Experiments with Ne = 1.
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whole space is completed and is much faster than before. This can be observed in

Figure 6.14 and Figure 6.15, where the same environment as in Figure 6.4 has been

used and both the depredation and reaction rate are one and fixed during the whole

evolution.

(a) (b)

(c) (d)

Figure 6.14: Figures a, b, c and d show generation 0, 2, 4 and 6, respectively, in an

experiment in which the same environment as in Figure 6.4 has been used, but a fixed

depredation rate has been introduced.

Moreover, we have observed a high percentage of massive extinctions when both

the depredation and reaction rate are greater than 0 and mainly, when they can be

mutated during the evolution.

6.2.3.3 Dynamics of the Complexity of the Population

In the previous sections, we have shown that the behavior of the average

complexity of the population is increasing. Let us see to what extent the complexity
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Figure 6.15: The graphics on the right and the left axis respectively show average com-

plexity of the population and population size during the evolution of the experiment shows

in Figure 6.14.

of the environment and the predatory behavior of individuals affect the complexity of

the population.

We can understand by complexity of the environment either the average complexity

of its subenvironments or the number of subenvironments that compose it. Figure 6.16

shows how the complexity of the subenvironments affects the complexity of the po-

pulation. Three different cases have been studied: complexity of the subenvironment

smaller than 300, between 300 and 700 and higher than 700. For each of them, the

mean of the average complexity in a set of 10 experiments with Ne = 1 is showed.

The results show that the more complex the environment is, the more complex the

individuals of the population are (although the difference is not very strong).

In the case in which we consider the number of subenvironments as measure of

the complexity of the environment, we have obtained that, in general, the bigger the

number of subenvironments is, the slower the average complexity increases (although,
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Figure 6.16: Average complexity of the population depending on the complexity of the

environment in experiments with Ne = 1.

as in the previous case, the difference is not very strong). It can be seen in Figure 6.17,

where ten different cases have been studied (from one to ten subenvironments). For

each of them, the mean of the average complexity in a set of 10 experiments is showed.

Finally, let us study to what extent the predatory behavior of individuals affects the

complexity of the population. Figure 6.18 shows that individuals are much more com-

plex when there exists depredation in the model (for a set of 10 different environments,

the mean of their average complexities in simulations with and without depredation is

showed).

6.2.4 Conclusions

In this section, an IbM consisting of CURLs has been presented. Two different strate-

gies have been proposed to study how the predatory behavior of individuals affects both

the complexity and population dynamics. That is to say, the effects of the interactions

between individuals in the model has been analyzed.
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Figure 6.17: Average complexity of the population depending on the number of suben-

vironments. A gray scale is used: the more subenvironments exist, the darker the line is.

Experiments in which there are from one to ten subenvironments have been used.

Although natural selection does not guarantee that organisms will increase in com-

plexity as they evolve, it is widely accepted that complexity of individual systems has in-

creased during evolution. In the presented model, an increasing behavior of the average

complexity of the population has been observed in experiments with and without

depredation. Moreover, it has been shown that individuals are more complex when

there exists depredation in the model. This could mean that coevolution directly

affects the emergence of complex individuals, although it is not the only reason for

that (since the complexity is also increasing in experiments without depredation).

To what extent the complexity of the environment affects the complexity of the

individuals has been also studied. As a result of the experiments, we have obtained

that there exists a strong correlation between the complexity of the population and

the complexity of the environment. To study this, we took into account two different
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Figure 6.18: Average complexity of the population depending on the predatory behavior

of individuals in experiments with Ne = 1.

measures of complexity of the environment. In the first one, we considered the average

complexity of its subenvironments and the results showed that the more complex the

environment is, the more complex the individual of the population are. In the second

one, we considered the number of subenvironments and the results showed that, in

general, the bigger the number of subenvironments, the slower the average complexity of

the population increases. This points out that the complexity of an individual is locally

affected by the surrounding subenvironment more that by the global environment.

Moreover, it has been proved that the predatory component also affects the complexity

of the individuals promoting a higher complexity of the individuals.

Concerning the population dynamics, the following results have been obtained in

experiments with depredation. The population evolves towards an attractor when both

depredation and reaction rate can be mutated during the evolution. This attractor

moves to the left in the phase space (where the degrees of freedom are the average
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depredation rate and the average reaction rate) when the number of subenvironments

increases (when there is only one subenvironment, then the attractor is the set in

which the average depredation rate is between 0.4 and 0.6 and the average reaction

rate is between 0.5 and 0.7). Studying whether the introduction of some changes in

the environment (that is to say, a dynamical environment) could change the position

of such an attractor in the phase space would be interesting. That is to say, studying

the stability of the population in a dynamical environment.

In section 6.2.3.1, some preliminary studies of the dynamics of the species is com-

mented. By using the framework that has been proposed in this section, studies on how

the number of species are affected by diverse factors could be done. This factors could

be either the predatory behavior of individuals or the complexity of the environment

or the existence of a dynamical environment, among others. Finally, studies of the

cumulative number of persisting species and the relative species abundance could be

also done.

Finally, we have pointed out that, by using the proposed framework, a variety of

experiments in Theoretical Ecology could be done in a rigorous way.
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Chapter 7

Conclusions

7.1 English Version

As it was said at the beginning, the main aim of this thesis was concerned with defining

a formal framework where the evolution of biological complexity can be studied in a

rigorous way. Throughout this thesis, it has been shown that such an aim has been

executed during these almost four years and moreover, in the process of defining that

framework, contributions to fields like formal language theory and evolutionary compu-

tation have been made. As it has been detailed previously, many of the contributions

of this thesis are supported by publications in international journals listed in the JCR

index and those non-published are in preparation to be submitted.

Before focusing in the particular contributions of each chapter, the two more rele-

vant aspects of the thesis are highlighted. On the one hand, ecological features have

been studied by introducing evolution through evolutionary computation in a field as

traditional as the formal language theory is. That is to say, proper elements from

evolutionary computation have been translated into formal language terms: CURLs

as phenotypes, CUDFAs as genotypes, sequences of operations preserving primitivity

as representation of such genotypes over which traditional genetic operations can be

applied, similarity measure as fitness function and for speciation, and so on. On the

other hand, the other even more important contribution comes from the fact that rigo-

rous studies of the evolution of the complexity can be done in the proposed framework.

This rigorous aspect is due to it counts on state complexity that is a well-known and

objective measure for CURLs. By using state complexity, we run away from the most
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common problem that papers dealing with complexity studies have: rigorous methods

to address the problem of measuring the complexity are not provided.

By using the description of CUDFAs by words over {0, 1}, where the zeros repre-

sent the non-accepting states of the automaton, and the ones represent the accepting

states of the automaton, a characterization of minimal CUDFAs has been presented in

Section 2.2: a CUDFA w ∈ {0, 1}+ is minimal if and only if w is a primitive word. This

introduces a novel relation between CUDFAs and primitive words. For this reason,

many properties of primitive words have been studied during this thesis. Since the set

of primitive words has been widely studied in the literature, these results (even isolated

from the evolutionary side of this thesis) are of interest for a big part of the formal

language community.

In spite of the high interest that primitive words cause, in the literature there

are only a small number of results concerning the closure of QV under operations.

In Section 5.2, some operations inspired by biological gene duplication that preserve

primitiviy of words have been defined. Essentially, from a given primitive word w, the

word ww′ is constructed where w′ is a modified copy of w or a modified mirror image

of w. The operations are chosen in such a way that in the case of a two-letter alphabet,

all primitive words of length ≤ 11 can be obtained from single letters. That is to say, a

large subset of binary primitive words can be obtained by using them. Obviously, for

the ultimate aim of this thesis (studying the evolution of the complexity), generating

the whole set of primitive words is not necessary.

Up to now, and despite the attention that the set of primitive words has attracted,

whether the language QV is context-free remains an open question. Thus, one of the

most interesting problems over primitive words is figuring out the classification of QV

in Chomsky’s hierarchy. For this purpose, different generative methods of QV have

been proposed in the literature, mainly grammatical methods. In Section 5.3, a non-

grammatical generative method of QV based on basic arithmetic operations has been

presented. This method not only provides a way of generating primitive words, but also

a relation between QV and number theory. Although the aim of this thesis is not the

classification of QV in Chomsky’s hierarchy, since basic arithmetic operations can be

formulated in a grammatical way, it has been mentioned that it is possible to convert

this method to a grammar that generates QV . Thus, this grammar could shed light

about the classification of the language QV .
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In order to study the evolution of the complexity, evolutionary computation has

been used to introduce dynamics in a population of CURLs. That is to say, genetic

operations have been applied over the genotypes to obtain changes which model the

evolution. The most common operations that are used in evolutionary systems are

the edit operations of substitution, deletion and insertion of a symbol. However, to

our knowledge, there are not many studies that analyze the disruptive effects of such

operations when they are applied over the genotypes. That is to say, representations of

the genotypes over which the operations cause low disruption are not proposed in most

of the cases. From our point of view, this is not logical for two reasons, one biological

and other computational: (1) in nature, the rate of fixation of those low-disruption

mutations is higher that the rate of fixation of those mutations that change the original

phenotype too much, (2) non-random search methods benefit from a low-disruption in

the application of operations to refine solutions. One of the main reasons why these

studies on disruption are not usually done is the lack of appropriate disruption measures.

In Chapter 4, a disruption measure for an operation over a word has been defined by

using the similarity measure for CURLs defined in Chapter 3. Thus, studies on the

disruption that edit operations produce when they are applied over the genotypes as

binary words can be done. Intuitively, the disruption of an operation O with respect to

a word w is a pair (a, b) with a, b ∈ R, where a is the portion of words that are accepted

by w and are not accepted by O(w), and b is the portion of words that are accepted

by O(w) and are not accepted by w. The results show that edit operations cause a

high disruption and consequently, not all words over {0, 1} can be obtained by iterated

applications of edit operations where each application is accompanied by low disruption.

Therefore, an extension of the edit operations has been proposed in order to reduce

the disruption. Two new operations (partial copy and partial elimination) inspired by

biological gene duplication with no disruption have been introduced. By combining

them with edit operations, all words over {0, 1} can be obtained by low disruption.

Thus, this seems to show to what extent biological gene duplication contributes to

reduce the disruption caused by mutations during evolution.

As we said in the previous paragraph, the disruption measure has been defined

by using the similarity measure for CURLs defined in Chapter 3. This measure has

been defined because the similarity measures that have been proposed in the literature

between regular set (such that Bodnarchuk, Baire, Hamming or information distance)
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cannot be applied here, since the following principle is not satisfied: sets are more

similar if they have more elements in common. Thus, the measure proposed in this

thesis computes the portion of words that are shared by two CURLs. It has also been

proved that it is an upper bound of the well-known Jaccard coefficient and the Sørensen

coefficient. The proposed measure was mainly defined because a measure that calculates

the disruption of genetic operations over the genotypes was needed. Moreover, how

well an individual (CURL) adapts to a given environment was also needed to study the

dynamics of the complexity during the evolution of such individuals and this can be

calculated by using this measure. In this thesis, such a similarity measure has also been

used in Chapter 6 to study the dynamics of the species. However, other applications,

such as grammatical inference and retrieval theory, can be found for this measure.

Finally, it has been proved that the dissimilarity measure for CURLs that has been

defined by using the proposed similarity measure is a semimetric distance. Moreover,

we have shown that both of them can be used also for URLs, although in this case the

dissimilarity measure is not a semimetric distance, but a symmetric distance.

Thus, we have identified all the necessary components for evolutionary computation

in formal language terms, in particular, we have a formal framework based on CURLs

in which objective studies on the evolution of the complexity can be done. The main

interest in such studies comes from the accepted idea that the biological complexity of

certain lineages has increased during evolution (although natural selection described by

Charles Darwin does not guarantee such an increasing). Although many scientists have

modeled evolving artificial ecosystems in order to make a case for, or against, a trend in

the evolution of complexity, most of these results have been questioned because the way

in which the complexity is calculated is not rigorous enough or even measurable (this

is the case of the number of genes, Shannon’s entropy, Kolmogorov complexity, and

others). In the framework proposed in this thesis, we have not this problem, since state

complexity can be used and it is a well-known and an objective complexity measure.

In order to study the tendency in the evolution of complexity, two preliminary studies

on the behavior of the complexity by using a simple framework have been shown in

Section 6.1. The first one uses a greedy algorithm and the edit operations over binary

words. The second one uses a genetic algorithm and the edit operations over sequences

of the operations that preserve the minimality. It has been observed that the behavior

of the complexity increases in both of them, but in the second approach, the correlation
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between the adaptation level (similarity) to the environment and the complexity of the

individual is stronger. Taking into account this result, and the fact that the minimality

of automata is preserved when the genetic operations are applied over these sequences

of operations (individuals with the same complexity have the same number of states),

the determination of representing the genotypes as sequences of operations preserving

primitivity was unavoidable.

Finally, since knowing the factors that propitiate such an increasing behavior of

the complexity is important, in Section 6.2, an IbM consisting of CURLs has been pre-

sented. Essentially, a population of CURLs with low complexity is placed in an artificial

ecosystem that is compounded of a set of CURLs (subenvironments) randomly placed

in a torus. The individuals compete by inert (obtained from the subenvironments) and

non-inert resources (depredation between individuals). By using this model, the effects

of the interactions between individuals and between the individuals and the environ-

ment have been analyzed. While the individuals tend to assemble around the suben-

vironments when there is not depredation in the model, they are placed further from

the subenvironments when depredation is introduced. In general, we have concluded

that the more predatory the model is, the smaller the concentration around the suben-

vironments. In both cases (with and without depredation), population size undergoes

a big decreasing in the first generations and after that its behavior is increasing until

it remains almost unchanged at the end. When both depredation and reaction rate

can be mutated during the evolution, we have observed that the population evolves

towards an attractor that moves to the left in the phase space when the number of

subenvironments increases. Concerning complexity, we have shown that there exists

a dependency between the complexity of the environment and the complexity of the

individuals. Thus, when we consider the average complexity of the subenvironments as

the complexity measure for the environment, we have obtained that the more complex

the environment is, the more complex the individuals are. On the other hand, when

we consider the number of subenvironments as the complexity measure for the environ-

ment, we have obtained that, in general, the bigger the number of subenviornments,

the slower the average complexity of the population increases. It can be understood as

the complexity of an individual is locally affected by the surrounding subenvironment

more than by the global environment. Moreover, it has been proved that the predatory
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component also affects the complexity of the individuals, obtaining more complex in-

dividuals when there exists depredation in the model. By using the similarity measure

defined in Chapter 3, some preliminary studies on the dynamics of the species have

been done (two individuals belong to the same species if and only if they are at least

90% similar). It has been shown that, in general, there exists a strong correlation

between the population size and the number of species.

By using the framework proposed in this thesis, a variety of experiments in Theo-

retical Ecology can now be proposed and performed rigorously.

7.2 Spanish Version

Como se dijo al principio, el objetivo principal de esta tesis era la definición de un marco

de trabajo formal donde la evolución de la complejidad biológica pudiera estudiarse de

una forma rigurosa. A lo largo de esta tesis, se ha podido comprobar que este objetivo

ha sido alcanzado en el transcurso de estos casi cuatro años y además, en el proceso

de definición de tal marco de trabajo, se han realizado diversas contribuciones en el

ámbito de la teoŕıa de lenguajes formales y de la computación evolutiva. Como ha sido

detallado anteriormente, muchas de las contribuciones presentadas en esta tesis están

avaladas por publicaciones en revistas internacionales indexadas en el JCR y aquellas

contribuciones aún no publicadas, están en preparación para ser enviadas.

Antes de centrarnos en las contribuciones particulares de cada caṕıtulo, señalaremos

los dos aspectos de mayor relevancia de esta tesis. En primer lugar, se han hecho experi-

mentos ecológicos mediante la introducción de evolución usando computación evolutiva

en un campo tan tradicional como es el campo de la teoŕıa de lenguajes formales. Es

decir, elementos propios de la computación evolutiva han sido definidos en términos

de lenguajes formales: CURLs como fenotipos, CUDFAs como genotipos, secuencias

de operadores que preservan primitividad como representación de tales genotipos sobre

las cuales se pueden aplicar los operadores genéticos tradicionales, medida de similitud

para los CURLs como función de bondad y para hacer estudios de especiación, etc. En

segundo lugar, la otra contribución, de mayor importancia si cabe, viene dada por el

hecho de que en el marco de trabajo propuesto pueden hacerse estudios rigurosos de

la evolución de la complejidad. Esta rigurosidad se debe a que la conocida y objetiva

medida de complejidad de estados definida para lenguajes regulares puede usarse como
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medida de complejidad en nuestros estudios. De esta manera, se evita el problema más

común que tienen la mayoŕıa de los art́ıculos que presentan estudios de complejidad:

no proporcionan métodos rigurosos para abordar el problema de medir la complejidad.

Gracias a la descripción propuesta de los CUDFAs como palabras binarias sobre el

alfabeto {0, 1}, donde los ceros representan los estados de no aceptación del autómata,

y los unos representan los estados de aceptación del autómata, en la Secion 2.2 se

presenta una caracterización de los CUDFAs mı́nimos: un CUDFA w ∈ {0, 1}+ es

mı́nimo si y sólo si w es una palabra primitiva. Este resultado introduce una relación

novedosa entre los CUDFAs y las palabras primitivas que ha provocado que en esta tesis

se estudien diversas propiedades de las palabras primitivas. Estos resultados (incluso

aislados de la parte evolutiva de esta tesis) son de interés para una gran parte de la

comunidad que estudia los lenguajes formales debido a que el lenguaje de las palabras

primitivas ha sido ampliamente estudiado en la literatura.

A pesar del gran interés que suscitan las palabras primitivas, el número de re-

sultados que pueden encontrarse en la literatura relativos al cierre de Q bajo ciertas

operaciones es pequeño. En la Secion 5.2, se han definido algunas operaciones inspiradas

por la duplicación biológica de genes que preservan la primitividad de las palabras. En

esencia, para una palabra primitiva w dada, se construye la palabra ww′ donde w′ es

una copia de w modificada o una copia espejo de w modificada. Las operaciones han

sido elegidas de tal manera que en el caso de alfabetos de dos letras, todas las palabras

primitivas de longitud ≤ 11 pueden ser generadas a partir de una sola letra. Es decir,

usando tales operaciones puede obtenerse un subconjunto grande de palabras primiti-

vas. Claramente, no es necesario generar el conjunto total de palabras primitivas para

alcanzar el principal objetivo de esta tesis (estudiar la evolución de la complejidad).

Hasta ahora, y a pesar de la gran atención que ha generado el conjunto de las

palabras primitivas, se desconoce si el lenguaje Q es o no independiente del contexto.

Asimismo, encontrar la clasificación de Q dentro de la jerarqúıa de Chomsky es de

gran interés. Con este propósito, una gran cantidad de diferentes métodos generativos

de Q han sido propuestos en la literatura, principalmente métodos gramaticales. En

la Secion 5.3, se ha presentado un método generativo de Q que no es gramatical y

está basado en operaciones aritméticas básicas. Este método no sólo proporciona una

manera de generar palabras primitivas, sino también proporciona una relación entre

Q y la teoŕıa de números. Aunque el objetivo de esta tesis no es la clasificación de Q
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dentro de la jerarqúıa de Chomsky, resaltamos que seŕıa posible convertir este método a

una gramática, ya que las operaciones aritméticas básicas pueden formularse de manera

gramatical. Esta gramática podŕıa contribuir a esclarecer la clasificación del lenguaje

Q.

Para el estudio de la evolución de la complejidad, es necesario introducir una

dinámica en una población de CURLs. La computación evolutiva es usada con este

propósito, es decir, se aplican operadores genéticos sobre los genotipos para obtener

los cambios que modelarán la evolución. Los operadores más comunes que se usan en

sistemas evolutivos son los operadores edit de substitución, eliminación e inserción de

un śımbolo. Sin embargo, hasta donde sabemos, no hay muchos estudios que analicen

el efecto disruptivo de estos operadores al ser aplicados sobre los genotipos. Es decir,

en la mayoŕıa de los casos, no se proponen representaciones de los genotipos sobre las

cuales los operadores causen una disrupción baja. Desde nuestro punto de vista, esto

no tiene sentido debido a dos razones, una biológica y otra computacional: (1) en la

naturaleza, la tasa de fijación de aquellas mutaciones que causan una disrupción baja es

más alta que la tasa de fijación de aquellas mutaciones que cambian mucho el fenotipo

original, (2) los métodos de búsqueda no aleatoria se benefician de una baja disrupción

en la aplicación de los operadores para refinar las soluciones. Una de las principales

razones por las que normalmente no se llevan a cabo estos estudios de disrupción es

la falta de medidas de disrupción apropiadas. En el Capitulo 4, se ha definido una

medida de disrupción para un operador sobre una palabra, para ello se ha usado la

medida de similitud para CURLs definida en el Capitulo 3. De esta manera, pueden

realizarse estudios sobre la disrupción que los operadores edit producen en los genoti-

pos (palabras binarias) que son objeto de estudio en esta tesis. De manera intuitiva,

se define la disrupción de un operador O con respecto a una palabra w como un par

(a, b) con a, b ∈ R, donde a es la porción de palabras que son aceptadas por w y no

por O(w) y b es la porción de palabras que son aceptadas por O(w) y no por w. Los

resultados muestran que los operadores edit causan una disrupción alta al ser aplicados

sobre los genotipos y por lo tanto, aplicándolos iterativamente no se pueden obtener

todas las palabras sobre el alfabeto {0, 1} con disrupción baja en cada aplicación de un

operador. Como estrategia para reducir la disrupción, se ha propuesto una extensión de

los operadores edit. Asimismo, se han propuesto dos nuevos operadores (copia parcial y

eliminación parcial) que están inspirados por la duplicación biológica de genes y no son
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disruptivos. Además, se ha demostrado que usándolos junto con los operadores edit,

se pueden obtener todas las palabras sobre {0, 1} con disrupción baja en la aplicación

de cada operador. Este resultado parece mostrar que la duplicación biológica de genes

reduce la disrupción causada por las mutaciones durante la evolución.

Como se ha mencionado en el párrafo anterior, la medida de disrupción propuesta

está definida usando la medida de similitud para CURLs definida en el Capitulo 3.

Esta medida de similitud ha sido definida ya que las medidas de similitud existentes

para conjuntos regulares (tales como la de Bodnarchuk, la de Baire, la de Hamming

o la relativa a la teoŕıa de información) no nos sirven. Esto es debido a que no satis-

facen el siguiente principio: dos conjuntos son más similares, si tienen más elementos

en común. Asimismo, la medida de similitud propuesta en esta tesis calcula la porción

de palabras que comparten dos CURLs dados. También se ha demostrado que esta

medida de similitud es una cota superior de los conocidos coeficientes de Jaccard y de

Sørensen. Como se ha explicado antes, esta medida fue definida porque era necesaria

una medida que calculara la disrupción de los operadores genéticos. Pero además, dado

que para estudiar la dinámica de la complejidad durante la evolución de una población

de individuos se necesita calcular cómo de bien adaptados están estos individuos a

un entorno dado, esta medida de similitud es también necesaria y puede ser usada

en este caso. Esta medida también es usada en la tesis para definir el concepto de

especies y estudiar su dinámica. Además de las aplicaciones que esta medida de simil-

itud ha tenido en esta tesis, existen otras muchas aplicaciones como son la inferencia

gramatical y la teoŕıa de la recuperación de información. Por último, se ha demostrado

que la distancia que puede definirse a partir de la medida de similitud propuesta es una

distancia semimétrica. Además, estas medidas también pueden usarse para los URLs,

aunque en este caso no es una distancia semimétrica si no una distancia simétrica.

En este punto, tenemos identificados todos los componentes necesarios para la com-

putación evolutiva en términos de lenguajes formales. En particular, tenemos un marco

de trabajo formal basado en CURLs en el cual pueden hacerse estudios objetivos sobre

la evolución de la complejidad. El principal interés en tales estudios viene de la idea

ampliamente aceptada de que, durante la evolución, la complejidad biológica de ciertos

linajes ha sido creciente (aunque la selección natural descrita por Charles Darwin no

garantiza tal crecimiento). Aunque muchos cient́ıficos han modelado ecosistemas arti-

ficiales evolutivos con el objetivo de posicionarse a favor o en contra de una tendencia
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en la evolución de la complejidad, la mayoŕıa de esos resultados han sido cuestiona-

dos porque la forma en la que se calculaba la complejidad no era lo suficientemente

rigurosa o incluso medible (este es el caso del número de genes, la entroṕıa de Shannon,

la complejidad de Kolmogorov, y otras). En el marco de trabajo propuesto en esta

tesis no tenemos este problema, ya que la complejidad de estados puede ser usada y

es una medida de complejidad conocida y objetiva. Para estudiar la tendencia en la

evolución de la complejidad, en la Sección 6.1 se muestran dos estudios preliminares

sobre el comportamiento de la complejidad mediante el uso de un marco de trabajo

muy simple. El primer estudio usa un algoritmo voraz y los operadores edit sobre

palabras binarias. El segundo estudio usa un algoritmo genético y los operadores edit

sobre secuencias de operadores que preservan la minimalidad. Se ha observado que el

comportamiento de la complejidad es creciente en ambos estudios, pero en el segundo la

correlación entre la similitud de los individuos con el entorno y la complejidad de estos es

mayor. En este punto, la determinación de representar los genotipos como secuencias de

operadores que preservan la primitividad se hizo aún más fuerte. Finalmente, y debido

a que es importante conocer los factores que propician tal comportamiento hacia una

complejidad cada vez mayor, en la Sección 6.2, se ha propuesto un modelo basado en

individuos formado por CURLs. En términos generales, una población de CURLs con

complejidad baja es colocada en un ecosistema artificial que está compuesto de un con-

junto de CURLs (subentornos) aleatoriamente posicionados en un toro. Los individuos

compiten por recursos inertes (obtenidos de los subentornos) y por recursos no inertes

(depredación entre individuos). Usando este modelo, se analizan los efectos de las in-

teracciones entre individuos y de las interacciones entre los individuos y el entorno.

Mientras los individuos tienden a agruparse alrededor de los subentornos cuando no

hay depredación en el modelo, cuando esta es introducida, los individuos se posicionan

más lejos de los subentornos. En general, mientras mayor es el nivel depredativo del

modelo, menor es la acumulación de los individuos alrededor de los subentornos. En

ambos casos (con o sin depredación), el tamaño de la población experimenta un gran

decrecimiento en las primeras generaciones y después su comportamiento es creciente

hasta que se estabiliza al final. Cuando tanto la tasa de depredación como la de reacción

pueden ser mutadas durante la evolución, se ha observado que la población evoluciona

hacia un atractor que se mueve a la izquierda en el espacio de fases cuando el número

de subentornos crece. Con respecto a la complejidad, se ha mostrado que existe una
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relación entre la complejidad del entorno y la complejidad de los individuos. De esta

manera, cuando se considera como medida de complejidad del entorno la media de la

complejidad de los subentornos, se obtiene que mientras más complejo sea el entorno,

más complejos son los individuos. Por otro lado, cuando se considera como medida

de complejidad del entorno el número de subentornos, se obtiene que mientras mayor

sea el número de subentornos, menor es la velocidad de crecimiento de la complejidad

de los individuos. Esto puede entenderse como que la complejidad de un individuo

está localmente afectada por el subentorno que lo rodea más que goblamente por el

entorno. Además, se ha probado que la componente de depredación también afecta a

la complejidad de los individuos, obteniendo individuos más complejos cuando existe

depredación en el modelo. Usando la medida de similitud definida en el Capitulo 3, se

han realizado estudios preliminares sobre la dinámica de las especies (dos individuos

son de la misma especie si y sólo si son similares, al menos, un 90%). Se ha mostrado

que en general existe una fuerte relación entre el tamaño de la población y el número

de especies, creciendo y estabilizandose practicamente en el mismo intervalo.

Además de todos los estudios presentados en la tesis, mediante el uso del marco de

trabajo propuesto, pueden realizarse una gran cantidad de experimentos ecológicos de

forma rigurosa.
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[32] P. Dömösi and G. Horváth. The language of primitive words is not regular: two

simple proofs. European Association for Theoretical Computer Science, 87:191–

194, 2005. 13, 28, 70
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