
Model Driven Development of

Agents for Ambient Intelligence

Inmaculada Ayala Viñas

Departamento de Lenguajes y Ciencias de la Computación

Universidad de Málaga

Supervised by

Mercedes Amor Pinilla and Lidia Fuentes Fernández

November 2013

mailto:ayala@lcc.uma.es
http://www.lcc.uma.es/
http://www.uma.es/

AUTOR: Inmaculada Ayala Viñas
EDITA: Servicio de Publicaciones de la Universidad de Málaga

Esta obra está sujeta a una licencia Creative Commons:
Reconocimiento - No comercial - SinObraDerivada (cc-by-nc-nd):
Http://creativecommons.org/licences/by-nc-nd/3.0/es
Cualquier parte de esta obra se puede reproducir sin autorización
pero con el reconocimiento y atribución de los autores.
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer
obras derivadas.

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de
Málaga (RIUMA): riuma.uma.es

A los que están y a los que no están.

La Dra. Doña Mercedes Amor Pinilla, Titular de Universidad, y la Dra. Doña

Lidia Fuentes Fernández, Catedrática de Universidad, ambas pertenecientes al área

de Telemática de la E.T.S. de Ingenieŕıa Informática de la Universidad de Málaga,

Certifican que Dña. Inmaculada Ayala Viñas, Ingeniera Informática, ha re-

alizado en el Departamento de Lenguajes y Ciencias de la Computación de la

Universidad de Málaga, bajo nuestra dirección, el trabajo de investigación corres-

pondiente a su Tesis Doctoral titulada:

Model Driven Development of

Agents for Ambient Intelligence

Revisado el presente trabajo, estimamos que puede ser presentado al tribunal

que ha de juzgarlo, y autorizamos la presentación de esta Tesis Doctoral en la

Universidad de Málaga.

Málaga, Septiembre de 2013

Fdo.: Mercedes Amor Pinilla

Titular de Universidad

Área de Telemática

Fdo.: Lidia Fuentes Fernández

Catedrática de Universidad

Área de Telemática

Acknowledgements

This thesis has been supported by a FPI fellowship and project TIN2008-

01942 (RAP), both funded by the Ministerio de Ciencia e Innovación.

Special Acknowledgements

Con la escritura de esta tesis doctoral se cierra un ciclo y es el momento

de dar las gracias a todos aquellos que han contribuido a ella de una

manera u otra.

En primer lugar, me gustaŕıa dar las gracias a mis padres y a mi her-

mano, a nivel académico no habéis estado en la primera ĺınea de batalla,

pero sin lo que he aprendido de vosotros no habŕıa llegado hasta aqúı.

En segundo lugar, a Mercedes y a Lidia. Sin estas dos magńıficas

mujeres la escritura de esta tesis no hubiera sido posible. Muchas

gracias por darme ánimos cuando los necesitaba y exigirme más cuando

era necesario.

A mis querid́ısimos compañeros del 3.3.3, tanto a los que veo todos los

d́ıas como aquellos que están por medio mundo. Sois un grupo de gente

maravilloso, en estos años he aprendido mucho de vosotros y hacéis que

todos los d́ıas de gusto llegar al trabajo.

A mis compañeros del grupo de investigación CAOSD, por su ayuda,

enseñanzas y sabios consejos. Un agradecimiento especial para Miguel

Aragüez y a José Luis Barreche por su ayuda con las implementaciones.

A mis niñas de Arriate y a mis niñas de Málaga, por su amistad.

A mi familia por ser grande, divertida y llena de gente estupenda.

Thank you to Franco Zambonelli and the members of the Agents and

Pervasive Computing Labs (Marco, Laura, Gabriella and Alberto) for

accepting me in Reggio Emilia and making my stay there a great plea-

sure.

Thank you very much to my friends from Reggio Emilia (Italian and

Spanish) for their hospitality.

A José Luis Reyes y a Rafael Gutiérrez, por ayudarme con todos los

papeles que he tenido que rellenar durante estos cuatro años y sacarme

de algún ĺıo.

Por último a Joaqúın, el más inteligente de los secuaces y mi incondi-

cional compañero de aventuras. En esta tesis no cabŕıan los motivos

para darte las gracias, pero sobre todo, muchas gracias por no rendirte

nunca. Me inspiras todos los d́ıas.

Contents

Contents xi

List of Figures xv

List of Tables xix

Nomenclature xxiii

1 Introduction 1

1.1 Ambient Intelligence: motivation and challenges 3

1.2 Overview . 7

1.3 Contributions . 12

1.4 Structure of the Thesis . 14

2 Background 17

2.1 Ambient Intelligence . 17

2.1.1 AmI applications . 19

2.1.2 Ambient Intelligence characteristics 21

2.1.3 Use of agents in AmI systems 22

2.2 Agent technologies for AmI systems 24

2.3 Self-management . 28

2.4 Model Driven Development and Agents 30

2.4.1 Foundations of Model Driven Development 31

2.4.2 Metamodels for agents . 32

2.4.3 Model Driven approaches for agents 34

2.4.4 Model Driven Development technologies 36

xi

CONTENTS

2.4.4.1 The Ecore languague 36

2.4.4.2 The ATL language 38

2.4.4.3 The xPand language 40

2.5 Aspect Oriented Software Development 41

3 A metamodel for self-managed agents 43

3.1 Case study . 43

3.2 The Pineapple viewpoints . 48

3.3 Modeling of the agent-based application 49

3.3.1 Multi-agent system design in Pineapple 51

3.3.2 Design and validation of the self-management 55

3.3.2.1 Organizations for self-management 56

3.3.2.2 Policies using APPEL notation 58

3.3.2.3 Actions for self-management 62

3.4 Summary . 64

4 From Pineapple to MalacaTiny 67

4.1 The MalacaTiny metamodel . 67

4.1.1 Agent modeling . 68

4.1.2 Aspect modeling . 70

4.1.3 Self-Management modeling 75

4.2 From Pineapple to MalacaTiny . 76

4.2.1 Generating agents . 81

4.2.2 Generating aspects . 84

4.2.3 Generating self-management 87

4.3 Summary . 89

5 Code generation of MalacaTiny agents 91

5.1 The MalacaTiny agents implementation 91

5.1.1 The core agent classes . 93

5.1.1.1 The Mediator class of MalacaTiny 93

5.1.1.2 The Agent class of Goal-Oriented MalacaTiny . . . 95

5.1.2 Aspects and aspect weaving 96

5.1.2.1 Aspects weaving of MalacaTiny 97

xii

CONTENTS

5.1.2.2 Dynamic weaving of Goal-Oriented MalacaTiny . . 100

5.1.3 Implementation of the Self-management properties in Mala-

caTiny . 101

5.1.3.1 Implementation of the SelfManagement class of Mala-

caTiny . 104

5.1.3.2 Implementation of Self-management functions in

Goal-Oriented MalacaTiny 104

5.2 Code generation process of the MalacaTiny agents 110

5.2.1 Code generation of the internal architecture of agents 111

5.2.2 Code generation of aspects 113

5.2.3 Code generation of self-management 116

5.3 Summary . 120

6 The communication concern 123

6.1 The Blue agent platform . 123

6.2 The Sol Agent platform . 126

6.2.1 An agent platform for AmI applications 127

6.2.1.1 The Sol agent platform services 127

6.2.1.2 Managing Groups at Sol 131

6.2.1.3 Extending the MTS to support multicast 134

6.2.1.4 Services for MAS administrator 136

6.2.2 Supporting interoperability between heterogeneous devices . 136

6.2.2.1 Supporting interoperability in the agent infrastruc-

ture . 138

6.2.2.2 The self-configurable communication concern . . . 139

6.3 Summary . 143

7 Validation 145

7.1 Degree of automation . 145

7.2 Validation of MalacaTiny agents . 150

7.2.1 Resource consumption . 150

7.2.2 Scalability . 153

7.2.3 Performance . 155

xiii

CONTENTS

7.3 Performance of self-management functionality 157

7.4 Performance of the Sol agent platform 160

7.4.1 Interoperation between heterogeneous agents 160

7.4.2 Group communication . 163

7.5 Summary . 166

8 Conclusions 167

8.1 Summary and conclusions . 167

8.2 Publications . 170

8.3 Lessons learned . 173

8.3.1 Model Driven Engineering 173

8.3.2 Integration and Interoperability 174

8.4 Future work . 175

Appendix A: Resumen 179

A.1 Inteligencia ambiental: motivación y retos 181

A.2 Visión general . 186

A.3 Contribuciones . 191

A.4 Estructura de la tesis . 193

Appendix B: Conclusiones 197

B.1 Resumen . 197

B.2 Publicaciones . 200

B.3 Lecciones aprendidas . 203

B.3.1 Ingenieŕıa Dirigida por Modelos 203

B.3.2 Integración e Interoperabilidad 204

B.4 Trabajo futuro . 205

References 209

xiv

List of Figures

1.1 Overview of the MDD process of agents for AmI 8

2.1 The MAPE-K control loop. 29

2.2 Overall picture of the MDD process of the DSML4MAS approach. . 35

2.3 Metamodel of the Ecore metamodel. 37

2.4 Properties that cut across several modules [Walls and Breidenbach,

2005]. 41

3.1 Plane of the room 2 of the “Museo de la Informática”. 45

3.2 Modeling process of the MAS using the Pineapple metamodel. . . . 50

3.3 UML class diagram corresponding to the MAS viewpoint. 52

3.4 UML class diagram corresponding to the Interaction viewpoint. . . 54

3.5 UML class diagram corresponding to the Behavior viewpoint. . . . 55

3.6 Relationship between the Self-management and base metamodel

viewpoints. 56

3.7 Metamodel for Policy concept using APPEL notation. 59

3.8 Metamodel for SMPlan concept. 63

3.9 UML state machine corresponding to the SMPlan of the Task Al-

location policy. 64

4.1 UML class diagram of the MultiAgentSystem concept in the Mala-

caTiny metamodel. 68

4.2 UML class diagram of the Agent concept in the MalacaTiny meta-

model. 69

xv

LIST OF FIGURES

4.3 Fragment of the modeling in XMI of the SecurityAgent in the Mala-

caTiny metamodel. 71

4.4 UML class diagram of the Aspect concept in the MalacaTiny meta-

model. 73

4.5 Fragment of the modeling in XMI of the RequestRoomCondition

coordination aspect and the SendRoomConditionRequest plan in the

MalacaTiny metamodel. 74

4.6 UML class diagram of the SelfAdjusting concept in the MalacaTiny

metamodel. 75

4.7 Fragment of the modeling in XMI of the SelfAdjusting aspect and

the RequestLightMonitoringPlan in the MalacaTiny metamodel. . . 77

4.8 The overall picture: MDE straight forward approach (DSML4MAS)

on the left hand side and from Pineapple to MalacaTiny on the right

hand side. 79

5.1 UML class diagram of the internal design of MalacaTiny for MIDP

devices. 94

5.2 UML class diagram of the SensorAgent. 95

5.3 UML class diagram of the internal design of Goal Oriented Mala-

caTiny. 96

5.4 Self-management loop for SecurityAgent. 97

5.5 UML class diagram for aspects in MalacaTiny for MIDP devices. . . 98

5.6 Graphical schema of the aspect weaving process example for re-

sponse time monitoring in VisitorAgent. 108

5.7 State Transtion Diagram of the self-management strategy for Secu-

rityAgent. 110

6.1 UML class diagram of the distribution aspect for Bluetooth in Mala-

caTiny. 126

6.2 Schema of the communication in the Sol agent platform 129

6.3 UML class diagram of the Sol agent platform. 130

6.4 Visitor user interface for the reception of notifications. 132

6.5 UML sequence diagram of the joining of an agent to a group in Sol. 134

xvi

LIST OF FIGURES

6.6 Interface for the visualization and management of groups in the Sol

agent platform. 137

6.7 UML class diagram of the SolPlugin 140

6.8 UML sequence diagram of sending a message to a group in Sol. . . 143

7.1 Memory occupation (left) and power consumption (right) averages

for IdleAgent. 151

7.2 Memory occupation (left) and power consumption (right) for ChattyA-

gents during reception. 152

7.3 Memory occupation (left) and power consumption (right) for ChattyA-

gents during sending. 153

7.4 Memory occupation with different numbers of coordination aspects. 154

7.5 Times (in milliseconds) for T3 for different numbers of agents. . . . 159

7.6 MalacaTiny agent acting as a proxy between agents deployed in Sol

y Jade-Leap agent platforms. 162

7.7 Times (in milliseconds) for the T3 task for different numbers of agents.164

1 Visión general del proceso MDD para agentes de entornos AmI . . . 187

xvii

LIST OF FIGURES

xviii

List of Tables

2.1 Technological issues in AmI systems. 18

2.2 Agents for AmI systems . 27

3.1 Self-management policies for the WSN. 47

3.2 APPEL syntax. 60

4.1 Mapping process between the Pineapple metamodel and agent con-

cepts from MalacaTiny metamodel 82

4.2 Mapping process between the Pineapple metamodel and aspect con-

cepts from MalacaTiny metamodel 85

4.3 Mapping process between the Pineapple metamodel and self-managment

concepts from MalacaTiny metamodel 87

7.1 Memory-footprint of Jade-Leap and MalacaTiny agents in Android

devices for resource consumption tests in KiloBytes. 153

7.2 Average and standard deviation for message sending and reception

in MIDP devices in milliseconds. 155

7.3 Average and standard deviation for message sending and reception

in Android devices in milliseconds. 155

7.4 Average and standard deviation for FIPA-Query protocol execution

in MIDP devices in milliseconds. 156

7.5 Average and standard deviation for FIPA-Query protocol execution

in Android devices in milliseconds. 156

7.6 Average round-trip delay time (in milliseconds), heap memory (in

MegaBytes) for the proxy experiment. 163

xix

LIST OF TABLES

xx

Nomenclature

Acronyms

L2TS Doubly Labeled Transition System

AAL Ambient Assisted Living

AF Autonomic Function

AFME Agent Factory Micro Edition

AM Autonomic Manager

AmI Ambient Intelligence

AMS Agent Management Service

AOP Aspect Oriented Programming

AOSD Aspect-Oriented Software Development

AOSE Agent-Oriented Software Engineering

CBSE Component Based Software Engineering

CIM Computation Independent Model

DF Directory Facilitator

ECA Event Condition Action

EMF Eclipse Modeling Framework

xxi

Nomenclature

FSM Finite State Machine

GMF Graphical Modeling Framework

GMS Group Management Service

GUI General User Interface

IM Intelligent Museum

IPMT Inter Platform Message Transport

ISTAG IST Advisory Group

ITS Intelligent Transport System

L2CAP Link Control and Adaptation Control

LOC Line Of Code

M2M Model-To-Model

M2T Model-To-Text

MAPE Monitor Analyze Plan Execute

MAS Multi-Agent Systems

MDA Model Driven Architecture

MDD Model-Driven Development

MOF Meta Object Facility

MTS Message Transport Service

NE Number of Elements

OMG Object Management Group

OO Object Orientation

PAN Personal Area Network

xxii

Nomenclature

PIM Platform Independent Metamodel

PSM Platform Specific Metamodel

RFCOMM Radio Frequency Communications

SDP Service Discovery Protocol

SRS Strategy Realization System

STD State Transition Diagram

UML Unified Modeling Language

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

Other Symbols

mA milliamperes

ms milliseconds

xxiii

Nomenclature

xxiv

Chapter 1

Introduction

Ambient Intelligence (AmI) proposes a new vision of technology that encourages

new, more natural relationships between people and electronics becoming invisi-

ble through its presence in devices embedded in our natural surroundings. AmI

systems, are naturally distributed and normally composed of a myriad of devices

which are interconnected through a great diversity of communication technolo-

gies, posing new challenges that need to be addressed with appropriate software

technologies. In this thesis we explore the applicability of software agents, model

driven and aspect-oriented development technologies to improve the development

of AmI systems.

Software agents and Multi-Agent Systems (MAS) are considered good options

for the development of applications in the AmI domain [Sadri, 2011]. The intel-

ligent, reactive, proactive and social behavior of software agents perfectly meets

the requirements of AmI systems. However, in order for agent-based computing

to become a widely accepted technology for developing AmI systems it would be

advantageous to ease both the design and implementation of AmI systems with

agents, by providing adequate development tools. These tools should automate

some of the developer’s tasks, augmenting the production of applications for AmI

systems.

Model-Driven Development (MDD) [Stahl and Völter, 2006] is an approach for

software development that promotes both the use of models to formally represent

domain-specific concepts, and the automation of software development tasks by

1

1. INTRODUCTION

means of model transformations. These models follow a syntax defined by artifacts

called metamodels. Although there are already several metamodels for agents,

AmI systems have particular characteristics that should be modeled from the early

phases of the software’s development. The most relevant ones are the necessity

of AmI systems to be aware of some properties of their environment (i.e. context

awareness) and to be able to react autonomously to changes in those properties

(i.e. self-management) [Kephart and Chess, 2003].

We have defined a model-driven process adapted to the necessities of the de-

velopment of MASs with self-management capacities and able to be executed in

AmI devices, such as mobile phones or sensors. In this thesis we focus on a fully

distributed and decentralized architecture of MASs, by embedding agents in het-

erogenous AmI devices. The main motivation for encouraging the embedding of

agents in lightweight devices is that it is possible to adapt agents functionality

to the specific hardware and the scarcity of computational resources. Recently,

some of the most well-known agent approaches have released new versions specif-

ically for lightweight devices (e.g. Jade-Leap [Bellifemine et al., 2001; Bergenti

and Poggi, 2002], µFIPA-OS [Laukkanen et al., 2002]) and new ones have been

proposed (e.g. Andromeda [Agüero et al., 2009], MAPS [Aiello et al., 2009]). How-

ever, they present serious limitations and deficiencies in coping with the diversity

of devices and communication protocols. These limitations are addressed as part

of this thesis.

MDD helps us to separate the platform independent properties from the plat-

form specific, so it is possible to model AmI special properties irrespective of the

target execution agent platform. But, in AmI systems the generation of agents is

needed for different kinds of devices (e.g. mobile phones, different kind of sensors,

. . .), with a diversity of operating systems (e.g. Android, SunSPOT, TinyOS, . . .)

and interconnected through different communication protocols (e.g. WiFi, Zigbee,

. . .). So, in order to improve the MDD process we have used Aspect-Oriented

Software Development (AOSD) [Filman et al., 2004] concepts mainly to separate

the communication-related concerns specific to each AmI device.

2

1.1 Ambient Intelligence: motivation and chal-

lenges

The 20th century was replete with fiction stories that reflected the visions of dif-

ferent writers and film-makers about how our lives would be in the present mil-

lennium. Well-known writers such as Philip K. Dick or Isaac Asimov captured

different visions of the future, the technological development of which embarrasses

scientists and engineers nowadays. Where are the robots that respect the three

laws of robotics? Where is HAL 9000? Where is my unmanned car? Of course,

they are closer to us than ever, but still far off. Robots do not have a conscience-

ness that makes these laws necessary, but it is already a reality that they can for

example, assist the elderly in their daily lives [Pollack et al., 2002]. We do not have

psychopathic killer computers like HAL 9000, but we do have systems that can

self-configure, taking into account our preferences thereby making our homes more

comfortable [Hagras et al., 2004]. Unmanned cars are not on the streets, but the

Google driverless car [Guizzo, 2011] and DARPA Robotic Challenge1 show that

these vehicles could become a reality in our daily lives. The objective of AmI is

to make this no longer science fiction, but rather a reality.

Aligned with this vision, the AmI term was coined by the IST Advisory Group

(ISTAG) in 2001 in [Ducatel et al., 2001] and later revised in [Ducatel et al., 2003].

These technical reports provide a set of scenarios where AmI has an important role

in making our lives more comfortable and safer. In these reports the role of agent

technology in accomplishing this vision is highlighted. Additionally, they stress

the existing need to adapt agent technology to this new environment composed of

heterogeneous devices connected through heterogeneous networks. So, for agent-

based computing to become a widely accepted technology for developing AmI

systems, it is necessary to deal with some specific challenges.

C1 Modeling agents for AmI systems: The complexity of programming with

agent technologies for lightweight devices should be alleviated by providing

the capacity to express AmI domain concepts at a higher level of abstrac-

tion and by providing adequate development tools that automate some of

1http://www.theroboticschallenge.org/

3

http://www.theroboticschallenge.org/

1. INTRODUCTION

the developers tasks. The purpose of these tools is to simplify the agent

programming, augmenting the production of applications for AmI systems,

regardless of the platform specific characteristics (e.g. device type, com-

munication protocol or wireless technology). As we have discussed in the

introduction, MDD seems to be the most suitable technology to address this

challenge. Some approaches have already proved the benefits of MDD in

agents [Agüero et al., 2009; Hahn et al., 2009; Pavón et al., 2006]. With

MDD it is possible to design an agent-based AmI system specifying high

level concepts in a platform-independent agent model (focusing on the do-

main model), and later automatically transform it for different implementa-

tion models, bridging the gap between design and implementation. So, one

challenge is to propose novel MDD processes for the automatic generation

of agents that can be executed in heterogeneous AmI devices. However, the

application of this solution to develop agents for AmI systems presents the

following challenges regarding the MDD process:

C1.1 Facilitate the high level modeling of AmI features: Surveys of AmI

technologies [Cook et al., 2009; Sadri, 2011] shows that most current

agent-based AmI systems provide ad hoc solutions, without considering

the high level modeling of AmI properties. In an MDD process these

domain specific properties should be specified as part of a metamodel.

This metamodel should model both the generic properties of agents

and the AmI specific characteristics. Although there are many agent

metamodels (e.g. PIM4Agents [Hahn et al., 2009], FAML [Beydoun

et al., 2009],. . .), rich enough to represent the domain specific concepts

of different application domains, they have to be extended in order to

incorporate the specific properties of AmI environments, like context

awareness or self-management.

C1.2 Facilitate the extensibility of the MDD process: The generation process

of agents must consider the continuous emergence of AmI devices with

new operating systems (e.g. most recently, Android) and the agent

platforms for these devices. So, a crucial requirement for an automatic

generation process of agents for AmI, is to facilitate the extensibility

4

of the process to incorporate new AmI technologies. The challenge

is to define a process for the automatic generation of agents capable

of being executed in diverse lightweight agent platforms from a single

domain model, rather than defining several transformation processes for

different target agent platforms (e.g. Jade-Leap or µFIPA-OS).

C2 Efficient embedding of agents in heterogeneous AmI devices: Ap-

proaches based on the embedding of agents in AmI devices usually propose

ad-hoc solutions, normally specific to a particular AmI domain (e.g. AAL).

The advantages provided by agents embedded in devices: (i) agents provide

services customized to a devices resources [Stock et al., 2007]; (ii) agents

encapsulate private data that must be hidden from other agents in the MAS

[Muñoz et al., 2003] (e.g. privacy of critical data); (iii) to vary components

(i.e. agents) of the architecture without modifying the architecture of the

system [Cook et al., 2006]; (iv) it can be considered a more flexible approach

to model open systems, because it enables modeling genuine decentralized

MASs. So, in this thesis we focus on a decentralized approach, where agents

are embedded in heterogenous devices, which communicate through a variety

of communication protocols; whose execution should be efficient, considering

the scarce resources of some AmI devices (e.g. sensors). In order to cope

with this challenge, several specific challenges were identified:

C2.1 Manage device and agent platform heterogeneity: The majority of AmI

systems are composed of a heterogeneous set of devices. But, current

agent technologies for small devices normally only run in some of them,

and cannot interact with agents deployed in different agent platforms

[Ayala et al., 2013b]. This is an important limitation, since it prevents

the development of some AmI systems using agents, in the case that

an AmI device is not supported by the chosen agent platform. Also, it

should be possible for agents of the same MAS to be executed and able

to interact through heterogeneous agent platforms and devices.

C2.2 Cope with wireless network diversity: Normally AmI devices can in-

teract through different wireless technologies. For example, nowadays,

5

1. INTRODUCTION

most mobile phones include WiFi, Bluetooth or IrDA interfaces. Cur-

rent agent platforms for AmI are limited by the use of only one network

interface, and are not designed to be easily extended to adopt new

wireless technologies [Bellifemine et al., 2001; Muldoon et al., 2006].

C2.3 Achieve efficiency of the generated code: In an AmI system based on

agents, agent execution in lightweight devices, such as smartphones,

tablets or sensors, with a limited set of resources must be possible.

Then the code generation process for a given target agent platform

must manage these limitations in order to produce resource efficient

code, particularly in regard to energy.

C3 Self-managed agents: Normally, the majority of AmI devices show symp-

toms of degradation, such as energy loss or failure of some network nodes,

which requires explicit management action, for example saving energy to

guarantee the system’s survival. So, self-management is of great importance

to AmI systems. But, the main challenge is to achieve a seamless integra-

tion of the natural autonomy property of agents and the self-management

capacity required by AmI systems. But, where and how the self-management

property should be incorporated inside agents are specific challenges that are

addressed in this thesis:

C3.1 Decentralized self-management The highly decentralized and embedded

nature of AmI devices makes it hard to enforce some forms of centra-

lized direct control over each of the networked devices. This makes

traditional centralized approaches that use one agent, or a fixed set of

agents to perform any kind of self-management task, inadequate and

economically unfeasible. So, the challenge here is to propose innova-

tive decentralized solutions for self-management. The proposed solution

should consider that in AmI, simple devices (e.g. a sensing unit) coexist

with sophisticated ones (e.g. tablets), so the challenge is to generate

different kinds of self-management solutions adapted to the necessities

and hardware resources of each device.

C3.2 Modeling and implementing self-managed agents The challenge is to

6

provide AmI system designers with high level abstractions to explicitly

specify self-management politics as part of the source metamodel of

the MDD process. The advantages of achieving this challenges are: (i)

explicit modeling of self-management property to improve the reason-

ing capacity about self-management and its relationship with the rest

of the concerns considered in agent models; (ii) the designer does not

have to worry about the implementation details of self-management as

part of the agent, since its functionality is automatically generated by

the MDD process as stated Challenge C1; (iii) it is possible to check

the self-management policies, in order to ensure they are correct before

deploying them. However, current agent metamodels lack explicit mod-

eling mechanisms and concepts to adequately cope with the modeling

of this feature [Bernon et al., 2005; Beydoun et al., 2009].

1.2 Overview

In keeping with C1, we have defined an MDD process that automatically derives

agents ready to be embedded in a variety of AmI devices, which can interoperate

through a set of FIPA compliant agent platforms and different communication

protocols (C2); and optionally with the capacity of self-management, specially

taking into consideration the limited resources normally available in AmI devices

(C3).

Figure 1.1 gives an overview of our MDD process. At the modeling level (the

top of Figure 1.1, label Modeling), in order to address C1.1 we have defined

the Platform Independent Metamodel (PIM), Pineapple, which encapsulates both

those concerns specific to MAS (e.g. interaction protocols) and concepts related

with the self-management property (Challenge C3). The self-management pro-

perty is modeled separately from the MAS concerns, by means of policy spec-

ification languages (addressing Challenge C3.2). The basis of Pineapple is the

PIM4Agents metamodel, which tries to unify the most common agent-oriented

concepts [Hahn et al., 2009]. We have significantly extended the PIM4Agents meta-

model with specific modeling elements that facilitate the design of self-management

capabilities. These modeling elements are inspired by the APPEL policy language

7

1. INTRODUCTION

Figure 1.1: Overview of the MDD process of agents for AmI

8

[Turner et al., 2009] and are contained in a new viewpoint devoted to the self-

management. So, the first step of our MDD process, is the modeling of an AmI

system using Pineapple. Note that, as we explained in C3.1, a single MAS can

be composed by agents with different self-management capacities. So the specifi-

cation of the self-management viewpoint depends on the specific self-management

requirements of the AmI device where the agent is to be deployed.

Challenge C1.2 in our process is addressed by the definition and implementa-

tion of a Platform Specific Metamodel (PSM) of a platform-neutral agent model

(MalacaTiny), i.e. an agent model not dependent on a specific agent toolkit/a-

gent platform. The use of MalacaTiny simplifies the MDD process compared with

other model driven solutions for agents. Typical MDD processes for agents require

two transformation processes, i.e. a model-to-model (M2M) and a model-to-text

(M2T) , for each target agent model of the process [Gascueña et al., 2012] (e.g.

Jade-Leap metamodel). In our solution, instead of generating an agent that can

only run in one agent platform (e.g. in Jade-Leap) our process generates agents

capable of being executed in any FIPA-compliant agent platform for lightweight de-

vices. So, we have simplified the MDD process as we only need two transformation

processes, independently of the number of target agent platforms. The platform

neutrality of the MalacaTiny model is achieved by using aspect-orientation con-

cepts. That is, platform specific concerns (e.g. distribution, representation, etc.)

are modeled separately be means of aspects, so it is possible to generate agents

that are adapted to the target agent platform by weaving the correct aspects (ad-

dressing C2).

Once the designer has modeled the AmI system in Pineapple he/she executes

the M2M transformation rules, and automatically generates the set of agents com-

posing the AmI system. We have implemented the M2M transformation rules

from Pineapple to MalacaTiny in ATL. We have also evaluated the benefit of ap-

plying a model driven approach by assessing the degree of automation [Harrington

and Cahill, 2011] of our MDD process. The results show that it is possible to

automatically generate approximately 40% of the code in complex AmI systems.

Regarding the self-management property, some AmI devices, such as motes

(i.e. sensing units) are very simple, and it makes no sense to implement complex

self-management policies inside such a device. So, our MDD process can generate

9

1. INTRODUCTION

agents with different self-management capacities; all of them being interoperable

(fulfill C3.1). For those MalacaTiny agents with simple self-management necessi-

ties, a set of M2T transformations rules are executed, generating the implementa-

tion of simple and reactive MalacaTiny agents. For agents requiring more sophis-

ticated self-management, the M2T transformation rules generate a goal-oriented

implementation, more suitable for implementing the self-management property by

means of high-level objectives (fulfill C3.2). We consider that an agent is goal-

oriented when the actions of the agent are the consequence of pursuing goals.

In this implementation model (label Implementation in Figure 1.1), the agent

can adjust its operation in the face of changing circumstances and in the face of

hardware or software failures. Both implementations use aspect-orientation in or-

der to improve the modularization of the agent internal design. So, MalacaTiny

agents are composed of components and aspects, which contribute to the enhance-

ment of the adaptation, reuse and maintenance of the agent architecture. Fur-

thermore, this approach addresses C2.3 (efficiency of the generated code) since:

(i) it generates agent implementations adapted to devices’ resources: reactive im-

plementation is simple, does not consume too much energy, and goal-oriented

implementation consumes more resources, but could perform a more sophisticated

management of device’s resources; (ii) the code generated by the M2T transforma-

tions is optimized for the target platform. We have evaluated the efficiency and

performance of MalacaTiny by comparing it with Jade-Leap and the results have

demonstrated that the internal design of MalacaTiny is very efficient. Using our

framework even over another agent platform like Jade-Leap has very little or no

penalty in resource consumption. Currently, the different versions of MalacaTiny

can be embedded in multiple devices and deployed in different FIPA-compliant

agent platforms using multiple network technologies. Specifically, MalacaTiny

agents can be executed in Android devices, devices with MIDP profile (mobile

phones that support Java ME [Oracle, 2013]), and Sun SPOT sensor motes [Labs,

2013].

Aspect-orientation also helps us to cope with the Challenge C2.1 (Manage

agent platform and device heterogeneity) and the Challenge C2.2 (Cope with Wire-

less network diversity). The distribution aspect encapsulates how to use and access

the message transport service (MTS) for message delivering, so its implementation

10

depends heavily on the services offered by the agent platform and the transport

protocol used. This aspect hides platform dependencies, and makes the rest of

the classes of the agent architecture (components and aspects) independent from

the agent platform (Challenge C2.1) and the communication service (Challenge

C2.2) used at runtime. Moreover, it is possible that an agent communicates with

other agents through different agent platforms, by simply instantiating the correct

distribution aspect for each agent platform (e.g. Jade-Leap) implemented as a

plug-in.

By improving the modularization of the agent architecture with aspect-orien-

tation, the addition of new agent platforms therefore only entails implementing a

new plug-in. In order to illustrate the effort of adding a new agent platform in our

approach and also to address C2.2, we have implemented Blue, an agent platform

for communicating with Bluetooth. Also, to address C2.2 we have implemented

Sol, an agent platform that supports the deployment of AmI systems composed

by a set of self-configuring agents running embedded in heterogenous devices. The

main features of Sol are the support for communication of agents in heterogeneous

devices (Challenge C2.1), coping with heterogeneous transport protocols (WiFi,

Bluetooth and ZigBee) and group communication often required by AmI systems

(Challenge C2.2).

Finally, the agents generated by the MDD process can be deployed in light-

weight implementations of FIPA-compliant platforms (bottom of Figure 1.1, label

Deployment). Thanks to the capacity of self-management it is possible that an

agent embedded in an AmI device (e.g. smartphone) can self-configure the agent

platform and/or communication protocol (only with Sol agent platform) used in

each moment, depending on the resources available (e.g. memory, energy, etc.). In

order to show the benefits of the self-configuring capacity of MalacaTiny agents,

we have conducted a set of experiments that show the benefits of changing the

communication protocol in order to save energy or battery. We have implemented

different self-management goals like, extending the life of the system, recovering

from some faults, etc. We have used the process presented here to develop an

Intelligent Museum deployed for the ETSI Informática, and different versions of

Intelligent Transportation Systems (ITSs) and Ambient Assisted Living Applica-

tions (AAL).

11

1. INTRODUCTION

1.3 Contributions

In this section we will enumerate, what we consider to be the most relevant con-

tributions of this work.

1. We have developed a metamodel for agents called Pineapple that includes

specific concepts for supporting self-management [Ayala et al., 2011b, 2013c].

In particular, we concern ourselves with the specification of policies to de-

scribe when and how to adjust the behavior of the agent and the MAS,

by means of agent roles. The foundation of Pineapple is the PIM4Agents

metamodel. Additionally, we have integrated concepts of the APPEL policy

language for policy specification. This enables the validation of the policy

using tools available for APPEL, e.g. the UMC model checker.

2. We have defined the MalacaTiny metamodel [Ayala et al., 2013b]. This is a

platform-neutral agent metamodel that uses aspect orientation to separately

represent application-specific functionality from the communication-related

concerns.

3. We have defined an MDD process that generates MalacaTiny agents [Ayala

et al., 2010a,b, 2013b]. We have implemented an M2M transformation pro-

cess between Pineapple and MalacaTiny, and a set of M2T transformation

processes that generate code for the different version of MalacaTiny. The

use of MalacaTiny (at modeling and at deployment) makes the MDD pro-

cess more extensible. MalacaTiny agents are platform-neutral, so with the

same MDD process we can generate agents that can be deployed in different

agent platforms.

4. We have defined a family of aspect oriented agent implementations for light-

weight devices named MalacaTiny [Ayala et al., 2011a, 2013a,b]. MalacaTiny

agents can be executed in Android devices, Sun SPOT sensor motes and

mobile phones that have support of J2ME. MalacaTiny agents are platform

neutral and can be deployed in different agent platforms such as Jade-Leap,

Sol and Blue.

12

5. We have defined a goal-oriented version of MalacaTiny that can be executed

in Android devices [Ayala et al., 2012d]. This agent architecture exploits

the capacity of Java for Android with regard to reflection. The aspect com-

position process of Goal-Oriented MalacaTiny is different to the reactive

MalacaTiny and has an extensible joint point model.

6. In order to overcome the limitations of current agent platforms for lightweight

devices, we have developed the Sol agent platform [Ayala et al., 2012a,b].

The main features of Sol are the support for multiple network technologies

(ZigBee, WiFi, Bluetooth) and group-based communication. Additionally,

in order to test the possibilities of the platform-neutrality, we have developed

an agent platform based on Bluetooth, called Blue, and a distribution aspect

for Jade-Leap.

7. We have integrated self-management inside agent architectures [Ayala et al.,

2011a, 2012b,c,d, 2013a]. The self-management is taken into account in the

different phases of the development process. Therefore, it can be specified

and validated at modeling and even the self-management related code can

be generated using our MDD process.

8. Within the scope of this thesis, we have developed different applications and

prototypes that we have used to test and validate the application of the agent

technology for AmI environments. Using the Jade-Leap agent platform, we

have studied the application of the agent technology for the implementation

of intelligent transport systems [Amor et al., 2009, 2010]. Using the Mala-

caTiny technology and focusing on communication between heterogeneous

devices, we have developed a fall detection system that uses an Android

device and a Sun SPOT sensor mote [Ayala et al., 2011a, 2013a]. Addition-

ally, we have developed an application for the “Museo de la Informática” of

“E.T.S.I. Informática” of Málaga [Ayala et al., 2012a].

13

1. INTRODUCTION

1.4 Structure of the Thesis

Following this introduction, the first chapter of this thesis explains to the reader,

the fundamental principles used in the proposed solutions, explaining some back-

ground concepts, the state of the art and related work. Then, our proposal is

presented in the following four chapters. Finally, in the last part, the validation

and discussion of our approach is presented together with some conclusions and

future work.

Background

This chapter provides the background necessary to understand the rest of this

thesis. The special characteristics of Ambient Intelligence are detailed. Addition-

ally, we describe its most important application areas and show some examples

of real AmI systems. Then, we analyze how agent technology is applied to AmI

and survey agent platforms for Ambient Intelligence. Self-management is another

important part of this thesis and is described in this chapter. We pay particular

attention to the Autonomic Computing approach of IBM. The last part of this

chapter is dedicated to Model Driven Development. We describe the foundations

of this technology and review the contributions of the Model Driven Development

to the agent paradigm. Finally, Model Driven technologies used for the implemen-

tation of some of the contributions of this thesis are presented.

A metamodel for self-managed agents

In this chapter, we present the case study that we are going to use to describe

the different contributions of this thesis, an Intelligent Museum. Additionally, we

describe the Pineapple metamodel and how to model an AmI application using

this metamodel. This chapter shows how to model the application and the self-

management functionality. Additionally, we describe how to validate the self-

managed behavior of MalacaTiny agents using the UMC model checker.

14

From Pineapple to MalacaTiny

This chapter begins by presenting the MalacaTiny metamodel. Then, a detailed

description of the model-to-model transformation process from the Pineapple meta-

model to MalacaTiny is given. We distinguish three parts to our M2M process:

transformation of the agent architecture; generation of aspects; and generation of

self-management functionality.

Code generation of MalacaTiny agents

The implementation of the different versions of MalacaTiny agents and the model-

to-text transformation process for them are described in this chapter. MalacaTiny

agents can be executed on mobile phones with MIDP profile, Android-enabled

devices and Sun SPOT sensor motes. Architectures of these agents present minor

differences, so we focus on the architecture of agents with MIDP profile. We

then describe the internal design of Goal Oriented MalacaTiny and how it differs

from the other versions of MalacaTiny. In addition, this chapter tackles how to

integrate self-management inside agents using aspects. Finally, the model-to-text

transformation process for MalacaTiny and Goal Oriented is presented.

The communication concern

In this chapter we are going to present the two distribution aspects that we have

developed specifically for MalacaTiny and Goal Oriented MalacaTiny agents, Blue

and the Sol agent platform. Blue is a distribution aspect, specific to mobile phones

with MIDP profile that we developed to study the energy consumption of Mala-

caTiny agents. The Sol agent platform is our solution to communicate heteroge-

nous devices with heterogenous communication means. This platform has been

specially important for the development of the Intelligent Museum.

Validation

The validation of certain aspects of this thesis thesis is presented in this chapter.

We present and discuss some results with regard to the automatic generation pro-

cess of agents for AmI systems and the energy consumption and performance of

15

1. INTRODUCTION

MalacaTiny. Additionally, we present the results of the self-management functio-

nality and distribution aspects implemented for MalacaTiny; Jade-Leap, Blue and

the Sol agent platform.

Conclusions

This chapter summarizes the proposal explained throughout this thesis highlight-

ing the contributions of our work. Furthermore, we detail the main publications

derived from these contributions. Then, a section discussing lessons learned is also

provided. Finally, we outline our prospective future work.

Appendix A: Resumen

This appendix presents a Summary of this thesis in Spanish.

Appendix B: Conclusiones

This appendix presents the conclusion, publications and future work of this thesis

in Spanish.

16

Chapter 2

Background

This chapter provides the necessary background in order to understand the chal-

lenges that our approach must meet and the solutions proposed as part of this

dissertation. First of all, we provide an overview of AmI and the use of agent

technologies in this application domain (Section 2.1). Secondly, focusing on im-

plementation issues, we provide an overview of the agent technologies that can

be used for the implementation of AmI systems, placing particular emphasis on

agent toolkits and platforms (Section 2.2). Thirdly, Section 2.3 introduces the

self-management concept, which inspired our solution for our self-managed agents.

Next, regarding to the solution proposed in this thesis, we will present the funda-

mentals of MDD and surveyed MDD approaches for agents (Section 2.4). Finally,

in Section 2.5, we will review the basic principles of AOSD.

2.1 Ambient Intelligence

The term AmI was coined by the ISTAG advisory group, when launched the AmI

challenge [Ducatel et al., 2001] in 2001. AmI is the vision of a future in which

environments support the people inhabiting them. AmI systems are naturally dis-

tributed and normally composed of a myriad of devices interconnected through

a great diversity of communication technologies. In AmI environments the tradi-

tional computer input and output media disappears, and processors and sensors

are integrated in everyday objects.

17

2. BACKGROUND

Table 2.1: Technological issues in AmI systems.

Domain Distributed Heterogeneous
Devices

Multiple Com-
munication
Technologies

Agent
technology

Smart home 100% 93% 85% 43%
AAL 80% 70% 50% 40%
Healthcare 89% 78% 56% 56%
ITS 43% 71% 14% 14%
Education 87.5% 75% 12.5% 25%
Business 80% 40% 20% 30%
Leisure 87.5% 62.5% 25% 62.5%

The main goal of the solution proposed in this thesis is to automatically gen-

erate agents that can be used as building blocks for AmI systems, shortening

development times. In order to demonstrate both the importance and benefits of

this work, we have conducted a study of the AmI literature with the following

objectives: (i) to show the notable importance of AmI systems in different ap-

plication domains; (ii) to know which are the main features of AmI systems that

differentiate them from other systems; (iii) to analyze the use of agents in AmI

systems until now, in order to identify their potential benefits and find out current

challenges that agent technology may face.

Table 2.1 summarizes the results from analyzing sixty-seven AmI systems [Cook

et al., 2009; Sadri, 2011]. These systems have been grouped by their application

domain (typical of AmI), i.e. Smart homes, AAL, Healthcare, ITS, Education,

Business, and Leisure (first column). The second column “Distributed” specifies

the percentage of systems that present a distributed architecture, the third column

specifies the percentage of systems composed of sets of heterogeneous devices, the

fourth column shows the percentage of systems whose devices must communicate

using different wireless technologies. The last column labeled “Agent Technology”

represents the percentage of studied systems that apply the agent technology. In

following subsections we are going to explain the results of this table.

18

2.1.1 AmI applications

The first column of Table 2.1 depicts the application of the AmI that we have

considered in our study. Nowadays, there is a large variety of AmI systems, and

additionally, new ones are continuously appearing. We have selected this applica-

tions because they are considered the most well known example of AmI. In this

section, we provide an overview of these type of applications.

Smart homes or home automation are an important application domain for

AmI. These are houses equipped with special devices to assist its inhabitants,

e.g. detecting risk situations or making the building more comfortable. An Smart

home is composed of three main components: a set of sensors, a set of activators

for controlling sensors and other equipment, such as fridges, windows, and so on.

Additionally, it is required computing facilities to which the sensors and activa-

tors are linked. One remarkable example of Smart home is the Essex intelligent

dormitory, iDorm [Hagras et al., 2004].

AAL is an application of the AmI intended to assist handicapped and elderly

people suffering from all kind of disabilities, e.g. neurological alterations, sponta-

neous fractures and falls or sudden changes in blood pressure [Nehmer et al., 2006].

AAL has a great economical importance due the increase in longevity of the pop-

ulation and the cost of maintenance of national health systems [Corchado et al.,

2008]. There are different types of AAL systems, these can be provide services

indoor or/and outdoor. Additionally, AAL systems have different purposes, they

can provide emergency treatment services, enhance the autonomy of handicapped

persons and makes his/her life more comfortable. One recent example of AAL

system is the iFall application [Sposaro and Tyson, 2009], which is an emergency

service that can work indoor and outdoor. This application is a fall detection

system embedded in a mobile phone, that makes emergency call in the case a fall

of its user is detected.

Healthcare applications intend to adapt AmI ideas to medical environments.

Applications of AmI in hospitals can vary from enhancing safety for patients and

professionals to monitor the evolution of patients after surgical intervention. Many

of the AmI developments for Smart homes can be adapted for its use in hospitals.

AmI have already improve the quality of health care in different ways, e.g. physi-

19

2. BACKGROUND

cians can assist or perform surgeries via remote robots [Riva, 2004] or to detect

early cardiac events [Gouaux et al., 2002].

An ITS is an AmI environment that improves transportation systems of all

kinds. With this aim, different elements of the transportation system (users, ve-

hicles, and elements of the transport infrastructure such as bus stops and bus

stations, to name a few) incorporate different kinds of lightweight devices (sen-

sors, smartphones, tablets, etc.) in order to provide valuable and useful services

for the vehicles occupants for a journey. In most cases, this information is obtained

from diverse information sources that are located in different kinds of devices and

locations, mainly external to the vehicle. It is interesting to mention the I-VAIT

project [Rakotonirainy and Tay, 2004], whose aim is to assist drivers gathering

information of elements of the car (pressure on breaks) and processing driver’s

face expression.

AmI can help improve the learning experience of student means of its applica-

tions in education. Educational institutions can use AmI technologies with different

purposes, e.g. to track student progress and attendance to class, to asses the at-

tention of students and enable devices to focus their attention [Shi et al., 2003], to

support speaker speech [Franklin, 1998] or to improve collaborative learning [Lank

et al., 2004], just to mention a few.

The application of AmI in business is intended to facilitate interaction in work-

place environments. Workers need to focus on the project at hand without be-

ing tripped up by technology. There are interesting project that applies AmI to

business, that includes retrieving and projecting information according to workers

gestures and activities [Cook and Das, 2004], supporting decision making processes

in business [Marreiros et al., 2007] or manufacturing process planning [Shen et al.,

2005].

AmI has a great potential to support activities related with leisure such as

shopping, tourism or culture. In leisure, AmI applications offer personalized tailor

made services and information to users in open environments. Additionally, these

environments are usually responsive and react to the presence of customers ac-

cording to their identities and profiles. Example of these application are Easishop

[Keegan et al., 2008] and the results of the Peach project [Rocchi et al., 2004].

20

2.1.2 Ambient Intelligence characteristics

As it is stated in the Section 2.1.1, there are a great variety of AmI systems. An

AmI system can be a house equipped with special devices to assist its inhabitants,

or a set of projectors and lights in a class room that support the learning process,

or a set of mobile phones that negotiates the best offer in a commercial area

according to user preferences. Despite this diversity, most of AmI systems shares

the following characteristics [Sadri, 2011]:

• Invisible: Technology is embedded in daily living objects like mobile phones,

clothes, watches, etc.

• Mobility : Services provided by the AmI application does not require that

user is still. In some cases hardware is mobile and in others is the software.

• Context-awareness : AmI applications sense the environment for useful infor-

mation and provides services according to the current context.

• Anticipatory behavior : AmI systems act on their own behalf without explicit

request from user.

• Self-management : AmI systems must be able of reacting to all kinds of

abnormal exceptional situations in a flexible way without disruption of their

service. More detail of self-management are given in Section 2.3.

In order to integrate these characteristics in real environments different solu-

tions has been adopted. From the results shown in Table 2.1 we can see that the

greater majority of AmI systems are distributed, with a mean of 81%. It is striking

that some AmI systems are not distributed, as is the case of ITSs (only 43% are

distributed). In the latter case, the reason is that most transport systems integrate

monitoring devices on vehicles simply to assist drivers in different circumstances.

Secondly, a significant percentage of AmI systems are composed by heterogenous

devices (e.g. home appliances, hand held devices, sensors, onboard computers),

69.9% is the mean. So including an open set of heterogeneous devices can be

considered a must for any technology that is presented for use in AmI systems.

21

2. BACKGROUND

Thirdly, most AmI systems, apart from the traditional communication technolo-

gies, make use of new wireless communication technologies such as Wi-Fi, Zigbee,

Bluetooth, Wireless USB or Z-Wave, since these AmI systems are mostly deployed

in personal area networks (PAN) . So, the diversity of communication technologies

seems to be an important requirement for the technologies used to develop AmI

systems. Lastly, 38.64% of the AmI systems surveyed use agent technologies. This

can be interpreted in two ways. This rate is close to 50%, showing a significant

presence of agent technology in these environments. On the other hand, a percent-

age below 50% also shows the necessity of improving current agent technologies in

order to achieve a wider adoption in the domain of AmI systems. Note that these

results were taken from surveys that are not specific to agents, so we assume the

results are unbiased towards agent technology. Of course, there are other papers,

and surveys more specific to AmI and agents [Chen and Cheng, 2010; Tapia et al.,

2010], that show that agents are the most appropriate technology to be used in

AmI, but this assertion can be considered slightly biased because of the interest

in applying agent technology to AmI.

2.1.3 Use of agents in AmI systems

In this section, we are going to analyze those AmI systems developed with agents.

Our goal is to identify the challenges that AmI systems pose, for agent technology.

In the literature we found that agents can be used as abstractions to model and

implement both functionality and devices of an AmI system [Penserini et al., 2005],

to encapsulate artificial intelligence techniques [Augusto and Nugent, 2004], and to

coordinate the different elements that compose the application [Haigh et al., 2006].

Although the reasons and purposes that justify the use of agents are different, they

contribute to highlight the suitability of the agent paradigm in AmI environments.

Most AmI systems developed with agents and MASs are relative to leisure activi-

ties, which includes applications to aid shopping and tourist activities. These AmI

applications demand context aware behavior, by providing services that must be

adapted to meet user preferences and current context conditions. Also, these AmI

systems are executed in open and highly dynamic environments, where nodes of

the application are continuously appearing and disappearing. So, the conclusion

22

is that agents are particularly well suited for managing context-awareness and the

dynamism of open systems.

Among the agent-based AmI systems surveyed, we have not found a common

approach regarding the agent solution adopted. Some AmI agents were developed

using general-purpose agent toolkits for AmI (such as Jade-Leap), while numer-

ous systems developed their own special-purpose agents specific to an application

domain, or to a specific device. In some of these approaches agents execute inside

the device and are coordinated through tuple space mechanisms [Penserini et al.,

2005]; or agents are mobile and move from one device to another [Keegan et al.,

2008], most of them adopt an entirely distributed and decentralized architecture.

Additionally, by embedding agents in AmI devices, these special purpose MASs

are able to adapt agents to the specific device’s characteristics (regarding hard-

ware and software resources) in which it is running [Muñoz et al., 2003]. These

solutions are the preferred approach in some AmI environments because of the

advantages provided by agents embedded in devices [Caire et al., 2002]: (i) agents

provide services customized to device resources [Stock et al., 2007]; (ii) agents

encapsulate complex functionality that must be hidden from other agents in the

MAS [Muñoz et al., 2003] (e.g. keep privacy of critical data); (iii) to vary com-

ponents (i.e. agents) of the architecture without modifying the architecture of

the system [Cook et al., 2006]; (iv) it can be considered a more flexible approach

to model open systems, because it enables modeling genuine decentralized MASs

[Ayala et al., 2012b].

However, the approaches based on the embedding of agents in AmI devices

usually propose ad-hoc solutions, normally specific to a particular AmI domain

(e.g. AAL). But, the adoption of such ad-hoc solutions imposes severe limitations

on interoperability and extensibility:

• agents embedded in AmI devices can not be easily reused in other AmI

systems;

• the emergence of new AmI devices, including the software or hardware up-

dating of the devices may require developing agents from scratch;

• it is not easy to modify the embedded agent in order to incorporate new

communication technologies;

23

2. BACKGROUND

• it is normally not possible to construct an AmI system composed with agents

running on heterogenous devices communicating with heterogeneous tech-

nologies at the same time;

• because of the minor use of embedded agents in AmI devices, the existence of

tools, documentation and integration in well-known agent-oriented method-

ologies is reduced (unlike general-purpose agents toolkits for AmI).

We therefore conclude that these are limitations and deficiencies that hinder a

wider adoption of the agent technology. In Section 2.2, we present agent technolo-

gies and toolkits that can be used for the development of AmI applications.

2.2 Agent technologies for AmI systems

In this section we analyze the currently available general-purpose agent toolkits

for developing AmI systems. There are a number of approaches that facilitate

both the development and the execution of general purpose agents in lightweight

devices, contributing to the adoption of agent technology for AmI systems. These

agent approaches involve an agent development toolkit, and also the necessary

infrastructure for the management and communication of the agents which run

embedded in lightweight devices and communicate through an agent platform.

Jack [Howden et al., 2001] is a mature, cross-platform environment for building,

running and integrating commercial-grade MASs. Jack is a compact and efficient

BDI implementation that runs on any system where Java is available (PDA, high-

end multi-CPU enterprize servers, PC...). In addition, Jack provides an IDE that

eases the development process of a MAS based on Jack using a graphical notation

that enables code-generation. Jack is extremely lightweight and is designed to

handle thousands of agents running on relatively low-end hardware, but Jack does

not run in Android nor in devices with MIDP profile or in sensors.

Jade-Leap is the lightweight version of the Jade [Bellifemine et al., 2008] that

allows the execution and communication of Jade agents in PCs, PDAs, Android

devices and MIDP devices. Like Jade, Jade-Leap offers a management GUI and

other tools that facilitate the development and maintenance of the MAS.

24

µFIPA-OS [Laukkanen et al., 2002] is an extension of the FIPA-OS approach,

which has been designed from the bottom up. However, it can only be executed

on PDAs with Linux or PocketPC operating systems. Similarly to Jade, this agent

platform provides a set of tools to monitor agent platform execution.

The 3APL-M [Koch et al., 2006] framework defines a programming language

for implementing BDI agents. This agent technology provides different versions

for execution in different devices as does Jade-Leap.

Agent Factory Micro-Edition (AFME) [Muldoon et al., 2006, 2008] is a FIPA

compliant framework for the fabrication of BDI agents that can run in MIDP

devices and Sun SPOT sensors. This framework has tools to manage the agent

platform and a compiler that eases the development of AFME for the different

devices that can support it. However, the communication between agents running

in heterogenous devices (i.e. between sensors and MIDP devices) is not possible.

AFME agents for MIDP only communicate using a remote mail service (using

HTTP confections), while AFME agents for Sun SPOT only use the Sun SPOT

radiogram protocol. Therefore, despite AFME supporting different transport pro-

tocols, these are independently supported for its different agent versions.

There other approaches only intended for embedding agents in Android devices.

Andromeda [Agüero et al., 2009] extends Android services to embed agents that

are directly based on the Android infrastructure. The µ-Agent approach [Frantz

et al., 2012] tries to augment the functionality of the Java for Android API using

Agent Oriented Software Engineering (AOSE) principles. The focus of µ-agent is

agent organizations and it is possible to have coalitions of agents running inside our

application. This agent technology has an agent platform named µ2, that offers

communication services. JaCa-Android [Santi et al., 2011] is an approach used

to implement applications in Ubiquitous Environment and the Internet of Things

using BDI agents. It uses the joint work of Jason, an agent programming language

rooted on a strong notion of agency, and Cartago, an environment programming

framework. Another interesting approach is Jadex micro agents [Pokhar, 2013],

which is a reactive agent architecture that focus on performance and low memory

footprint. Jadex micro agents are intended to interact with former Jadex BDI

agents [Braubach et al., 2005] that provides a BDI infrastructure to Jade.

Additionally, there are agent approaches solely for wireless sensor networks

25

2. BACKGROUND

(WSNs) [Vinyals et al., 2011], although most of these approaches focus on mobility

features. Following this trend, we find Agilla [Fok et al., 2005], ActorNet [Kwon

et al., 2006], MAPS [Aiello et al., 2011] and MASPOT [Lopes et al., 2011]. They

are agent platforms or middlewares intended for the development of applications in

wireless sensor networks based on mobile agents. Agilla and ActorNet have been

implemented on the MICA2 and TinyOS platform, while MAPS and MASPOT

on Sun SPOT sensor motes.

As you can see from this related work (see Table 2.2), there is no agent approach

that supports the three kinds of devices that we find in AmI environments (i.e.

PC, personal devices and sensors) or in the case of AFME, does not offer an

interoperable solution. Additionally, although FIPA compliance is a feature that

has been taken into account in most approaches, interoperability between all of

them is not possible.

Another important concern is the extensibility of the agent approaches. Nowa-

days, the appearance and disappearance of new devices and wireless communica-

tion technologies is becoming usual. In recent years we have seen how some of

them have became obsolete (such as IrDa1) while new ones have appeared (e.g.

NFC2 and Wi-Fi Direct3). However, it is rather complex to extend current agent

platform message transport services or incorporate new functions into agents to

support new wireless communication capabilities. Such extension is not straight-

forward and depends on the programmers’ expertise in certain agent platforms.

More flexible agent architectural design should allow software agents to cope with

the evolution and emergence of new technologies and devices (e.g. new transport

services, message encoding, etc.), boosting the production of adequate versions of

agents for different lightweight devices.

We have seen in this section that current agent approaches for the development

of AmI systems present serious limitations and deficiencies in coping with the

technological requirements concerning the implementation of these systems. As a

solution to these issues we propose MalacaTiny agents, that try to overcome the

limitations present in other agent approaches for AmI environments.

1http://en.wikipedia.org/wiki/Infrared_Data_Association
2http://en.wikipedia.org/wiki/Near_Field_Communication
3http://en.wikipedia.org/wiki/Wi-Fi_Direct

26

http://en.wikipedia.org/wiki/Infrared_Data_Association
http://en.wikipedia.org/wiki/Near_Field_Communication
http://en.wikipedia.org/wiki/Wi-Fi_Direct

Table 2.2: Agents for AmI systems

Agent
Plat-
form

Device API Agent
platform
mana-
gement
GUI

IDE Transport
protocols

Wireless
technol-
ogy

FIPA

Jack PC, PDA Java Yes Yes TCP 802.11 No
Jade-
Leap

PC,
MIDP,
PDA,
Android

Java,
Java ME,
Java for
Android

Yes No TCP 802.11 Yes

µFIPA-
OS

PDA Java Yes No TCP 802.11 Yes

3APL-
M

PC,
MIDP,
PDA

Java,
Java ME

No No TCP 802.11 Yes

AFME MIDP,
Sun
SPOT

Java,
Java ME

Yes No HTTP (over
TCP), Ra-
diogram
(datagram-
based)

802.11,
802.15.4

Yes

Andro-
meda

Android Java for
Android

No Yes TCP 802.11 Yes

µ-
Agent

Android Java for
Android

Yes Yes TCP 802.11 No

JaCa-
Android

Android Java for
Android

No No TCP 802.11 No

Jadex PC, An-
droid

Java,
Java for
Android

Yes Yes TCP 802.11 Yes

Agilla Mica2 NesC No Yes Radiogram
(datagram-
based)

802.15.4 No

ActorNet Mica2 NesC No Yes Radiogram
(datagram-
based)

802.15.4 No

MAPS Sun
SPOT

Java,
Java ME

No No Radiogram
(datagram-
based)

802.15.4 No

MASPOT Sun
SPOT

Java,
Java ME

Yes No Radiogram
(datagram-
based)

802.15.4 No

27

2. BACKGROUND

2.3 Self-management

Normally, the majority of AmI devices show symptoms of degradation, such as

energy loss or failure of some network nodes, which requires explicit management

action, for example saving energy to guarantee the systems survival. Consequently

AmI systems demand the reconfiguration of their internal functioning in response

to changes in their environment. This means that AmI systems must behave as

autonomic systems with a self-management capacity.

Self-management is a concept that brings together many fields of computing

with the purpose of creating computing systems that self-manage [Huebscher and

McCann, 2008]. For this purpose, complex computing systems should be able to

independently and according to a set of rules or policies, take care of the regular

maintenance, configuration and optimization tasks, thus reducing the workload

on the system administrators. In order to incorporate self-management, the sys-

tem should support the so-called autonomic functions [Dobson et al., 2010]: self-

awareness, self-situation; self-monitoring and self-adjusting. Self-awareness is the

capacity for introspection, while self-situation is related to the awareness of cur-

rent external operating conditions; self-monitoring refers to the ability to detect

changing circumstances in the agent environment. Finally, self-adjusting is the

ability to accordingly adapt to these environment changes. These functions sup-

port the so-called self-* properties: self-configuring, self-healing, self-optimizing

and self-protecting.

Self-configuring requires the system to configure itself according to high-level

goals, i.e. by specifying what is desired, not necessarily how to accomplish it.

This can mean being able to install and set itself up based on the needs of the

platform and the user. Self-healing entails that the system detects and diagnose

problems, such as hardware failure or software problem, and it should attempt to

fix them. Fault tolerance is and important aspect of self-healing. Self-optimizing

involves the system is able to proactively optimize its use of resources, improve its

performance or quality of service. Finally, self-protecting means that the system

protects itself from malicious attacks.

The Information Technology industry has recognized the importance of self-

management and launched different initiatives [Kephart, 2005]. Hewlett-Packard’s

28

Figure 2.1: The MAPE-K control loop.

has launched Adaptive Enterprise initiative and Microsoft the Dynamic Systems

initiative. However, one of the most remarkable initiatives is the IBM Autonomic

Computing that was launched in 2001 [Horn, 2001]. A key element of any auto-

nomic system is the Autonomic Manager (see Figure 2.1). The AM is conceived

as a software component that ideally can be configured by human administrators

using high-level goals for self-managing any software or hardware resource (i.e. the

managed element or resource). The AM includes sensors and effectors: Sensors

collect information about the managed element, while effectors carry out changes

at the managed element. The AM uses the monitored data from sensors and inter-

nal knowledge of the systems to plan and execute, based on these high-level goals,

the low-level actions that are necessary to achieve these goals.

To perform self-management, the functionality of this component is divided in

four main functions: Monitor, Analyze, Plan, and Execute (MAPE) . These four

functions, which share knowledge, are used to describe the architectural aspects

of autonomic systems, and obey an intelligent control loop known as MAPE-K (K

is for Knowledge). This loop is similar to (and probably inspired by) the generic

agent model proposed by Russell and Norvig [Russell et al., 1995], in which an

intelligent agent perceives its environment through sensors, and uses these percepts

to determine actions to execute on the environment.

The behavior of the analyze component is ruled by policies that can be specified

29

2. BACKGROUND

in terms of Event Condition Action (ECA) , goals or utility functions [Kephart and

Walsh, 2004]. An ECA policy dictates the action that should be taken whenever

the system is in a given current state. A goal policy specifies either a single desired

state, or one or more criteria that characterize an entire set of desired states. A

utility function policy is an objective function that expresses the value of each

possible state.

2.4 Model Driven Development and Agents

MDD is an approach for Software Development where models are now first class

citizens of the software development process, and even the code is managed as

a model. This technology advocates generating software systems from high-level

models using model transformation languages. MDD is a different concept to

Model-Driven Architecture (MDA) . The MDA1 is an initiative promoted by the

Object Management Group (OMG) , which offers a conceptual framework for

defining a set of standards in support of MDD [Selic, 2003]. Some of the stan-

dards related with the MDA initiative are the Unified Modeling Language (UML)

, the Meta Object Facility (MOF) or the Common Warehouse Metamodel, just to

mention a few.

MDD ideas can bring important benefits to the development of MAS as shown

in [Amor et al., 2005; Giorgini et al., 2005; Pavón et al., 2006]. With MDD it is pos-

sible to specify a MAS in a platform-independent model, focusing on the domain

model, and later transform it automatically to different design or implementation

models, bridging the traditional gap between design and implementation.

In following subsections, we are going to provide an overview of MDD and

present works that relates MDD and agents. Firstly, Subsection 2.4.1 introduces

the foundation of MDD. Subsections 2.4.2 and 2.4.3 surveys related work in meta-

models and MDD for agent technologies. Finally, Subsection 2.4.4 overviews model

definition and transformation languages.

1http://www.omg.org/mda/index.htm

30

http://www.omg.org/mda/index.htm

2.4.1 Foundations of Model Driven Development

MDD is an approach for Software Development that promotes the use of models

and metamodels to formally represent domain concepts. A model is the represen-

tation of the function, structure and behavior of a system within a given context,

and from a specific point of view. These artifacts are expressed in a language that

exists at some abstraction level, whose syntax is described means of metamodels.

A model conforms to its metamodel in the way that a computer program conforms

to the grammar of the programming language in which it is written.

A metamodel specifies the concepts and their relationships for the purpose of

building and interpreting models [Hahn et al., 2009]. The MDA initative consider

three level of abstraction and depending on the level a metamodel receives different

names and has different purpose in the development process [Pastor et al., 2008].

In the most abstract level, a metamodel is a Computation Independent Metamodel

(CIM) and focused on the environment and system requirements. CIMs do no take

into account computation issues related with the system being modeled. PIMs

have a higher level of abstraction and consider the computation that system have

to perform. However, it still does not consider the technological platform that

will support the implementation. Finally, PSM support the description of systems

attending to the specific characteristics of the platform will support it.

One important contribution of MDD is that a software system is obtained

through the transformation of different metamodels defined at different abstrac-

tion layers, automating the process of constructing a target model for a given

source model. Therefore, developing model transformations describes an impor-

tant aspect in MDD. A model transformation is a transformation of one or more

source models to one or more target models, based on the metamodels of each of

these models. In order to transform models, it is necessary define mappings be-

tween metamodels that define the syntaxes of the transformed metamodels. These

mappings describes how one, or more elements in the source model should be trans-

formed to the target model. When the complete transformation from the source

model to the target model is defined, the target model could be automatically

generated.

In a MDD process, transformations are usually between model with different

31

2. BACKGROUND

levels of abstraction, i.e. we transform a CIM model in a PIM model and a PIM

model in a PSM model. A last step of the transformation process is the generation

of the code related related with the PSM metamodel.

Exists different technologies for supporting model definition and transforma-

tion. Some of them also consider its integration in frameworks like the Eclipse

Modeling Framework. An overview of these technologies is given in Subsection

2.4.4.

2.4.2 Metamodels for agents

The boom in MDD has encouraged the development of metamodels for agents

[Bernon et al., 2005]. They has mainly been developed to support specific agent

technologies [Braubach et al., 2005] or engineering approaches [Giorgini et al.,

2005]. Additionally, there are a metamodels that try to get a common representa-

tion of what agents and MASs are [Beydoun et al., 2009]. As part of this thesis dis-

sertation, we present the Pineapple metamodel, which is intended for agent-based

AmI applications with self-management capacities. Then, in this section we are

going to introduce agent metamodels and modeling approaches related with AmI

and self-management. Although the majority of agent technology contributions to

the AmI focus on the implementation level, there are interesting approaches that

focus on the modeling level as in this thesis dissertation [Sadri, 2011].

One of the most remarkable examples of the agent-based modeling for AmI is

the approach presented in [Penserini et al., 2005], which uses Tropos to design an

interactive tourist guide in an Intelligent Museum. In this proposal, role descrip-

tions have been used to deal with the dynamic functionality of an AmI application.

In [Molesini et al., 2010], the SODA methodology is used to test how to design

an agent-based application for controlling an intelligent home. This contribution

focuses on the use of agents to design the coordination of a distributed and intel-

ligent system with complex interaction patterns. Related with the AmI, the work

[Morganti et al., 2009] uses the MAS theory to model a home automation system.

On the other hand, Agent-π [Agüero et al., 2009] is a metamodel to design ubiqui-

tous applications embedded in Android devices. In these approaches, the usage of

agents to model the application is justified because of the distributed and dynamic

32

nature of AmI systems. Agent methodologies offer advanced mechanisms to design

distributed interaction and adaptable behavior. However, these approaches do not

deal with any self-management capability of the agents in the AmI domain.

An interesting approach that puts together MAS and self-management is MaC-

MAS [Peña et al., 2007]. This approach uses agent-based modeling techniques and

software product lines to model software systems that evolve over time. This evo-

lution of a system is expressed by means of roles that an agent performs in a given

time to achieve a set of goals. Roles are designed as a set of features that can

be composed using different operators. MaCMAS has been applied to model the

behavior of autonomous robots, showing the potential for modeling other AmI sys-

tems. However, this work focuses only on the evolution of the system architecture,

and does not offer mechanisms to validate the self-managed behavior. Other pro-

posal that relates agents and self-management is [Trencansky et al., 2006]. This

work uses the Agent Modeling Language [C̆ervenka et al., 2005] to design the en-

tities that control and manage self-managed systems, which are also known as

autonomic managers. However, these agents are not able to manage themselves

as our agents do. Moreover, agents and autonomic computing concepts have been

used to model self-managed business processes [Greenwood and Rimassa, 2007].

Finally, there are approaches for the systematic modeling of self-managed sys-

tems in general. Although they do not consider particularities of the agent domain,

they take into account typical agent’s concepts like reactive behavior or distributed

interaction [Vassev and Hinchey, 2009; Weyns et al., 2012]. ASSL [Vassev and

Hinchey, 2009] provides a framework for the specification, validation, and code

generation for self-management of complex systems. The self-managed behavior

is provided by wrappers promoting the separation of concerns. This separation of

concerns is also approached by FORMS [Weyns et al., 2012], a reference model

for the formal specification of distributed autonomic systems. In particular, it

uses a reflective modeling perspective that, like our metamodel, allows reasoning

about the architecture of the self-managed system. Although both approaches use

a formal notation, they do not consider mechanisms to detect policy conflicts.

33

2. BACKGROUND

2.4.3 Model Driven approaches for agents

As stated before, MDD is an advanced software technology that can naturally ad-

dress the generation of agents for diverse agent platforms, by means of transforma-

tions between CIM, PIM and PSM. There are some MDD agent-based approaches

that consider the CIM, sometimes called a domain model [Brossard et al., 2011].

The CIM level is mainly used in agent approaches to analyze and represent the

requirements of the system. With the CIM level it is possible to explore and spec-

ify the problem domain of AmI systems using agents. However, MDD processes

that provide a general purpose solution for agents in AmI (as we do), contribute

to the solution space and not to the problem or domain space. So, normally these

approaches do not consider the CIM level, closer to an AmI specific application or

domain. So, a straight forward definition of a general purpose MDD process for

agents would use a generic agent metamodel such as PIM, one PSM for each agent

platform, and define M2M transformations for each PSM. In order to generate

code, the subsequent M2T transformations must also be defined.

Most of the most important agent-oriented methodologies apply MDD to the

development of MAS. One of the most relevant MDD approaches for agents is the

DSML4MAS approach. A general overview of this MDD process is shown Fig-

ure 2.2. The MDD process of the DSML4MAS approach uses a generic PIM for

agents named PIM4Agents [Hahn et al., 2009] to generate Jack and Jade agents.

The generation process is composed of 4 transformations: two M2M transforma-

tions to generate Jack and Jade models and two M2T transformations to generate

Jack and Jade code. MDE principles have also been applied in [Agüero et al.,

2009], specifically to generate agents for Android devices. It takes the agent−π as

PIM, a metamodel for mobile agents, and defines transformations for two mobile-

specific PSMs, Andromeda and Jade-Leap. Similarly to DSML4MAS it follows

the MDD straight forward approach depicted in Figure 2.2. With a similar pro-

posal, other agent-methodologies, like Tropos [Giorgini et al., 2005], INGENIAS

[Pavón et al., 2006], ASEME [Spanoudakis and Moraitis, 2010], and Prometheus

[Gascueña et al., 2012], support the development process of MAS using MDD

processes.

Although these MDD approaches improve and automatize the development

34

Figure 2.2: Overall picture of the MDD process of the DSML4MAS approach.

process, when generating agents for multiple agent platforms (mainly for Jade),

we have found that only one of the methodologies provides explicit support for the

generation of code for lightweight devices typical of AmI systems [Agüero et al.,

2009]. Although in general terms, MDD improves the adoption of new technolo-

gies just by developing a new code generator, the fact is that, for all the MDD

approaches considered, a different set of transformations must be defined and im-

plemented from the corresponding PIM (specific to each MDD process) for each

agent platform (i.e. PSM). This means that the cost of extending the proposal

with a new agent platform (PSM) is very high. Although this is acceptable for

some application domains, for AmI systems, which are composed by a set of he-

terogeneous devices with different agent technologies interacting with each other,

this is a serious limitation. Including a new agent platform for a specific device,

e.g. as in the DSML4MAS approach, requires the definition of two new sets of

transformation rules: a M2M transformation from PIM4Agents to the metamodel

of the new agent platform; and a M2T transformation from the new agent plat-

form metamodel into code. This is a very complex task, sometimes impossible to

35

2. BACKGROUND

perform properly due to: (i) the metamodel of the target agent framework must be

available, which is not always the case; (ii) sometimes the target metamodel is not

specified completely, and some mappings for the target metamodel are carried out

in an ad-hoc manner; (iii) this task also requires some expertise in a transformation

language (e.g. ATL); and (iv) also the transformations from the target platform

metamodel to code have to be implemented, requiring an in-depth knowledge of

the target agent’s implementation framework.

2.4.4 Model Driven Development technologies

As stated before, the MDA initiative has defined different standards in support of

the MDD. In this thesis dissertation, we have mainly used technologies provided by

the Eclipse Modeling Framework (EMF) [Steinberg et al., 2009] and other related

projects, like the openArchitectureware [Haase et al., 2007]. The EMF is a part

of the MDA in the Eclipse family tools [Moore et al., 2004]. This framework was

started as an implementation of the MOF standard and has evolved into a set of

tools that facilitate model definition and transformation. Specifically, we have used

the following tools: Ecore [Foundation, 2013a] for metamodel specification, ATL

[Jouault et al., 2008] for M2M transformation and Xpand [Klatt, 2008] for M2T

transformation. Although there are outstanding technologies and frameworks for

MDD, like Acceleo [Company, 2013], we decided to use this technologies because

they are mature, widely supported by their users community and can be integrated

together easily.

2.4.4.1 The Ecore languague

Ecore is the model used to describe metamodels or class modeling concepts in

the EMF. This model has its roots in MOF and UML, and was designed to map

cleanly to Java implementations. Actually, Ecore is a small and simplified subset

of the UML and it is considered the implementation of the MOF standard in the

EMF. Ecore acts as its own metamodel, so it is defined in terms of itself. In Figure

2.3, we can see the Ecore metamodel of the Kernel Ecore metamodel (i.e. only the

main classes of the the full ecore metamodel).

Essentially, in order to define a Ecore metamodel we have four types of objects.

36

Figure 2.3: Metamodel of the Ecore metamodel.

1. EClass models classes themselves. Classes are identified by name and can

contain a number of attributes and references. To support inheritance, a

class can refer to a number of other classes as its supertypes.

2. EAttribute models attributes, the components of an object’s data. They are

identified by name, and they have a type.

3. EDataType models the types of attributes, representing primitive and object

data types that are defined in Java, but not in EMF. Data types are also

identified by name.

4. EReference is used in modeling associations between classes; it models one

end of such an association. Like attributes, references are identified by name

and have a type. However, this type must be the EClass at the other end

of the association. If the association is navigable in the opposite direction,

there will be another corresponding reference. A reference specifies lower

and upper bounds on its multiplicity. Finally, a reference can be used to

represent a stronger type of association, called containment; the reference

specifies whether to enforce containment semantics.

The concepts expressed in this metamodel should be quite familiar to model-

ers and object-oriented programmers. When we describe a class, we describe its

37

2. BACKGROUND

attributes, which are modeled using EAttribue, and it references, modeled with

EReference.

2.4.4.2 The ATL language

ATL is a domain-specific language for specifying M2M transformations. It is con-

sidered a hybrid language because it provides a mix of declarative and imperative

constructs. This language has an execution environment based on Eclipse that can

works with metamodels described in Ecore. The ATL development environment

provides tools to support the major tasks involved in using the ATL language:

editing, compiling, executing, and debugging. ATL is inspired by the OMG QVT

requirements [Group, 2013b] and builds upon the OCL formalism [Group, 2013a].

ATL transformations are organized in modules. A module contains a manda-

tory header section, import section, a set helpers and a set of transformation

rules. The header sections gives the name of the transformation module and de-

clares source and target metamodels. Helpers and transformation rules are the

constructs used to specify the transformation functionality.

ATL helpers can be viewed as the ATL equivalent to methods. They make it

possible to define factorized ATL code that can be called from different points of

an ATL transformation. Helpers are only defined for the source metamodels since

target models are not navigable. Each helper is characterized by its context, its

name, its set of parameters and its return type. The context of a helper defines the

kind of elements the helper applies to, i.e. the type of the elements from which it

will be possible to invoke it. Example 2.4.1 depicts an ATL helper that return true

when type object of the metamodel Families whose class is Member (remember

ATL works with Ecore) is female. The context of this rule is Families!Member, its

name is isFemale and the return type is Boolean.

Example 2.4.1. ATL helper.

1 helper context Families!Member def:isFemale() : Boolean =

2 if not self.familyMother.oclIsUndefined() then

3 true

4 else

5 if not self.familyDaughter.oclIsUndefined() then

6 true

38

7 else

8 false

9 endif;

10 endif;

Transformation rule is the basic construct in ATL used to express the trans-

formation logic. ATL rules may be specified either in a declarative style (matched

rules) or in an imperative style (called rules or action blocks). In order to un-

derstand contributions of this thesis, in this Section we are only consider ATL

matched rules. An ATL matched rule is a mean to specify the way target model

elements must be generated from source model elements. An ATL matched rule

is applied to each element of an specific class that optionally holds some condi-

tion. For this purpose, a matched rule enables to specify: (i) which source model

element must be matched; (ii) the number and the type of the generated target

model elements, and (iii) the way these target model elements must be initialized

from the matched source elements. Example 2.4.2 depicts an example of matched

rule related with Example 2.4.1. This rule is applied to each element whose class

is Member and the result of the application of the isFemale() helper is true. Then,

it is generated an element whose class is Male from the Persons metamodel. The

fullName attribute is initialized with the concatenation of the firstName and the

familyName of the input element.

Example 2.4.2. ATL matched rule.

1 rule Member2Male{

2 from

3 s:Families!Member (not.isFemale())

4 to

5 t:Persons!Male(

6 fullName <- s.firstName+’ ’+s.familyName;

7)

8 }

There is another type of matched rules named lazy rules, that has the same

notation as matched rules but are indicated with the keyword lazy. In order to

be invoked, a lazy rule must be invoked by other rules, i.e. it is not automatically

39

2. BACKGROUND

matched like matched rules. They are applied on a single match as many times as

it is referred to by other rules, every time producing a new set of target elements.

2.4.4.3 The xPand language

The Xpand domain specific language was developed as part of the openArchitec-

tureWare project devoted to M2T transformations. Now, it is an important part

of the Eclipse Modeling Project, within other M2T technologies like Jet [Founda-

tion, 2013b] or Acceleo [Company, 2013]. Xpand is a template engine, that has

unique properties for generating code from models like type safety and polymor-

phic dispatch [Friese, 2010]. Like other technologies related with the EMF, Xpand

is fully integrated with Ecore metamodels. Additionally, it provides an integrated

development environment and tools to write and validate code generations.

A code generator in Xpand consists of the input metamodel and a set of tem-

plates, which transform the model into code. With Xpand, we can generate any

kind of textual transformation, so it is also used to generate manuals and other

documentation artifacts. The Example 2.4.3 depicts an example of an Xpand tem-

plate, which generates an HTML form. Xpand allows to insert information from

models into code sections, easing the model transformation process.

Example 2.4.3. Xpand template to generate HTML.

1 <<DEFINE form FOR Form>>

2 <<FILE name + ".html">>

3 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

4 <html xmlns="http://www.w3.org/1999/xhtml">

5 <head>

6 <title><<this.title>></title>

7 <meta http-equiv="Content-Type" content="text/html; charset=UTF

-8" />

8 <link rel="stylesheet" type="text/css" href="../static/style.css

" />

9 </head>

40

Figure 2.4: Properties that cut across several modules [Walls and Breidenbach,
2005].

2.5 Aspect Oriented Software Development

As stated in the introduction MalacaTiny agents are based on components and

aspects. In this section, we will review the basic principles of AOSD. The main

motivation of the aspect-orientation [Filman et al., 2004; Kiczales et al., 1997] is to

overcome some limitations of traditional software development techniques, such as

Object Orientation (OO) or Component Based Software Engineering (CBSE) , due

the existence of crosscutting concerns. Crosscutting concerns are properties of an

application that can be dispersed in multiple classes. Typical examples are proper-

ties such as logging or authentication, whose code is normally scattered in several

modules of the system. Even if they are well-encapsulated in a logging or an au-

thentication module, the rest of modules requiring these properties need to include

implicit calls to them. A graphical example is shown in Figure 2.4, in which three

different services (CourseService, StudentService, and MiscService) encapsulating

the main functionality of an application are crossed by extra-functional properties

such as the Security module and the Transactions module, among others.

Aspect-orientation improves the separation of concerns providing the mecha-

nisms for encapsulating each crosscutting concern appropriately in an independent

module, called aspect, and then specifying how this aspect must be composed with

the software modules it crosscuts. The predominant definition for aspects is the

one that comes from the AspectJ programming language [Kiczales et al., 2001].

AO principles are: (i) Software base modules (e.g. objects or components) do

41

2. BACKGROUND

not contain any reference or code related to crosscutting concerns (e.g. coordi-

nation between agents, persistence, distribution, etc.); (ii) Crosscutting concerns

are encapsulated in special modules called aspects (an aspect module contains the

implementation of a crosscutting concern, which is called advice in aspect-oriented

programming (AOP) terminology); (iii) Each software module permits the injec-

tion of crosscutting concerns at well-known and special points of their execution

(e.g. after the reception of an input message, or before the execution of a method),

which are called join points; (iv) The patterns that specify the set of join points

being intercepted for a given application are known as pointcuts (e.g. after the

reception of a call-for-proposal message); (v) The composition process in which

aspect behavior is injected into the join points specified at the pointcuts is known

as the weaving process. The aspect system can implement the weaving at compile,

load or run time. The last one is preferred when adaptability requirements (such

as for agents in open environments) exist.

42

Chapter 3

A metamodel for self-managed

agents

In this chapter, we to describe the Pineapple metamodel and how to design an

AmI application using it. The modeling of our application is in two parts: the

modeling of specific functions and interactions of the MAS and the modeling of the

self-management behavior. In order to illustrate our approach, we use scenarios

in an Intelligent Museum (IM) for the case study.

This chapter is structured as follows: Section 3.1 describes services and agents

that compose the IM. Sections 3.2 and 3.3 give details of the Pineapple metamodel

and how to use it to model the context-aware application. Subsection 3.3.2 de-

scribes the modeling of the self-management functionality of the AmI application.

Finally, Section 3.4 summarizes the contributions of this Chapter.

3.1 Case study

In order to illustrate how to use the Pineapple metamodel, we present an IM

as a case study. The trend of intelligent museums is to include a considerable

number of sensors which can provide very useful environmental and contextual

information. Besides this, the museum staff (guides, security, and other members

of the workforce, such as maintenance personnel) wear personal hand-held devices

(normally smart mobile phones), which are spread throughout the halls and rooms

43

3. A METAMODEL FOR SELF-MANAGED AGENTS

of the museum, constituting an important source of contextual data that can be

used in the development of specific context-aware services. Sensors provide data

that can be used by support services that help museum guides and security staff in

their work. They can also be used to provide visitors with location-based services.

This IM is an AmI application and provides different services for its target users:

1. for the museum guide, it provides support for organizing the route inside the

museum considering the presence of other groups in the halls and rooms of

the museum or the state of a given room, and helps share and disseminate

information between the guide and his/her group of visitors;

2. in the case of the security staff, the AmI nodes (sensors and personal hand-

held devices) provide information about both the presence of people in the

museum and environmental conditions (temperature, light, humidity,...) and

send global notifications to the different groups of people that are in the

museum;

3. and in the case of visitors, we take advantage of the fact that the majority

of people usually bring a mobile phone with them, so our IM system can

provide different pieces of location-based information, for example, details

about a temporary exhibition.

This AmI system is designed as a MAS the agents of which are embedded in

devices (such as tablets, smart phones and mobile phones) that people (visitors,

guides and security staff members) bring with them, and inside sensors located

in the building. The MAS has four types of agents (see Figure 3.1): (1) the

GuideAgent agent for the museum guides; (2) the SecurityAgent agent that helps

the security staff members; (3) the SensorAgent for the sensors in the building; and

(4) the VisitorAgent agent for visitors, where each one is executing in a specific

device.

We would like to highlight that this case study was implemented for a real

museum that is physically located at the Informatics School-University of Málaga

(“E.T.S.I. en Informática”). This museum shows the evolution of informatics

technologies over time (e.g. computers, memory, modems, disks, etc.) and its

components are spread over different areas of the Informatics School: different

44

Figure 3.1: Plane of the room 2 of the “Museo de la Informática”.

rooms and halls, located on different floors and buildings. Room 1 is located

in the school’s reception, Room 2 is located in an adjacent service building and

its use is exclusively for exhibition purposes (see Figure 3.1). There is another

room in the library of the school (Room 3) that contains bibliographic resources,

and there are also posters and panels (describing different aspects related to the

history of computer science engineering and its most relevant researchers) that are

placed in different corridors and classrooms of the school. Sensors are distributed

throughout Rooms 1 and 2, while panels and posters are labeled with QR/BIDI

codes and NFC/RFID tags. Our scenarios take place mainly in Rooms 1 and

2, where several devices and resources (minicomputers, work stations, servers,

multiprocessors, hard disks, memory cards, etc) are exhibited. Figure 3.1 shows

the plan of Room 2, and the layout and distribution of elements in the room

(agents and exhibited resources).

As stated, the museum includes a considerable number of sensors that form a

WSN. In general terms, a WSN consists of a set of sensor nodes monitoring physical

or environmental conditions, such as temperature or sound. Sensed data is sent

through the network to a device node or a sink node. Source sensor nodes generally

operate on a resource of limited power-supply capacity such as a battery, and are

45

3. A METAMODEL FOR SELF-MANAGED AGENTS

compact and inexpensive. Sink nodes have more resources than source nodes, but

they operate on a resource with a limited power-supply capacity. Normally, the

majority of sensors show symptoms of degradation, such as energy loss or failure

of some network nodes, which requires explicit management action, for example

saving energy to guarantee the system’s survival. Consequently WSN demand

the reconfiguration of their internal functioning in response to changes in their

environment. This means that they must behave as autonomic systems with a

self-managing capacity.

In our application, each sensor node or device accomplishes different tasks re-

lated to the application-specific functionality, e.g. to monitor light levels and send

the value to a sink node. Sink nodes receive monitored data, process it, and send

it to another device (e.g. a PC). These tasks are performed by agents running

inside each sensor node or device. In addition to these tasks, these devices ac-

complish other tasks related with self-management in order to extend the system’s

lifetime or recover from the failure of some of the nodes. For example, when any of

these situations is detected, sensor agents can allocate additional tasks to agents

in sensors with more battery life.

Therefore, apart from their application-specific tasks, agents have to be en-

dowed with additional behavior which constantly checks the context and auto-

matically adapts the agent behavior to changing conditions. The adaptation is

ruled by policies that can be specified in terms of ECA, goals or utility functions

[Kephart and Walsh, 2004]. An ECA policy dictates the action that should be

taken whenever the system is in a given current state. A goal policy specifies

either a single desired state, or one or more criteria that characterize an entire set

of desired states. A utility function policy is an objective function that expresses

the value of each possible state. Policies in the form of goals or utility functions

require planning and are inadequate for lightweight devices like sensor motes, due

to their limited resources. So, in order to adopt a homogenous approach to model

the self-management behavior of the devices in the IM, we choose ECA policies. A

description of the rules that comprise the polices for the sensors of our case study

is given in Table 3.1 in informal semantics. The first column (Name) is the name

of the policy, the second column (Condition) describes the situation (expressed by

a logical expression or the occurrence of an event) that causes the execution of the

46

Table 3.1: Self-management policies for the WSN.

Name Condition Action

Decrease
Sampling
Frequency

batteryLife <
10% ∧
Active(Task) ∧
F < 0.003 ∧
F > 3.33 ∗ 10−5

1: Task task=getComponent(ID);
2: double s=getSampling();
3: task.setSampling(s - X);

Task
Allocation

batteryLife <
10% ∧
Active(Task) ∧
F >= 0.003 ∧
F <= 3.33 ∗ 10−5

1: send(REQUEST):
2: if receive(PROPOSE) and not wait-
ing confirm then
send(ACCEPT);
waiting confirm:=true;
3: if receive(CONFIRM) then
removeRole(Task);

Sink Drop Communication
exception

1: send(SINK DROP) to AMS;
2: if receive(SINK:YOU) then
assignRole(Sink);
elseif receive(SINK:ID) then setSink(ID);
elseif receive(RETRY) then wait 10 seconds
and retry

47

3. A METAMODEL FOR SELF-MANAGED AGENTS

actions depicted in the third column (Action). The first two rules correspond to

self-optimizing policies, while, the third one is a self-healing policy.

Additionally, there are policies specifically for agents running in mobile phones.

VisitorAgent enables a cache for museum contents when the response time of the

network is low. SecurityAgent can disable the encryption of the information shared

between security staff members in order to prolong the device’s lifetime in which it

is running. These policies are modeled using the same procedure as sensor policies

but the differences with the policies for sensors become clear upon implementation.

So, this section focuses on policies for sensors which will be looked at again in

Chapter 5.

3.2 The Pineapple viewpoints

The Pineapple metamodel, like PIM4Agents, is a generic metamodel that can be

used to specify agents of the most representative architectural styles (BDI and

reactive), unifying the most common agent oriented concepts used in well-known

agent frameworks. A design in Pineapple is structured in eight viewpoints, each

focusing on a specific concern of a MAS:

• the Multiagent viewpoint contains the main building blocks of a MAS (roles,

agents and so on) and their relationships;

• the Agent viewpoint describes agents, the capabilities they have to solve

tasks and the roles they play within the MAS;

• the Behavioral viewpoint describes agent plans;

• the Organization viewpoint describes how single autonomous entities coop-

erate within the MAS and how complex organizational structures can be

defined;

• the Role viewpoint covers the abstract representations of functional positions

of autonomous entities within an organization or other social relationships;

• the Interaction viewpoint describes how the interaction in the form of inter-

action protocols takes place between autonomous entities or organizations;

48

• the Environment viewpoint contains any kind of resource that is dynamically

created, shared, or used by the agents or organizations;

• the Deployment viewpoint contains a description of the MAS application at

runtime, including the types of agents, organizations and identifiers.

• the Selfmanagement viewpoint describes the self-managed behavior of agents

using roles.

In the following subsections, we explain the concepts that are contained in

these viewpoints and how they are used to model agent based self-managed AmI

systems. This explanation focuses on how to model the MAS using Pineapple

and how to model self-management capabilities. Figure 3.2 depicts the different

viewpoints of Pineapple and where the concepts are defined (is Defined column),

i.e. created in the model, and described (is Described column), i.e. where the

concepts are filled with information. As you can see, concepts that compose the

model of the MAS are defined in some viewpoints and later, they are completed

in one or more viewpoints of the metamodel. These viewpoints can be the same

viewpoint where the concept was defined or it can be a different one (follow grey

arrows in Figure 3.2 to see these relationships). This makes the process not even

neither in cascade, and it is possible to work with some viewpoints simultaneously.

The following sections describe the concepts included in the different viewpoints

and their relationships.

3.3 Modeling of the agent-based application

This section shows how to model the IM in Pineapple, our source metamodel.

Before describing the design of the IM, we explain the main concepts of Pineapple

and how we use them to specify context-awareness. As stated, Pineapple is based

on PIM4Agents, so the different steps that we have to take to model the MAS

are similar in both metamodels. Pineapple has been implemented in Ecore, so the

resultant design is an XMI document. To make it more readable, we illustrate the

use of the metamodel using it as a UML profile.

49

3. A METAMODEL FOR SELF-MANAGED AGENTS

Figure 3.2: Modeling process of the MAS using the Pineapple metamodel.

50

3.3.1 Multi-agent system design in Pineapple

The first viewpoint in the design process of our application is the MAS viewpoint

(see Figure 3.2), which specifies the main building blocks of the MAS (roles, agents,

services, organizations and so on) and their relationships. Figure 3.3 shows the

MAS viewpoint of the IM system. The representation of the agents, organizations

and roles is straightforward in the Pineapple design model. In order for agents to

interact, first they must be members of an Organization in this viewpoint. Agents

GuideAgent, SecurityAgent,VisitorAgent and SensorAgent, all interact to provide

services and control the museum, and are members of the IntelligentMuseum or-

ganization. Additionally, SecurityAgents and VisitorAgents are members of the

PhoneSelfManagement organization and SensorAgents are members of Monitor-

ing, SensorCommunication and SensorSelfManagement organizations. An Orga-

nization defines the social structure of the MAS, so it includes Roles that agents

can perform. An agent is considered member of an organization if it performs

roles of the organization. These membership relationships are represented by the

requires relation of these agents through the depicted roles. This viewpoint also

includes a representation of the agent execution environment, which includes the

set of objects, data types and functions that can be accessed by agents (repre-

sented by the IMEnvironment element in Figure 3.3); and the set of messages that

are exchanged between the agents within the organization (in Figure 3.3 we see

some of them RouteRequest, RouteInformation and RouteGenerated).

In the Environment viewpoint the designer can describe the internal informa-

tion of the system (data and functions). This viewpoint contains the description

of the internal components of the agents (such as the set of available sensors and

actuators) that provide context data (e.g. a location component); the data types

to model the context (e.g. rooms in the museum); and the internal events. The

internal components that compose the agent are given in the agent viewpoint.

The Agent viewpoint could be the next step in the modeling process (see Figure

3.2) and it deals with the design of the agents internal elements (by means of

data, roles, behaviors and capabilities). An agent in Pineapple is an entity that

can play particular roles and show various behaviors; and the agent has certain

capabilities that group a set of behaviors. The Agent viewpoint shows how agents

51

3. A METAMODEL FOR SELF-MANAGED AGENTS

Figure 3.3: UML class diagram corresponding to the MAS viewpoint.

52

perform the roles included in the MAS viewpoint via the plans that each role has

associated with it. Additionally, it is possible to directly assign capabilities to

roles. This is specially important when we model self-management capabilities,

as we show later. For the IM case study, the GuideAgent agent, which plays the

role of Guide and NotificationReceiver, includes 8 different plans to: plan route

inside the museum and support route planning of other agents, to control the

visit (this includes time required for the visit and information about groups that

are reaching the room where the guide is), to send information to its associated

group of tourists and to receive notifications from security staff. The SecurityAgent

agent, which plays the role of Guard, includes plans to: send global notifications to

visitors and guides, request the room’s environmental information and to control

the number of people in the IM. The VisitorAgent agent plays the roles of Visitor

and NotificationReceiver and has plans for receiving notifications from security

agents and information of the guides in the museum, to find a guide to assist the

visitor in the museum and receive recommendations for exhibits according to its

position in the museum and its interests. Finally, SensorAgent is a special case

because its roles are related with self-management. So, we address issues related

with this type of agent in the next subsection.

The Organization and Interaction viewpoints deal with the design of inter-

actions from specific perspectives. The IM case study (if we do not consider

interaction related with self-management) is composed of 6 Interaction viewpoints

and Figure 3.4 shows the interaction viewpoint of the RoutePlanning interaction

protocol, which covers the interaction between two agents which play the role of

guide when suggesting of a certain route inside the museum. This viewpoint shows

the set of actors involved (Planner and Supporter), the set of messages exchanged

(RequestInformation, RouteInformation and myRoute), and how the exchange of

messages takes place. The Planner actor sends a Request message (Request is the

performative of the message) to get the information of the route that the Sup-

porter actor is following, then this sends this information in an Inform message

and finally Planner sends the information of the route that it is going to follow.

At run-time, the Planner and Supporter are performed by GuideAgents.

The Behavior viewpoint describes agent plans. A plan is composed of a set of

atomic tasks or actions, such as sending a message, which are related using com-

53

3. A METAMODEL FOR SELF-MANAGED AGENTS

Figure 3.4: UML class diagram corresponding to the Interaction viewpoint.

plex control structures. Additionally, the plan viewpoint shows how information

flows between the different actions that compose the plan. The plan ExhibitRec-

ommender (Figure 3.5), which is used to recommend exhibits of interest to the

user or ones that are new to the musesum, represents a context dependent behav-

ior. Context awareness is normally modeled by defining the elements that fit the

context data, and how a change in the context influences the internal behavior of

the agent (which is shown in the Behavior viewpoint). When the context changes,

the knowledge base of the agent is updated with the context value. When the

knowledge base is updated, an event is thrown (KnowledgeBaseEvent in Figure

3.5) which contains information about the change (the knowledge that has been

updated). For this case study the agent context is represented by the position

where the visitor is. The event handling is a feature that is not explicitly sup-

ported by the PIM4Agent metamodel (the foundation of Pineapple). So, we have

solved this limitation by using an atomic task named ReceiveEvent that shows that

an event (namely a resource) has been thrown and caught. Once the event has

been caught (i.e. when an event is received), a subsequent action (checkRoom)

focuses on handling this context change, by deciding which room and checking

whether there is something interesting for the user because of its profile or the

novelty of the exhibit. The decisions checkUserProfile and checkUpdates refer to

54

Figure 3.5: UML class diagram corresponding to the Behavior viewpoint.

the decision to emit a recommendation to the user in this room of the museum.

Finally, Pineapple also provides the description of deployment information at

runtime (such as agents’ identifiers and number of instances of a specific agent or

an organization) in a viewpoint named Deployment viewpoint. In the case of this

application, this viewpoint is useless because the number of agents in the system is

not known in the modeling. Additionally, our MAS is very dynamic so it is quite

common that agents are constantly appearing in and disappearing from it.

3.3.2 Design and validation of the self-management

As stated, Pineapple evolves from the PIM4Agents metamodel, extending it to

add a new viewpoint for the modeling of self-management and additionally, exist-

ing viewpoints are extended with new self-management related concepts. The new

viewpoint, called Self-management, includes concepts of other viewpoints, and is

designed to explicitly model self-management policies and the roles involved in

self-management functions. However, the modeling of self-management also im-

plies the incorporation and representation of new resources, knowledge and beha-

viors, which are described in the corresponding viewpoints. Figure 3.6 provides a

high-level description of the relationships and dependencies of existing viewpoints

(large rectangles labeled viewpoint) and concepts (small rectangles) of the base

metamodel and the Self-management viewpoint (grey rectangle) and related con-

cepts (Policy and SelfManagementRole entities). In what follows, we explain the

concepts that are contained in this viewpoint and how they are used to model

self-managed AmI systems.

55

3. A METAMODEL FOR SELF-MANAGED AGENTS

Figure 3.6: Relationship between the Self-management and base metamodel view-
points.

3.3.2.1 Organizations for self-management

As can be seen in Figure 3.2, the first step in the design of the self-management is to

include organizations for self-management. The concept of organization is present

in several metamodels [Bernon et al., 2005] and can be used to separate the dif-

ferent concerns of the application. Therefore, we have used organizations in order

to integrate self-management inside the MAS. Then, in our MAS we have 4 orga-

nizations: IntelligentMuseum that covers the communication needs of the MAS;

Monitoring that encapsulate roles to monitor the environment; SensorCommuni-

cation which tackles communication in the WSN using sinks and ordinary sensor

nodes; and SensorSelfManagement and PhoneSelfManagement that encapsulate

the self-management functionality.

The roles contained in SensorSelfManagement organization implement the poli-

cies depicted in Table 3.1. So, we have considered two roles: SensorSelfHealer and

SensorSelfOptimizer. The modeling of these policies has influenced the design

of the other organizations for SensorAgents (Monitoring and SensorCommunica-

tion). Table 3.1 envisions a MAS the agents of which have a dynamic functionality.

A role encapsulates a set of behaviors (i.e. capability), resources and participation

in interaction protocols. An agent can accomplish some roles at runtime or indeed

stop fulfilling a role. Therefore, we have encapsulated the dynamic functionality of

sensor agents using roles that belong to different organizations. We have a single

type of SensorAgent (see Figure 3.3) that belongs to three organizations via the

56

roles it performs.

At this stage of the modeling, organizations and roles are a good option for

integrating self-management because organizations promote the separation of the

application concerns and roles deal with dynamic functionality. Although, by using

these concepts we could model policies for distributed systems like AmI applica-

tions, we would still be lacking an important concept which should be integrated

within roles, which is the knowledge required by the role. For example, if an agent

is the sink of the WSN, i.e. it performs the Sink role in the SensorCommunication

organization, it must store knowledge about the radio addresses of the agents it

receives data from. However, in most agent metamodels (included PIM4Agents),

knowledge can only be associated with agents, and not with roles [Bernon et al.,

2005]. Therefore, agents all have the same knowledge, regardless of the roles they

perform. Since an agent can adopt different roles at runtime, it would be better

for it to include the knowledge associated with the role, and not only the behavior

in the modeling stage. In our opinion this is not a serious limitation, but it is

not conceptually correct. In order to overcome this, a new role is defined, Self-

ManagementRole, which extends Role (in this way we extend the metamodel and

overcome this limitation only for self-management behavior, while Role seman-

tics remain the same). For example, the description of the SensorSelfHealer role

(see Figure 3.3) would be included in the SelfManagement viewpoint. The policy

associated with this role is given in the third row of Table 3.1.

The second viewpoint related with self-management is the Environment view-

point. In this viewpoint the designer describes the internal information of the

system which is relevant for self-management, e.g. the internal components of the

agents. So, here we define data types associated with self-management and later,

we use them to define the knowledge belonging to the SelfManagementRoles. For

example, the knowledge required by the SensorSelfHealer role concerns the agent

that it must locate in case of a sink failure.

In self-managed systems, it is important to distinguish between policies and

activities that support the application of policies. In Pineapple, these activities are

modeled using capabilities associated with the Role concept (see Figure 3.6), and

so it is possible to model a SelfManagementRole without policies. For example,

we can have an organization with two roles, Slave and Master. The function

57

3. A METAMODEL FOR SELF-MANAGED AGENTS

of the Slave is to periodically send “is alive” signals to the Master. While the

function of the Master is to restore a Slave if in a given time span it does not

receive an “is alive” signal. So, the actions of the role Slave are intended to

support self-management, and its execution does not depend on an event or a

condition. A typical action contained in capabilities is the monitoring behavior

for self-management.

3.3.2.2 Policies using APPEL notation

The next step in our modeling approach is to define the policies for self-management.

In order to model policies, one option is to use the existing viewpoints that are

used to model the dynamic behavior of the system, which are the Interaction and

the Behavior viewpoints. However, the principal limitation on using the Behavior

viewpoint for the modeling of agents’ plans is that it does not have support for

conflict detection. Conflicts between policies arise when two or more policies can

be applied at the same time and those contain actions that can cause conflict,

e.g. one policy requires an increase in the frequency of a task, while the other

states that the frequency of the same task must be decreased. To resolve this, we

propose using a similar approach to the one presented in [ter Beek et al., 2009].

This approach uses an ECA policy language named APPEL, which has been used

for policy specification in environments related with AmI (e.g. management of

sensor networks or ambient assisted living). The main advantage of APPEL for

us is that this language has support for conflict detection using the UMC model

checker [ter Beek et al., 2011].

We have integrated the use of APPEL into our metamodel using its syntax

to define policies (see Figure 3.7) that any SelfManagementRole has to follow.

Pineapple uses the syntax depicted in Table 3.2, which has being adapted for the

agent domain. This domain-specific language, which is based on APPEL, speci-

fies the triggers, conditions and actions of the self-management policy. Triggers

can be internal events of the agent (EventTrigger), or the sending and reception

of a message (MSGTrigger and Type). The Condition concept can be simple

or composed as in the APPEL notation, but it is related with agent knowledge

(Knowledge) or an equality expression over the trigger of the rule (TriggerPredi-

58

Figure 3.7: Metamodel for Policy concept using APPEL notation.

cate). The TriggerPredicate concept represents an equality expression between a

value and an attribute (Attribute enumeration) that can be the type of the trigger

(instance) or a field of the message associated with the trigger (performative, pro-

tocol or content). Actions associated with policies, i.e. SMPlan, are described in

the next section. The policy Sink Drop (third row in Table 3.1) can be expressed

in APPEL-based notation as depicted in Example 3.3.1.

In order to validate this policy using the UMC model checker, it has been trans-

lated to a set of UML finite state machines (FSMs) using the mapping proposed

in [ter Beek et al., 2009]. In our approach, policies are simplified before being in-

troduced into the model checker. Specifically, actions have no arguments and logic

conditions will be logic variables. So, the policy Task Allocation (second row in Ta-

ble 3.1) is transformed into 4 policies that are composed using parallel FSMs, one

for each task that the agent can allocate and logical conditions like batteryLife <

10% are introduced like the variable lowBatteryLevel in UMC. In Example 3.3.2,

the code section of the UMC specification for the allocation of the light monitoring

can be seen. A UMC specification consists of a set of objects’ specifications the

behavior of which is described as an FSM. This FSM is described using a set of tran-

sition rules the notation of which is stateA → stateB{trigger[condition]/actions}.
An FSM, which is in stateA, transits to stateB if it receives a trigger and a con-

dition is met. Triggers, conditions and actions are optional fields in a transition,

while origin and destination states are mandatory. When the transition takes

59

3. A METAMODEL FOR SELF-MANAGED AGENTS

Table 3.2: APPEL syntax.

policy ::= polRuleGroup |polRuleGroup policy
polRuleGroup ::= polRule |polRuleGroup op polRule-

Group
op ::= g(condition) |u |par |seq
polRule ::= [when trigger] [if condition] do action
trigger ::= trigger |trigger or trigger
condition ::= condition |not condition |condition

and condition
|condition or condition

action ::= action |action actionop action
acntionop ::= and |or |andthen |orelse

place, actions are executed. Due to the fact states in the FSM can be com-

posed, the state name must be attached to its super states, e.g. in the state

name Top TaskAllocation.Top LightAllocation.LightAllocation wait from the first

line of Example 3.3.2 means the super state of the state LightAllocation wait is

Top LightAllocation and Top TaskAllocation is the super state of the latter.

The final step of the specification is to indicate what properties of the FSM are

observable, this is done in a special section of the UMC model named abstractions.

In our case we want to detect whether or not conflicting actions are executed. To

do so, we transform these actions into variables and include them in the abstraction

section. As an example we check whether an agent can simultaneously remove all

its roles for self-management. Then, we include these actions in the abstraction

section as depicted in Example 3.3.3.

Example 3.3.1. Sink Drop policy in APPEL notation.

1 seq(when CommunicationException do (send(SINK_DROP));

2 par(when MSGTrigger.RCV if Content=SINK_YOU

3 do (assignRole(Sink));

4 when MSGTrigger.RCV if Content=ID

5 do (setSink(ID));

6 when MSGTrigger.RCV if Content=RETRY

7 do (wait(10);send(SINK_DROP)););)

The UMC framework takes the FSM and transforms it into a doubly labeled

60

transition system (L2TS) , which is a formal model of the system’s evolution [ter

Beek et al., 2011]. This L2TS can be model checked using logic formulae expressed

in UCTL, a UML-oriented-time temporal logic. When the translated model is in-

troduced in the UMC tool, we can check whether or not a conflicting action is exe-

cuted simultaneously. For example, the expressionAG¬((RemoveLightRole(true))

&(RemoveNoiseRole(true))&RemoveAccelRole(true)&RemoveTempRole(true))

would be used to express that is not possible to remove all roles simultaneously.

Example 3.3.2. Code section of the Task Allocation policy in the UMC model

checker

1 Top_TaskAllocation.Top_LightAllocation.LightAllocation_wait ->

Top_LightAllocation.AllocateLight

2 {-[LowBatteryLife and not LightFrequencyModifiable and

LightActive]}

3 Top_LightAllocation.AllocateLight.SendLightAllocRequest ->

AllocateLight.WaitForLightAllocProposals

4 {-/SendLightAllocRequest:=true}

5 Top_LightAllocation.AllocateLight.SendLightAllocRequest ->

Top_LightAllocation.LightAllocation_fail

6 AllocateLight.WaitForLightAllocProposals.WaitLightAllocProposal ->

WaitForLightAllocProposals.SendLightAllocAccept

7 {ReceiveLightAllocPropose [not WaitingConfirm] /

SendLightAllocAccept:=true; WaitingConfirm:=true}

8 WaitForLightAllocProposals.SendLightAllocAccept ->

LightAllocation_fail

9 WaitForLightAllocProposals.SendLightAllocAccept ->

WaitForLightAllocProposals.WaitForLightAllocConfirms

10 WaitForLightAllocProposals.WaitForLightAllocConfirms.

WaitLightAllocConfirm -> WaitForLightAllocConfirms.

RemoveLightRole

11 {ReceiveLightAllocConfirm/RemoveLightRole:=true}

12 WaitForLightAllocProposals.WaitForLightAllocConfirms.

RemoveLightRole -> LightAllocation_fail

Distributed policies are a special type of policy, which are quite common in AmI

systems. These policies require the communication and coordination of different

self-management roles. In order to model these policies, we require the viewpoints

61

3. A METAMODEL FOR SELF-MANAGED AGENTS

to model the distributed behavior of the system (Organization and Interaction),

in addition to the SelfManagement viewpoint. An example of a distributed pol-

icy is the Task Allocation policy (second row in Table 3.1), which requires the

agents to interact in order to allocate a task. Firstly, we associate an interaction

protocol (TaskAllocationProtocol) with the SensorSelfManagement organization in

the Organization viewpoint. Secondly, in the same viewpoint we model the ac-

tors required by the protocol (Requester and Responder) and the roles that these

actors can play (SensorSelfOptimizer in Figure 3.3). Finally, in the Interaction

viewpoint, the message exchange between actors is defined and described.

Example 3.3.3. Abstractions section of the Task Allocation policy in the UMC

model checker

1 Abstractions {

2 State Rules.RemoveLightRole=$1 -> RemoveLightRole($1)

3 State Rules.RemoveNoiseRole=$1 -> RemoveNoiseRole($1)

4 State Rules.RemoveAccelRole=$1 -> RemoveAccelRole($1)

5 State Rules.RemoveTempRole=$1 -> RemoveTempRole($1)

6 }

3.3.2.3 Actions for self-management

The last step in our process is to specify the actions required by the policies.

The Behavior viewpoint describes plans associated with agents and capabilities of

agents and roles. Due to the inadequacy of the Behavior viewpoint for modeling

some concepts and activities specific to self-management (the Autonomic Functions

(AFs) described in Section 2.3), we introduce the concept of SMPlan (see Figure

3.7). The SMPlan is similar to the Plan concept. Like plans, an SMPlan comprises

a set of actions such as sending a message, which are related using complex control

structures such as loops. In the moment of modeling, self-awareness and self-

adjusting related actions, which are closely related to the agent architecture and

are independent of the application domain, require a common vocabulary to avoid

ambiguous specifications. So, it would be better to have specific purpose actions

included in the Behavior viewpoint and to avoid ad-hoc solutions. For this reason,

we have developed the SMActivity concept that is shown in Figure 3.8. With the

62

Figure 3.8: Metamodel for SMPlan concept.

definition of the SMPlan concept, we ensure that self-management actions (i.e.

SMActivities) cannot be used for plans related to other concerns of the application.

An SMPlan can include the same actions of any plan and actions for self-

management to overcome the limitations of agent metamodels with regard to the

AFs. Concretely, it includes the following actions (see Figure 3.8): GetBehaviors,

GetRoles, RemoveResource, AddResource, RemoveKnowledge and AddKnowledge.

The first two actions are defined to support self-awareness, while the last four ac-

tions are intended to support self-adjusting. The base metamodel has actions that

support self-management too, such as AssignRole, RemoveRole or CalledBehavior.

Additionally, due to the restrictions imposed by the APPEL syntax, the control

structures are limited to loops, parallel actions and decisions. In Figure 3.9 we can

see the SMPlan that corresponds to the Task Allocation policy (see Table 3.1).

63

3. A METAMODEL FOR SELF-MANAGED AGENTS

Figure 3.9: UML state machine corresponding to the SMPlan of the Task Alloca-
tion policy.

3.4 Summary

In this chapter we have presented Pineapple, a metamodel for designing AmI ap-

plications based on agents with self-management capabilities. Additionally, we

have presented the modeling process of this metamodel using an IM for the case

study. Agents are a natural metaphor for the modeling of distributed applications

with autonomous and intelligent behavior, like AmI systems. These environments

are characterized by a high degree of unpredictability and dynamism in the ex-

ecution context, which makes the application of techniques like self-management

necessary. Agent metamodels offer an excellent basis for modeling self-managed

AmI systems, however they have the following limitations: (i) poor specification of

dynamic behavior; (ii) lack of support to validate the self-managed behavior; and

(iii) ambiguous notation to express AFs. In order to overcome these limitations, we

have defined Pineapple, a metamodel which extends the PIM4Agents metamodel in

different ways in order to overcome the aforementioned limitations. The principal

contributions focus on self-management modeling, we have defined a new model-

ing viewpoint called Selfmanagement, which allows the roles for self-management

(including the knowledge related with self-management) to be modeled together

64

with the policies that drive the self-managed behavior of the AmI system. Policies

are described using a domain specific language that follows the APPEL syntax.

The use of APPEL allows conflict between policies to be detected using the UMC

model checker. Finally, the new viewpoint also includes specific actions for model-

ing AFs, facilitating the modeling of self-awareness and self-adjusting functions.

65

3. A METAMODEL FOR SELF-MANAGED AGENTS

66

Chapter 4

From Pineapple to MalacaTiny

In this chapter we explain the M2M transformation process from the Pineapple

metamodel to the MalacaTiny metamodel. This chapter starts by introducing the

MalacaTiny metamodel (Section 4.1). We then explain the transformation process

(Section 4.2) using the Intelligent Museum case study introduced in the previous

chapter (Section 3.1).

4.1 The MalacaTiny metamodel

The MalacaTiny metamodel translates the advantages of the Malaca agent archi-

tecture to the metamodel level. The MalacaTiny metamodel is the PSM of the

MalacaTiny implementations that will be presented in the Chapter 5. Most ex-

isting agent architectures focus on the type of agent (BDI, reactive, ...), but do

not provide direct support for handling and reusing properties and functionality

separately. This approach results in agent design and implementations being quite

complex, brittle and difficult to understand, maintain, and reuse in practice. The

main feature of the internal architecture of a Malaca [Amor and Fuentes, 2009]

agent is that it represents, application-specific functions separately from extra-

functional agent properties. This separation improves the internal modularization

of the agent architecture, which is based on the composition of components and

aspects, and contributes to enhancing the adaptation, reuse and maintenance of

the software agent. These architectural features are maintained by the MalacaTiny

67

4. FROM PINEAPPLE TO MALACATINY

Figure 4.1: UML class diagram of the MultiAgentSystem concept in the Mala-
caTiny metamodel.

metamodel and even, upon implementation with the MalacaTiny agents. Within

the MalacaTiny metamodel we can distinguish three main parts: (i) the modeling

of the agent architecture; (ii) the modeling of the aspects ; and (iii) the modeling

of the self-management. The root concept of the MalacaTiny metamodel is the

MultiAgentSystem (see Figure 4.1). A MultiAgentSystem is composed of a set of

Agents, Aspects, Behaviors and Environments. Environments are global to the

MAS and contain data types that are handled by agents. The rest of the concepts

are explained in the following sections.

4.1.1 Agent modeling

As stated, an agent in the MalacaTiny metamodel is composed of a set of compo-

nents and aspects. This is a simplified vision of the MalacaTiny agent, in Figure

4.2 we can see the fragment of the MalacaTiny metamodel devoted to the Agent

concept. The application specific functionality and knowledge are encapsulated

in a set of Component and Knowledge elements, respectively. The access to en-

vironmental information (the environment can be computational or the external

world) is encapsulated in Facet elements. This information about the external

world for the applications is stored in Context elements. Context and Facet are

mainly related with the self-management of the agent.

Additionally, the Agent concept includes the data needed to locate and compose

aspects using the Malaca model [Amor and Fuentes, 2009]. In Malaca, aspect com-

position is ruled by composition rules (the CompositionRule element) and occurs in

specific interception points (the InterceptionPoint element), the basic interception

68

Figure 4.2: UML class diagram of the Agent concept in the MalacaTiny meta-
model.

points of Malaca are the sending and receiving of a message, and when an event

is thrown. In the MalacaTiny metamodel, interception points can be extended

and it is possible to model the composition of aspects in other execution points.

Malaca also considers the scope of an aspect (the Scope concept) that has three

possible values. If the scope of an aspect is AGENT SCOPE, then the aspect is

unique in the agent architecture. In the case the scope is PROTOCOL SCOPE,

then the aspect encapsulates a coordination protocol that is unique in the agent

architecture. Finally, if the scope is CONVERSATION SCOPE, the aspect en-

capsulates a coordination protocol that is instantiated for each new conversation

that the agent starts.

A CompositionRule includes the following: the role attribute specifies the func-

tion of the aspect in the agent architecture, e.g. an aspect that encapsulates the

codification of the messages using a specific syntaxis has the role of Representation;

the instanceName attribute has the identifier of the aspect in the agent architec-

ture, this value is set according to the scope of the aspect; the relevance attribute

sets whether the application of the aspect is relevant for the agent architecture, if

it is set as true when the application of an aspect fails the composition process is

stopped; and advice specifies the method that includes the behavior of the aspect

69

4. FROM PINEAPPLE TO MALACATINY

to be composed in the aspect composition. CompositionRule has a reference to

the InterceptionPoint where the aspect is applied and to the Aspect applied in

the aspect composition process. Finally, CompositionRule includes a reference to

PatternInterface, that models the condition that must be met by the thrown event

or the sent or received message in order to apply an aspect to the composition.

In Figure 4.3, a fragment of the modeling of the IM in the MalacaTiny meta-

model is depicted . Specifically, it shows part of the modeling of the SecurityA-

gent. This agent has three components which are the user interface named Com-

ponent GUI9, an internal timer to coordinate some of the activities called Com-

ponent Timer10 and a component to encrypt messages Component Encryptor11

(lines 2-4). Additionally, it has a set of composition rules to drive the aspect com-

position process (lines 5-22). As contextual information, this agent has the current

position of the guard named Location (line 23) and the facet that gets this infor-

mation (Facet LocationProvider11 in line 23). This agent has knowledge relative

to the state of the museum (Room1, Room2 and Occupation) (lines 24-28) and

the basic interception points (SND MSG, RCV MSG and THRW EVNT) (lines

29-31).

4.1.2 Aspect modeling

Aspects encapsulate crosscutting concerns of the agent architecture. In Mala-

caTiny, we have considered as crosscutting concerns of the agent, the Represen-

tation of the messages in a specific format, the Monitoring functionality of the

agent, the Distribution of the messages using a specific technology, the Coordina-

tion using interaction protocols and the SelfAdjusting of the agent as part of the

self-Management functionality inside the agent.

The part of the MalacaTiny metamodel devoted to aspects (see Figure 4.4)

considers a super class named Aspect, which is extended by the other aspects. The

Aspect element is composed of a set of advice names and the class that implements

this aspect at implementation stage. The Monitoring aspect includes the frequency

of the monitoring, the source of information (Facet) and the context of the agent

where this information will be updated (Context). Representation and Distribution

aspect do not add extra information to the super class. The Coordination aspect is

70

Figure 4.3: Fragment of the modeling in XMI of the SecurityAgent in the Mala-
caTiny metamodel.

71

4. FROM PINEAPPLE TO MALACATINY

composed of a FiniteStateMachine, which is described below. Then, the following

Subsection details the SelfAdjusting aspect.

FiniteStateMachine associated with Coordination describes the behavior of the

agent in an interaction protocol. At runtime, this finite state machine is in an ini-

tial state and then, receives messages and internal events of its agent, that causes

the machine to transit between its states. The transition occurs as follows: the

machine receives a message or an event (i.e. an input), if this input follows a

specific pattern, the machine transits to another state. Each time the machine

transits, a plan is executed. In the MalacaTiny metamodel, a FiniteStateMachine

has an initial state and is composed of a set of State and Transition elements, that

describe how the machine transits between its states. A Transition is composed

of source and target states, which represent the two states associated with the

transition, the pattern that must be conformed by the input (the PatternInterface

concept) and the Plan that is executed when the transition occurs. PatternIn-

terface is an abstract class that is extended by MessagePattern, InstancePattern

and SituationalPattern. MessagePattern allows a pattern to be established for

the fields of an ACL message. To the contrary, InstancePattern is used to create

patterns that are only followed by instances of a specific class. SituationalPattern

models situations of interest in the agent context.

A Plan is an ordered set of StandardAction elements. A StandardAction is an

abstract concept that is extended by Task and StructuredAction. Task represents

simple atomic actions like the sending of a message (SendMessage) and user defined

actions (AtomicTask). StructuredAction represents control structures like if-then-

else (IfThenElse) or loops (While).

Figure 4.5 depicts a section of the modeling of the IM in the MalacaTiny meta-

model. Specifically, it shows part of the modeling of the RoutePlanningRequest

coordination aspect. RoutePlanningRequester models the set of actions required

for a guide to generate a route in the Museum according to the current groups that

are visiting the museum. This aspect has three advices (lines 2-4), three states

(lines 15-17) and its transitions are driven by an event (line 6) and a message re-

ceived (lines 11). Additionally, the SendRouteRequest plan is shown (lines 20-29),

which is the initial plan that is executed to send a Message (lines 25-28) to other

GuideAgents when an event is received (line 21-24).

72

Figure 4.4: UML class diagram of the Aspect concept in the MalacaTiny meta-
model.

73

4. FROM PINEAPPLE TO MALACATINY

Figure 4.5: Fragment of the modeling in XMI of the RequestRoomCondition co-
ordination aspect and the SendRoomConditionRequest plan in the MalacaTiny
metamodel.

74

Figure 4.6: UML class diagram of the SelfAdjusting concept in the MalacaTiny
metamodel.

4.1.3 Self-Management modeling

To perform self-management, the agent must be able to monitor the environ-

ment (self-situation), and itself (self-awareness); to detect changing circumstances

(self-monitoring) and after that the agent must be able to adapt its behavior (self-

adjusting), probably in coordination with other agents of the AmI environment. In

the MalacaTiny metamodel self-situation and self-awareness are achieved means

of the Monitoring aspect (see Figure 4.4) and the rest of the functions are encap-

sulated in the SelfAdjusting aspect and its associated plans called the SMPlan (see

Figure 4.6).

The SelfAdjusting aspect is very similar to the Coordination aspect although

their main difference is in the kind of plans that are executed in the transitions.

This aspect is composed of a finite state machine (SMMAchine in Figure 4.6),

which is composed of a set of State and SMTransition elements. Patterns associ-

ated to SMTransition represent situations that requires self-management actions

(SituationalPattern or InstancePattern) or are related with the implementation of

75

4. FROM PINEAPPLE TO MALACATINY

self-management policies that requires the interaction between some agents (Me-

ssagePattern).

SMPlan, which is the element that models self-adjusting actions, is similar to

Plan elements. An SMPlan is an ordered set of Action elements, while Plan is an

ordered set of StandardAction elements (see Figure 4.6). Action is a super-type of

StandardAction that is extended by actions to configure aspects (AspectConfigu-

rationService) and to configure the agent (AgentConfigurationService).

Figure 4.7 depicts a fragment of the modeling of the IM in the MalacaTiny

metamodel. Specifically, it shows part of the modeling of the SensorSelfOptimi-

zing aspect. This aspect is the combination of the self-management policies that

are depicted in the first two rows of Table 3.1. Because our metamodel does not

accept parametric actions, we replicate policies for the different tasks that can

be allocated or the frequency of which can be decreased. Therefore, the Sensor-

SelfOptimizing aspect has 17 states (lines 23-38) and its transitions are ruled by

SituationalPattern elements. In Figure 4.7, one of them is shown (lines 6-22).

The RequestLightMonitoringPlan (lines 41-45) is an SMPlan that sends a message

request to allocate light monitoring.

4.2 From Pineapple to MalacaTiny

In this section, we present the generation process from Pineapple (presented in

Chapter 3) to MalacaTiny (presented in the previous section). This generation is

one of the main contributions of this thesis and addresses some of the challenges

raised in Subsection 1.1. A general overview of our approach is presented on the

right-hand side of Figure 4.8. As source PIM and starting point of our MDD

process we use Pineapple that meets the following requirements: (i) it is possible

to represent concepts from different agent types (e.g. BDI, reactive agents), (ii)

it is easy to specify MAS for different domains; (iii) it provides elements to model

self-management policies and (iv) the context-aware behavior, required by AmI

systems.

The design of a MAS using the Pineapple metamodel corresponds to the first

step of our development process (see Figure 4.8), contributing to the achievement of

the Challenge C1.1 (Facilitate the high level modeling of AmI features). Following

76

Figure 4.7: Fragment of the modeling in XMI of the SelfAdjusting aspect and the
RequestLightMonitoringPlan in the MalacaTiny metamodel.

77

4. FROM PINEAPPLE TO MALACATINY

an MDD approach, and in order to define automatic transformations from source

and target metamodels, we propose using MalacaTiny, as the target metamodel.

Both metamodels are implemented in Ecore, and the transformation rules in ATL

contribute to automatizing the MDE process. ATL is de facto standard which

provides ways of producing a set of target models from a set of source models via

a set of ATL transformations.

The second step of the MDD process is to generate MalacaTiny agents from

the PSM. In this step the choice of MalacaTiny as the PSM is because of its

platform-neutrality. This means, that MalacaTiny agents are able to use the com-

munication infrastructure and services of any FIPA compliant agent platform or

even use other communication technologies to interact with other agents. Mala-

caTiny is a metamodel and an efficient implementation of the Malaca architectural

model that can be executed in multiple devices (Android, PDA, MIDP and Sun

SPOT sensors) and deployed on top of various agent platforms, running different

operating systems. The agent implementation generated by the M2T transfor-

mations from the MalacaTiny metamodel is independent of the target platform

where the agent will be executed. The key is that MalacaTiny agents maintain the

modularization of the MalacaTiny metamodel. The MalacaTiny agent metamodel

separates platform-dependent functions (i.e the access to the agent platform ser-

vices, such as the MTS, the Directory Facilitator (DF) or the Agent Management

Service (AMS)) as aspects, following an aspect-oriented approach.

The entire agent functionality that depends on the target agent platform is en-

capsulated in an independent component (i.e. the distribution aspect), which can

be incorporated inside the agent implementation as a plug-in in the deployment

phase. So, we just need an M2M transformation from Pineapple to MalacaTiny

(second step of our process), and a set of M2T transformations from the Mala-

caTiny metamodel to the different versions of MalacaTiny (third step of our pro-

cess). Our process can automatically derive agents that can be deployed to use the

communication infrastructure of different agent platforms using the appropriate

plug-in. So, our MDD can be considered more extendable than others as adding

a new agent platform only entails implementing a new plug-in thereby meeting

challenge C1.2 (Facilitate the extensibility of the MDD process).

So, the benefit of using MalacaTiny as a PSM is threefold: (i) the incorpora-

78

Figure 4.8: The overall picture: MDE straight forward approach (DSML4MAS)
on the left hand side and from Pineapple to MalacaTiny on the right hand side.

79

4. FROM PINEAPPLE TO MALACATINY

tion of new agent platforms to this proposal has a lower cost than in an MDD

straight forward approach like DSML4MAS (Figure 4.8 left hand side). Instead of

requiring the specification of PSM metamodels and coding a new set of transfor-

mation rules, we only require the implementation of a new plug-in encapsulating

the particularities of use of the new agent platform communication facilities (the

Challenge C1.2, Facilitate the extensibility of the MDD process); (ii) the imple-

mentation of an MAS for different agent platforms does not require transforming

and implementing it for each platform, instead, it just involves selecting and using

the appropriate agent platform plug-in for each MalacaTiny agent (the Challenge

C2.1, Manage device and agent platform heterogeneity). This plug-in receives the

incoming messages and delivers outgoing messages to an agent platform, hiding

platform-specific dependencies. This plug-in is modeled and composed as an as-

pect (i.e. the distribution aspect), following an aspect-oriented approach as we

will show in subsequent chapters (the Challenge C2.2, Cope with wireless network

diversity); and (iii) thanks to the separation of platform and communication de-

pendent concerns, it is possible to easily extend Malaca/MalacaTiny to support

new agent platforms and communication technologies (contributing to C2.2). For

example, MalacaTiny agents running in smartphones can communicate using IEEE

802.11 (Wi-Fi), while the communication of MalacaTiny agents running in sensors

relies on the IEEE 802.15.X (WPAN/Bluetooth/Zigbee) technologies.

In this section we summarize the main mappings between Pineapple concepts

and MalacaTiny concepts, performed by a set of ATL mapping rules. The map-

ping rules included in this section do not constitute an exhaustive list. We have

only included those that help the reader to understand the most relevant model

mappings required for the use case scenario. Some mapping rules are applied au-

tomatically (simple ATL rules), while the application of other rules depends on

the previous application of other mapping rules or must be invoked by other rules

(ATL lazy rules) (see Subsection 2.4.4.2). For each concept from the Pineapple

metamodel there are one or more transformation rules to map this concept to

the MalacaTiny metamodel. This is not the case of the organization concept of

PIM4Agents. MalacaTiny focuses on the internal design of the agent and orga-

nizations are not considered explicitly. Therefore, this concept is not mapped to

MalacaTiny. In this section the transformation rules are described in detail and

80

Table 4.1 summarizes the main mappings between the concepts of Pineapple and

the MalacaTiny metamodel section devoted to agent concepts, Table 4.2 does the

same for aspect concepts and Table 4.3 for the self-management concepts. We

have labeled each rule in the form of an AGnumber for agent rules, a ASnumber

for aspect rules and SMnumber for self-management rules to make identifying a

specific rule in the text easier.

We also illustrate the application of each rule in our example. The diagrams

presented in Subsections 3.3.1 and 3.3.2 provide enough information to generate

the MalacaTiny specifications for GuideAgent, SecurityAgent, SensorAgent and

VisitorAgent. This section focuses on the code generation process of the SecurityA-

gent (Figure 4.3), the RoutePlanning protocol (Figure 4.5) and the TaskAllocation

policy (Figure 4.7).

4.2.1 Generating agents

The work of the rules presented here is illustrated in Figure 4.3.

Agent Rule 1. This rule is the first to be applied in the M2M transformation

process and the trigger for the rest of the rules presented in these sections. It

takes the MultiagentSystem concept from the Pineapple metamodel and generates

the basic structure of the MultiAgentSystem concept of MalacaTiny. Addition-

ally, it generates the elements by default in the M2M process such as aspects for

Representation and Distribution.

Agent Rule 2. This rule maps an Agent to the basic structure of an Agent in

Pineapple and its constituent parts: name, CompositionRule and Interception-

Point. The CompositionRule element is partially generated (lines 5-13), since

only those aspects considered obligatory for the correct functioning of the agent

are derived (i.e. the Representation and Distribution aspects). Both aspects are

platform-dependent so only the default information is generated here. The inter-

ception points by default (SND MSG, RCV MSG and THRW EVNT) are also

generated by this rule (lines 29-31).

Agent Rule 3. This rule maps a Resource (an Internal component of the agent in

the Pineapple metamodel) to a Component in MalacaTiny which is a set of iden-

81

4. FROM PINEAPPLE TO MALACATINY

Table 4.1: Mapping process between the Pineapple metamodel and agent concepts
from MalacaTiny metamodel

Target Source Explanation

AG1:
MultiAgentSystem

MultiagentSystem Each MultiagentSystem is mapped to a
MultiAgentSystem

AG2:Agent Agent Each Agent is mapped to the basic struc-
ture of an Agent with basic interception
points and a set of aspects by default

AG3:Component Resource Each Resource is mapped to an agent
Component

AG4:Facet Resource Each Resource that extends Facet is
mapped to a Facet element

AG5:Knowledge Knowledge Each Knowledge is mapped to a Knowl-
edge

AG6:Context Knowledge Each Knowledge that extends Context is
mapped to a Context

AG7:
CompositionRule

Actor Each Actor is mapped to a Composition-
Rule of a Coordination aspect with the
role of Coordination and affected by the
RCV MSG interception point.

AG8:
CompositionRule

Plan Each Plan which is not used within an
Interaction is mapped to a Composition-
Rule of a Coordination aspect with the
role of ContextAwareness and affected by
the THRW EVNT interception point.

AG9:
CompositionRule

SMRole Each SMRole is mapped to a Composi-
tionRule of a SelfAdjusting aspect with
the role of SelfManagement and affected
by different interception points depend-
ing on its triggers.

82

tifiers that permit the identification of the component in the deployment phase in

order to assign a specific implementation to it (lines 2-4). Specifically, it generates

the component’s name, its type, operations and internal attributes.

Agent Rule 4. This rule maps a Resource to a Facet in MalacaTiny (line 23).

Due to the fact Pineapple does not have specific element to model Facet elements,

we add to the Environment of the Pineapple model a data type named Facet, that

is extended by data types that are considered Facet by the system modeler. As

AG3, this rule generates a set of identifiers that permit the identification of the

facet in the deployment phase in order to assign a specific implementation to it.

Agent Rule 5. This rule maps the Knowledge of an agent in Pineapple, to the

Knowledge of an agent in MalacaTiny. Specifically, the identifier and the type of

the knowledge (lines 24-28) are mapped.

Agent Rule 6. This rule generates Context from Knowledge elements (line 23). In

MalacaTiny, Context is an element that represents knowledge about the external

world (environment or device). As in the case of Facet elements, there are no

specific elements in Pineapple to model Context, so the modeler must add an

element named Context to the Environment, which is extended by the elements

that are Context elements.

Agent Rule 7. This rule generates composition rules for coordination aspects.

This kind of aspect can be easily identified in the source metamodel, because

it must be defined in the interaction viewpoint. So, if a DomainRole is associ-

ated with a Protocol in Pineapple (by means of a Collaboration element), then

two CompositionRule elements are derived for the RCV MSG (lines 13-15) and

THRW EVNT (lines 20-22) interception points.

Agent Rule 8. This rule generates composition rules for the context-aware as-

pects of the agent. Each context-aware Plan is mapped to a CompositionRule

with Role mapped to ContextAwareness, RoleInstance mapped to Plan’s name

and Scope mapped to Agent. A Plan is context aware if it has an AtomicTask

named ReceiveEvent with a Knowledge associated with it (Figure 3.5).

Agent Rule 9. This rule generates composition rules for self-adjusting aspects.

This kind of aspect can be easily identified in the source metamodel, as it must be

83

4. FROM PINEAPPLE TO MALACATINY

defined within an SMRole. So, if an SMRole is associated with a Policy in Pineap-

ple, then a CompositionRule element is derived. By default, a CompositionRule

is generated, associated with the interception point THRW EVNT (lines 17-19)

and additionally, it is possible that other rules will be mapped depending on the

triggers associated with the Policy. For example, if a trigger of a Policy is the

sending of a message, then a composition rule associated with the SelfAdjusting

aspect is generated, affected by the InterceptionPoint SND MSG

4.2.2 Generating aspects

The work of the rules presented here will be illustrated in Figure 4.5, and corre-

sponds to the actions of the Requester in the RoutePlanningProtocol (see Figure

3.4).

Aspect Rule 1. Each Plan which is not associated with a Protocol (i.e. Mes-

sageScope elements associated with their action are not set) and has an action Re-

ceiveEvent, is mapped to a Coordination aspect the FiniteStateMachine of which

has a single State and a single Transition. The Behavior of this Aspect is to exe-

cute actions depicted in Plan each time the event associated with the ReceiveEvent

AtomicTask is thrown.

Aspect Rule 2. Each Actor is mapped to the basic structure (the name of the

class that implements the aspect (line 1), advices (lines 2-4) and the structure of

the FiniteStateMachine (line 5)) Coordination aspect. This is one of the most

complex rules in our M2M process because its work is supported by multiple

helpers and lazy rules (See Subsection 2.4.4.2). An Actor is composed of a set of

MessageFlows and MessageScopes, that set how messages are exchanged between

protocol participants (i.e. Actors in the Pineapple metamodel). MessageFlows

are mapped as states of the FiniteStateMachine associated with the Aspect using

AS3. Additionally, this rule calls the lazy rule AS4 which generates the transitions

of the machine.

Aspect Rule 3. This rule maps a MessageFlow to a State of a FiniteStateMachine

that is part of a Coordination Aspect (lines 15-17).

84

Table 4.2: Mapping process between the Pineapple metamodel and aspect concepts
from MalacaTiny metamodel

Target Source Explanation

AS1:Coordination Plan Each Plan with an AtomicTask named
ReceiveEvent is mapped to a Coordi-
nation aspect with the role of Con-
textAwareness

AS2:Coordination Actor Each Actor is mapped to the basic struc-
ture of the Coordination aspect

AS3:State MessageFlow Each MessageFlow associated with an
Interaction is mapped to a State

AS4:Transition MessageFlow Each MessageFlow associated with an
Interaction is linked to the next Mes-
sageFlow associated with the Actor and
mapped to a Transition of FiniteState-
Machine

AS5:Plan Plan Each Plan is mapped to a Plan
AS6:AtomicTask InternalTask Each InternalTask is mapped to an

AtomicTask with the same name
AS7:Send Send Each Send Task is mapped to a Send
AS8:GetInput Receive Each Receive is mapped to a GetInput

that accesses the input that causes the
transition of the FiniteStateMachine

AS9:GetInput ReceiveEvent Each AtomicTask the name of which is
ReceiveEvent is mapped to a GetInput
that accesses the input that causes the
transition of the FiniteStateMachine

AS10:IfThenElse Decision Each Decision is mapped to the Structu-
redAction IfThenElse.

85

4. FROM PINEAPPLE TO MALACATINY

Aspect Rule 4. This is the lazy rule that is called by AS2. If MessageFlows are

mapped to states of the finite state machine inside the Coordination aspect, then

two MessageFlow elements and a Plan determines the transition of the machine

(lines 6-14). This rule takes a MessageFlow and determines its successor Message-

Flow and the associated plan using helpers. The pattern that causes the transition

is determined by the ACL message linked to the MessageFlow.

Aspect Rule 5. This rule maps a Plan in Pineapple to a Plan in MalacaTiny.

The main difference between these elements is how to determine the order of the

actions contained in the plan. In Pineapple it is determined by elements named

ControlFlow, while in MalacaTiny actions are contained in an ordered list. This

rule transforms the Pineapple Plan into an ordered set of actions (line 20). Finally,

concrete actions are mapped using transformation rules such as AS5-6.

Aspect Rule 6. For each Task or StructuredActivity of the Pineapple metamodel

there is a transformation rule that maps this element to the Pineapple metamodel.

In this rule, an AtomicTask is mapped to an InternalTask with the same name

and input and output parameter. The input and output parameter are mapped

from elements named LocalKnowledge which can be associated with activities in

the Pineapple metamodel. LocalKnowledge concepts are modeled within Knowl-

edgeFlow elements, which set how information is shared between the activities of

a plan. Using KnowledgeFlow, the rule can determine whether the parameter is

an input or an output or both. The mapping of the parameter is common to the

other rules devoted to map activities.

Aspect Rule 7. This rule is like AS6, but for the Send activity (lines 25-27).

Aspect Rule 8. This rule is like aspect rules 6 and 7 but transforms a Receive

Activity into an GetInput StandardAction. This is one of the main differences

between Pineapple and MalacaTiny. In MalacaTiny, messages or events are not

explicitly received by plans, they are captured by aspects and cause the execution

of plans. A Plan in MalacaTiny can access the input that causes its execution

using the GetInput StandardAction.

Aspect Rule 9. This rule is like AS8, but for the AtomicTask the name of which

is ReceiveEvent (lines 21-24).

86

Table 4.3: Mapping process between the Pineapple metamodel and self-
managment concepts from MalacaTiny metamodel

Target Source Explanation

SM1: SelfAdjus-
ting

SMRole Each SMRole is mapped to a SelfAdjus-
ting aspect

SM2: SMMa-
chine

BasicRule Each BasicRule is mapped to an SMMa-
chine with a single state and a single
transition

SM3:
SMMachine

ComposedRule Each ComposedRule is mapped to an
SMMachine the states and transitions of
which are determined by its sub-policies

SM4: Transition BasicRule,
BasicRule

Lazy rule that transforms two BasicRule
elements from a ComposedPolicy in a
Transition of the SMMachine

SM5:State BasicRule Each BasicRule that is part of a Compo-
sedRule is mapped to a State of the SM-
Machine generated from such said Com-
posedRule

SM6: Instance-
Pattern

EventTrigger Each EventTrigger is mapped to an Ins-
tancePattern

SM7: Message-
Pattern

MSGTrigger Each MSGTrigger is mapped to a Me-
ssagePattern

SM8: Situa-
tionalPattern

Condition Each Condition is mapped to a Situa-
tionalPattern

Aspect Rule 10. This rule is similar to those aforementioned, but for a Decision

StructuredActivity. There is a transformation rule for each type of StructuredAc-

tivity in the Pineapple metamodel. These rules are similar to AS6, but they are

composed of other Activity elements.

4.2.3 Generating self-management

The work of the rules presented here is illustrated in Figure 4.7.

Self-Management Rule 1. This rule generates the basic structure of the Self-

Adjusting, i.e. the name of the class that implements the aspect and its advices

87

4. FROM PINEAPPLE TO MALACATINY

(lines 1-4). Additionally, the structure of the SMMachine is generated and its

initial state (line 5) are generated, the transitions and states of this element are

generated by the following rules.

Self-Management Rule 2. This rule maps the behavior depicted in a BasicRule

to an SMMachine. BasicRule policies are simple ECA policies, so they are mapped

to a simple finite state machine (SMMachine) with a single State and SMTransi-

tion. BasicRule has optional trigger and condition, so it is possible to define a rule

without condition and trigger and with the two elements simultaneously. If any

element is defined, the transition of the machine is driven by a SituationalPattern

that always returns true. If only a Condition is defined, the transition is driven

by a SituationalPattern that represents the Condition. In the case, a Trigger (for

messages or events) is modeled, then an InstancePattern or a MessagePattern is

mapped. In the case that both elements are modeled, the Trigger is used to de-

fine the pattern of the transition and the condition to set a precondition to the

execution of the Plan included in the Transition. The SMPlan of the BasicRule

(see Figure 3.7) is mapped to the SMPlan of the SMMachine (see Figure 4.6).

Self-Management Rule 3. This rule maps the basic structure of a SelfAdjusting

aspect that models the behavior of a ComposedPolicy. The SensorSelfOptimizing

role has a ComposedPolicy with the Sequential operator that contains the policies

Decrease Frequency and Task Allocation (rows 2 and 3 of Table 3.1). The states

of the SMMachine inside the aspect are generated from the BasicPolicy elements

that compose the ComposedPolicy (lines 23-38). Transitions of the SMMachine are

determined by the RuleOperation (see Figure 3.7) attached to the Policy (lines 6-

22). If the operator Sequential generates finite state machines the states of which

are sequential. On the other hand, the other operators produce machines with

states in parallel.

Self-Management Rule 4. This lazy rule, takes two BasicPolicy elements that

are consecutive states according to RuleOperation elements and their Composed-

Policy and maps a transition of the SMMachine (lines 6-22). Trigger, Condition

and Plan are taken of the second BasicRule and are mapped using the same pro-

cedure depicted in SM2.

88

Self-Management Rule 5. Each BasicRule which is part of a ComposedRule is

mapped to a State of SMMachine (lines 23-38). The name of the State is generated

automatically.

Self-Management Rule 6. This rule maps an EventTrigger to an InstancePa-

ttern that is part of an SMTransition.

Self-Management Rule 7. This rule maps an MSGTrigger to an MessagePa-

ttern that is part of an SMTransition.

Self-Management Rule 8. This rule maps a Condition to an SituationalPat-

tern (lines 10-20) that can be part of an SMTransition or the pre-condition of an

SMPlan.

4.3 Summary

In this chapter we have presented the MalacaTiny metamodel and the MDD pro-

cess to generate MalacaTiny agents from a Pineapple model. The model driven

solution proposed covers the design by the transformation of a design model of the

AmI system in Pineapple, to a design in the MalacaTiny metamodel. MDD is the

most natural approach to automate the derivation of agent implementations from

high level agent models, considering different target agent platforms. The process

presented in this chapter significantly simplifies this process by using MalacaTiny,

a platform-neutral agent metamodel. This enhancement is particularly important

for AmI environments, since new devices are continuously appearing and this trend

is expected to continue. With MalacaTiny it is possible to configure agents to be

executed in different target agent platforms for different mobile and lightweight

devices, as required by most AmI environments. Compared with other MDD ap-

proaches for agents like the DSML4MAS approach, in our process including a new

agent platform requires less effort and user skills.

89

4. FROM PINEAPPLE TO MALACATINY

90

Chapter 5

Code generation of MalacaTiny

agents

In this chapter we explain the M2T transformation process of MalacaTiny agents.

There is an M2T transformation process for each version of the MalacaTiny agent

(see Figure 1.1). However, they are very similar to each other so we are going to

focus on the generation of MalacaTiny agents for MIDP profile and the genera-

tion process for Goal Oriented MalacaTiny. Prior to the description of the code

generation process, this chapter will focus on the implementation issues of these

versions of MalacaTiny.

This chapter is structured as follows: Section 5.1 describes the internal design of

MalacaTiny for MIDP devices and Goal Oriented MalacaTiny; Section 5.2 presents

the code generation process; and Section 5.3 summarizes the contributions of this

chapter.

5.1 The MalacaTiny agents implementation

In this section, we present the basis for meeting Challenge C2 (Efficient embedding

of agents in heterogeneous AmI devices), the MalacaTiny agents.

MalacaTiny is a family of lightweight agent implementations based on the

Malaca agent architecture [Amor and Fuentes, 2009] for typical AmI devices. This

means that in our approach, the internal architecture of the agent is customized

91

5. CODE GENERATION OF MALACATINY AGENTS

considering the restrictions of the resources and capacities of each AmI device

(e.g. the communication protocol used). The architectural design of Malaca and

MalacaTiny agents is aspect oriented, separately representing application specific

functionality concerns from the crosscutting agent properties. This separation im-

proves the internal modularization of the agent architecture, which is based on

the composition of components and aspects, and contributes to enhancing of reuse

and especially the adaptation, reconfiguration and evolution of the software agent.

Some of the aspects used by MalacaTiny are already present in Malaca (e.g. dis-

tribution and representation of messages and coordination through an interaction

protocol) and others were defined to support the self-management property in

MalacaTiny as we will show later. Currently the different versions of MalacaTiny

can be executed in Android devices, devices with CLDC/MIDP profile (mobile

phones that support Java ME) and Sun SPOT sensors. This feature of Mala-

caTiny meets Challenge C2.1 (Manage device and agent platform heterogeneity).

The use of aspect-orientation helps us to successfully deal with Challenge C2.2

(Cope with wireless network diversity). MalacaTiny agents are able to support dif-

ferent communication technologies (simultaneously). Interagent communication is

supported by both the agent and the agent platform. While the agent is responsi-

ble for creating, formatting and sending a message, the agent platform provides the

message transport between the agents, among other capabilities. Inside the agent,

agent communication is mainly supported by the Distribution aspect, which re-

solves the delivery of agent messages through a communication mechanism and/or

agent platform customized to the AmI device. Additionally, aspect-orientation

contributes to meeting Challenge C3 (Self-managed agents).

In what follows, we show the internal design of MalacaTiny and Goal-Oriented

MalacaTiny. Specifically, we present the internal design of MalacaTiny agents

running in Sun SPOT. In the context of the MalacaTiny technologies, there are

two devices that support the MIDP profile, mobile phones that are Java ME

enabled and the Sun SPOT sensor motes. The different versions of MalacaTiny

(not Goal Oriented MalacaTiny) have a lot of points in common, and only differ

in implementation details. So, we consider the Sun SPOT version a representative

example of the MalacaTiny agents and relevant for the case study of the Intelligent

Museum.

92

5.1.1 The core agent classes

In this section, we show the details of the core agent class of the MalacaTiny and

Goal-Oriented MalacaTiny.

5.1.1.1 The Mediator class of MalacaTiny

The MalacaTiny implementation presented in this section (Figure 5.1) is a reac-

tive agent that must be efficient in resource consumption and also consider the

particular limitations of Java ME compared to the standard Java. One of these

limitations is the absence of the Reflection API, which, in the former Malaca, gave

the necessary technical support to compose their internal elements (components

and aspects) via a late binding mechanism at runtime. With this mechanism the

developer only has to specify (not codify) the necessary information to instantiate

and invoke the method of a specific component. But, this is not possible in Java

ME, so we implemented a simpler mechanism in MalacaTiny: the components are

added to the agent with an identifier (e.g. addComponent(“GUI”, UserGuiClass))

so that other elements of the architecture (normally the aspects) can refer to this

identifier and require the services provided by a certain component, by first obtain-

ing the reference of the required component using the getComponent method (e.g.

getComponent(“GUI”)). This feature improves the modularization and evolution

of application specific functionality, since aspects do not keep an explicit reference

to the components they use, and only need to maintain a link to the Mediator

entity, in charge of performing the composition between components and aspects,

according to the composition rules.

To implement a MalacaTiny agent, we extend the MalacaTiny class that al-

lows a core class of MalacaTiny, the Mediator (see Figure 5.1) to be configured.

This class contains the elements that configure the architecture of the agent and

performs the aspect composition process via the AspecCompositionService and the

interception of the execution points where the aspects are composed (the sending

and reception of messages via the AgentCommunicationService and the throwing

of an event). If a component of the agent architecture is intended to throw events,

that will be intercepted by Mediator, this component will extend the EventCom-

munication class. Additionally, Mediator has a reference to the agent Knowledge-

93

5. CODE GENERATION OF MALACATINY AGENTS

Figure 5.1: UML class diagram of the internal design of MalacaTiny for MIDP
devices.

94

Figure 5.2: UML class diagram of the SensorAgent.

Base, AgentContext and AgentDescription. AgentContext contains the information

of working aspects and components, while AgentDescription provides information

about available components and aspects in the MalacaTiny agent. Finally, the

AgentConfigurationService interface offers methods to accomplish adaptations in

the agent architecture, that are particularly relevant for the self-management pro-

perty.

In Figure 5.2, we present the design of the SensorAgent. As depicted in the

figure, MalacaTiny also considers facets described in the MalacaTiny metamodel

(see Subsection 4.1.1) for accessing the sensory functions (LightSensor, NoiseSen-

sor,. . .). Additionally, the agent has the knowledge to contain such information

sensed by facets (Light, Noise,. . .). The design of this agent also comprises a set

of aspects that will be explained in following subsections.

5.1.1.2 The Agent class of Goal-Oriented MalacaTiny

As any other MalacaTiny agent, the Goal-Oriented MalacaTiny agent has been

conceived as a software system running in a lightweight device, capable of interact-

ing with its environment and with other agents. In contrast with other MalacaTiny

agents, its behavior is goal-oriented and deliberative. Agent actions are organized

in plans (as MalacaTiny agents), each plan associated with a goal to be achieved,

to which it contributes. The achievement of goals depends on the current context

and their internal state.

95

5. CODE GENERATION OF MALACATINY AGENTS

Figure 5.3: UML class diagram of the internal design of Goal Oriented MalacaTiny.

As depicted in Figure 5.3, the internal design of Goal-Oriented MalacaTiny

agent shares classes with the MalacaTiny framework. The main difference is the

absence of the Mediator class of MalacaTiny. In the case of the goal-oriented

version, the functions of the Mediator are performed by the Agent class. This

architecture borrows some concepts from BDI agents (it has goals, a knowledge

base, and a plan library composed of plan descriptions).

Another distinguishing feature of our approach is that the agent maintains an

explicit representation of its architectural context and the system context. The

former captures the current state of the agent architecture by containing the set

of components, aspects and relationships that are currently active (i.e. which are

instantiated and in use). The latter context refers to the data and information

derived from the system in which the agent is running (mainly the lightweight

device), such as resource consumption.

Finally, the different elements involved in self-management, that compose the

self-configuring loop in the SecurityAgent (see Figure 5.4), are explained in more

detail in the following sections.

5.1.2 Aspects and aspect weaving

In this section, we explain the different aspectual properties considered by the

MalacaTiny and Goal-Oriented MalacaTiny internal architectures and their aspect

96

Figure 5.4: Self-management loop for SecurityAgent.

weaving processes.

5.1.2.1 Aspects weaving of MalacaTiny

As stated, the use of aspects helps achieve solutions for Challenges C2.1 (Manage

device and agent platform heterogeneity) and C2.2 (Cope with wireless network

diversity). Specifically, the issues related to the heterogeneity of communications

are addressed by means of three different aspects inside the agent: (1) the Dis-

tribution aspect, which deals with message delivery; (2) the Coordination aspect,

which deals with the exchange of messages according to a common interaction

protocol; and (3) the Representation aspect, which formats ACL messages in a

common representation format (such as String or Bit Efficient).

The Distribution aspect encapsulates how to use and access the MTS for mes-

sage delivery. The implementation of the distribution aspect greatly depends on

the services offered by the agent platform and the transport protocol used. In fact,

this aspect supports platform-neutrality for FIPA compliant agent platforms: this

aspect hides platform dependencies, and makes the rest of the classes of the agent

architecture (components and aspects) independent from the agent platform and

the communication service used at runtime. Indeed, the distribution aspect is an

interface for the FIPA standard services provided by a remote agent platform.

The implementation of an aspect for the distribution of messages in a specific

agent platform has to extend the DistributionAspect class and has to implement

the methods defined in the FIPAAgentPlatform interface (Figure 5.5). The defini-

tion of this interface enables the use of different implementations of the distribution

aspect, transparent to the rest of the elements of the architecture, and provides a

97

5. CODE GENERATION OF MALACATINY AGENTS

Figure 5.5: UML class diagram for aspects in MalacaTiny for MIDP devices.

unified interface to FIPA standard services (i.e. communication between agents,

deploy or kill agents, start or stop the agent platform, register services and locate

agents and services). The current implementation of MalacaTiny provides distri-

bution aspects for Jade-Leap, Sol and Bluetooth. In Figure 5.5, the classes shown,

implement the distribution aspect for the Jade-Leap agent platform: JadeLeap-

Plugin class extending DistributionAspect and MIDPJadeLeapAP class that im-

plements FIPAAgentPlatform interface; both have a reference to JadeProxy class

that acts as a proxy between Jade-Leap agent platform and these objects. Also, it

is possible that an agent communicates with other agents through different agent

platforms (part of Challenge C2.1 - Manage device and agent platform heterogene-

ity). There are other implementations of the DistributionAspect of MalacaTiny

that will be presented in Chapter 6.

Another relevant concern separated as an aspect in MalacaTiny agents is co-

ordination. The Coordination aspect is implemented by classes included in the

coordination package. MalacaTiny agents have a Coordination aspect for each

interaction the agent takes part in (supported by an interaction protocol). The

design of this aspect is similar to the coordination aspect metamodel presented in

Subsection 4.1.2. The behavior of the agent in the interaction (ProtocolConnec-

tor) is described and implemented using a finite state machine. ProtocolConnector

contains: a declaration of the machine states (ProtocolState), the set of rules that

describes state transitions, and the set of actions and activities (organized in plans)

that the agent performs as a consequence of the transition.

The aspect composition process of MalacaTiny is driven by a set of composition

98

rules (see Figure 5.1), which set when and how aspects are woven. According to

AOSD practices, aspects are composed when the system reaches certain execution

points (join points). In AOSD, join points represent the execution points that

can be intercepted (e.g. a message is received) and the predicate describing the

set of join points intercepted by an aspect is called a pointcut (e.g. interception

of each “cfp” message received). The join point model of MalacaTiny defines

three join points: for the interception of the incoming (RECV MSG) and outgoing

(SEND MSG) messages, and internal events (THROW EVENT).

The composition rules of the MalacaTiny implementation are similar to those

presented in the MalacaTiny metamodel (see Figure 4.2). Therefore, they include

the following attributes: pattern, that models the predicate that must be met by

the thrown event or the sent or received message in order to apply an aspect in the

composition; role, that specifies the function of the aspect in the agent architecture,

e.g. Representation; instanceName that contains the identifier of the aspect in

the agent architecture, this value is set according to the scope of the aspect (see

Subsection 4.1.1); the relevance attribute, which sets whether the application of the

aspect is relevant for the agent architecture, if it is set as true, or if the application

of an aspect fails, the composition process is stopped. Additionally, the rule sets

the interception where the rule is applied (e.g. when a message is received) and

the necessary information to instantiate the aspect, if this is required.

Composition rules are stored in the Mediator as an ordered list which is indexed

by the interception point where the rule is applied. Each time a message is sent or

received, or an event is thrown, the Mediator sequentially checks composition rules

corresponding to this interception point (e.g. RECV MSG). So, if the condition

depicted in pattern is met by the message or the object attached to the event, then

the aspect is applied to this element using the corresponding advice. Advices are

methods that contain the aspectual behavior. MalacaTiny aspects have an advice

by default for each interception point, which is included in the AspectComposi-

tionService interface (see Figure 5.1). Therefore, when a message is received the

advice handleInputMessage is applied in the aspect composition process, when a

message is sent the advice applied is handleOutputMessage and when an event is

thrown the advice used is handleEvent. When an aspectual rule is applied, the

output produced by the process is used by the Mediator for the next composition

99

5. CODE GENERATION OF MALACATINY AGENTS

rule. For example, VisitorAgent has a set of composition rules for the interception

point RECV MSG. When this agent receives a message, a Representation aspect

is applied, which transforms the message from the native format of the underlying

agent platform to the format supported by the agent. Then, this transformed mes-

sage is used with the next composition rule, which corresponds to a Coordination

aspect. This aspect does not transform the message, which is used by the next

rule in the ordered list of the composition rules.

In Figure 5.2, we can see the design of the SensorAgent, which comprises a

set of aspects: SinkPlugin and OrdinaryPlugin carry on with the distribution of

information in the WSN; Monitor is the aspect that captures data from facets and

updates the knowledge with it; and RequestRoomCondition is the coordination

aspect that answers data requests from SecurityAgents. SensorSelfOptimizing and

SensorSelfHealing will be explained in the later paragraphs.

5.1.2.2 Dynamic weaving of Goal-Oriented MalacaTiny

Aspects of Goal-Oriented MalacaTiny has the same function as MalacaTiny agents.

Therefore, they are mainly used to model and explicitly implement data and func-

tions to facilitate communication and self-configuring activities.

Aspects of Goal-Oriented MalacaTiny has the same design as MalacaTiny as-

pects. Only the Protocol aspect (i.e. the Coordination aspect) differs a little be-

cause the transitions of its internal finite state machine does not describe actions

that must be executed. On the contrary, transitions refer to goals that must be

pursued. Figure 5.3 depicts an example of the Distribution aspect, the SolPlugin,

which will be described in subsequent chapters.

The aspect composition process of Goal-Oriented MalacaTiny is similar to the

process presented for MalacaTiny, the main differences between them are caused

by the extensible join point model of the first. Goal-Oriented MalacaTiny has

the same interception points as MalacaTiny and in addition, the developer can

include new join points by extending the agent class with new methods to be

intercepted and defining a tag that identifies the new interception point. Because

of this extensibility, we cannot consider a fixed set of advices as for MalacaTiny

and therefore, advices must be explicitly described in the composition rules that

100

drive the aspect weaving. In Goal-Oriented MalacaTiny, a composition rule is

composed of the tag that identifies the interception point and a set of aspect

descriptions. An aspect description includes the remainder information presented

in MalacaTiny composition rules (pattern, role, relevance,. . .), but it also includes

the advice that encapsulates the aspectual behavior.

The weaving process of Goal-Oriented MalacaTiny is depicted in Algorithm

1. In line 1, aspect descriptions that correspond to the specific interception point

(identified by input tag) are selected and stored in the variable A. As explained,

aspect descriptions contain the necessary data to weave an aspect at a specific

interception point, including the restriction for the weaving of the aspect (an im-

plementation of PatternInterface), the role that fulfills the aspect in the archi-

tecture or the corresponding advice to invoke. In lines 4 to 14, the weaving of

the aspects contained in A is performed. As in the MalacaTiny weaving process,

when the composition rule is selected, the first step is to check whether the in-

put holds the predicate included in the AspectDescription (line 6). In this case,

we need to know the role that the aspect plays in the agent architecture. If the

aspect encapsulates the coordination of the agent using a coordination protocol

(Role.COORDINATION in line 7), then the input is handled as a message other-

wise it is handled as an event. This issue is important for getting the aspect for

composition. At runtime aspects can be active or not, so in the methods in lines

8 and 10, aspects are selected if they are active or instantiated if not. An aspect

is instantiated differently for a message then for an event. In the case of messages

we can have multiple aspects of the same coordination protocol active, that corre-

spond with different conversations of the agent. So we have to select/instantiate

the aspect for the specific conversation. In the other case, there is a single instance

of the corresponding aspect described in AspectDescription. When the aspect is

selected, the advice is executed (line 12) and the output is assigned (line 15).

5.1.3 Implementation of the Self-management properties

in MalacaTiny

We endowed MalacaTiny agents with self-management capabilities typical of au-

tonomic systems. These functions not only enable the reconfiguration of the AmI

101

5. CODE GENERATION OF MALACATINY AGENTS

Algorithm 1 Aspect Composition

Input: the identifier the interception point tag, the aspect composition input in-
put

Output: the output of the aspect composition process output
1: A← {∀AspectDescription ∈ CompositionRules|
InterceptionPoint(AspectDescription) == tag}

2: i← 0;
3: Aspect aspect ;
4: while i ≤ size(A) do
5: Restriction rest ← Ai.getRestriction();
6: if rest.holdRestriction(input) then
7: if Ai.getRole() == Role.COORDINATION then
8: aspect← getRequestAspectForMessage(Ai, input);
9: else
10: aspect← getRequestAspectForEvent(Ai, input);
11: end if
12: input← executeMethod(aspect, Ai.getAdvice(), input);
13: end if
14: i← i+ 1;
15: end while
16: output← input;

102

system but also the agent’s internal architecture. As defined in Chapter 2, self-

management or autonomic computing [Kephart and Chess, 2003] is a term used to

describe systems that assume their own management or are self-managed. From

this general definition, we can consider a self-managed agent as an agent that

is able to independently, and according to a set of rules or policies, take care

of its own maintenance, configuration and optimization tasks, thus reducing the

workload of the MAS’s administrators. In order to develop a self-managed agent-

based system, there are four so-called AFs that each agent should support [Dobson

et al., 2010]: self-awareness, self-situation; self-monitoring and self-adjusting. Self-

awareness is the capacity for introspection (be aware of their internal state), while

self-situation is related with the awareness of current external operating condi-

tions, which are commonly represented as the external environmental context;

self-monitoring refers to the ability to detect changing circumstances in the agent

environment. Finally, self-adjusting is the ability to accordingly adapt to these

environment changes.

In MalacaTiny agents, the self-management is adapted according to the capac-

ities of the device in which the agent is deployed. MalacaTiny agents have a simple

self-management loop and policies are hard-coded, the function of the aspects is

to improve the modularization and consequently facilitate the reconfiguration of

the agent. The Goal Oriented MalacaTiny has a goal-oriented self-management

control loop and also exploits aspect orientation to implement the AFs.

So, modeling the AFs by aspects allows us to: (1) add or remove the possibil-

ity of self-management from the agent; (2) optimize the resource usage, by adding

only those aspects of self-management required by the MAS (e.g. monitor the

battery and not the memory consumption); (3) improve the reasoning about each

concern (e.g. awareness, security, etc.), since they are modeled separately; (4)

reasoning on a limited number of aspects combined with the runtime weaving of

aspects (i.e. system-level aspects) improves the scalability of the reconfiguration

mechanism; (5) explicitly model the context awareness concerns as aspects, able

to be used differently by each self-* (e.g. monitoring the network latency may be

used to optimize the response time (self-optimizing), to fix a network communica-

tion problem (self-healing) and to change the communication protocol to adapt to

the quality required by the user (self-configuring)). Any other functionality, non

103

5. CODE GENERATION OF MALACATINY AGENTS

crosscutting and which implements the application dependant behavior is modeled

as a component or facet.

Additionally, since self-management may entail modifying the internal architec-

ture of the agent, by, for example, adding new components or substituting others,

the aspect-orientation presented in MalacaTiny and Goal-Oriented MalacaTiny

facilitate the self-management process providing a loosely coupled architecture.

In the following subsections, we present how the self-management is integrated

inside MalacaTiny and Goal-Oriented MalacaTiny agents.

5.1.3.1 Implementation of the SelfManagement class of MalacaTiny

The design of the MalacaTiny agent has a set of classes and interfaces to integrate

self-management inside the agent. Self-management is performed by extending

the abstract class SelfManagement (see Figure 5.1), that encapsulates the typical

functions of a self-managing control loop (see Subsection 2.3). When the state

of the agent requires the application of a self-management plan, this component

analyzes the state, and according to a set of control policies, determines the plan

(SMAction elements) to manage the situation, and executes the corresponding

actions.

Plans are identified using tags that represent the purpose of the plan and are

stored in an internal library of the SelfManagement class. A control policy defines

the set of conditions that determine the execution of an action. These policies are

encoded in the abstract method analyze (see Figure 5.1) of SelfManagement.

In the Intelligent Museum, the SensorAgent (see Figure 5.2) extends the Self-

Management class in SensorSelfOptimizing and SensorSelfHealing, that encapsu-

lates policies depicted in Table 3.1.

5.1.3.2 Implementation of Self-management functions in Goal-Oriented

MalacaTiny

In the subsections below, we explain the different elements involved in the self-

management of Goal-Oriented MalacaTiny agents, stressing its relationship with

the AFs (i.e. self-awareness, self-situation, self-monitoring and self-adjusting). As

depicted in Figure 5.4, at runtime, there are two control loops, one is application-

104

specific and the other is for the self-management. The two loops generate goals

that are processed at runtime by the Reasoning Engine. The BDI loop generates

ApplicationLevelGoals, while the self-management loop generates SystemLevelGo-

als.

Implementing self-awareness and self-situation

Typically, in BDI architectures, there is a knowledge base that contains rele-

vant information for the agent, i.e. the belief component. In order to carry out

the self-management we need the internal of the agent (self-awareness) and that

of the external world (self-situation). In our agent architecture, we consider that

the internal information of the agent is its explicit architectural description, i.e.

currently running components, aspects, composition rules and their current config-

uration, and the external world is the other information that may be considered as

context, this information can be about the physical world (e.g. location) or about

computational resources (e.g. memory occupation). The self-awareness is achieved

using an explicit representation of the agent architecture, while the self-situation

is achieved by modeling the external world as a set of context elements.

Self-awareness is achieved inside the agent architecture by the Architectural-

Context element, which contains the set of aspects and components which compose

the agent. For instance, the SecurityAgent (see Figure 5.4) needs components and

aspects to send notifications to the people in the museum and control its rooms

(interact with GuideAgents, SensorAgents and VisitorAgents). Additionally, it has

support for a routing protocol encapsulated in the Forward aspect. GuideAgent

has aspects to receive and send the messages (SolPlugin), an aspect to codify the

messages in a readable format for the agents (Representation), an aspect to en-

crypt messages exchanged with other agents (Encryptor) and a set of aspects to

rule the coordination between the different agents (GlobalNotification, RoomMoni-

toring and SecurityNotification). Moreover, the agent has a component to interact

with the guard (GUI) and a Timer to coordinate activities internal to the agent.

ArchitecturalContext also contains a set of composition rules (CompositionRules)

to support the aspect composition process.

Self-situation is achieved inside the agent architecture by the SystemContext

element (see Figure 5.4). The elements of SystemContext have a time stamp

that allows the quality of the context or detection failures to be checked. The

105

5. CODE GENERATION OF MALACATINY AGENTS

information of the system context is gathered in the following way. In the case of

the SecurityAgent that has to communicate with every agent in the system and

has to ensure the device’s correct functioning, the power consumption is the main

concern for self-management. So, its SystemContext includes battery consumption.

The information which is specific to the application is stored in a Knowl-

edgeBase as in most BDI architectures. For instance, SecurityAgent has a Loca-

tionMonitor, which is an aspect specific to the application and the information

gathered by it is stored in the KnowledgeBase.

Implementation of the monitoring function

The monitoring function gathers information from the external world and the

internal agent architecture and updates the SystemContext with it (Arrow 1 in

Figure 5.4). The interface with the real world is modeled as a set of Facet elements,

that encapsulates the sensing of a specific resource. There are facets that are

passive and need to be explicitly sensed and others that transmit their values by

means of events. Facets decouple the sensed resource from the sensing function

thereby allowing multiple monitoring aspects specialized for a specific context. For

example, in the case of the VisitorAgent which is aware of its battery level and

consumption, it has a single facet element for the battery and two monitoring

aspects associated with it, one for the current battery level and another for the

battery life.

For an agent that is running in a lightweight device there are a number of issues

that can be monitored: (i) a resource of the system, this can be computational

resources, physical world or another agents in the MAS; (ii) the response time of a

function, this comes from the time required to execute an operation; and (iii) the

quality of context information, i.e. how old the information or accuracy is, this is

done with time stamping. The usage of aspects for monitoring provides flexibility

to our agent architecture as will be shown later.

The behavior of a Monitor aspect consists of periodically collecting data from

a source of information. These aspects, are generic and are configured at runtime

to monitor a given Facet element. So, each monitor aspect follows certain settings

for measurement, which determines, for instance, the frequency of getting a new

sample. These aspects can be configured modifying the sampling time in order to

save resources or to increase the degree of accuracy of the context information.

106

The monitoring based on the periodic collecting of data is not enough as the

source of information based on events. To collect this kind of information, our

agent uses ContextAware aspects, that encapsulate the context dependant behav-

ior of the agent. These aspects are usually affected by the interception point

THRW EVNT and the advice handleEvent described in Section 5.1.2.2. Using

this kind of behavior, we can monitor components that warn of eventual failures

in a component of system.

The monitoring of the response time of a system requires the modification of

the source code introducing undesirable delays when this information is unneces-

sary. Aspect Orientation enables this kind of monitoring and provides a mechanism

that disables the monitoring to avoid delays, even at runtime. As stated in Section

5.1.2.2, the weaving mechanism of our agent is extensible and allows new inter-

ception points to be added to the agent. An example of this is the case of the

VisitorAgent that downloads information about the objects of an exhibition. The

downloading process can be measured if we extend the agent with a new intercep-

tion point and method (GET CONT and getContent respectively). The visitor

uses his/her mobile phone to scan a QR code attached to an object, this generates

the goal Get content for QR that causes the execution of the plan depicted in

Figure 5.6. This plan uses as input, the QR code and retrieves the content using

the method getContent of the VisitorAgent. The calling of this function starts

the aspect weaving process, that follows the composition rule depicted in the cen-

ter of Figure 5.6. In order to measure the time needed to get the content, the

aspect MeasureMethodTime is applied around (i.e. before and after) the aspect

GetContent. It is the latter which accesses the database of contents and gets the

data. After the aspect composition process, the plan has the content needed to

update the user interface and the SystemContext is updated with the execution

time of this method. Note that if we change the composition rule for this intercep-

tion point (GET CONT) removing the MeasureTimeMethod aspect, we disable

the time measurement function and avoid the delay introduced by it.

Implementation of the self-adjusting aspect

The self-adjusting analyzes the SystemContext and applies the policies to solve

the problems of the system (Arrow 2 in Figure 5.4). As stated, there are different

kinds of policies [Kephart and Walsh, 2004], based on actions, goals or utility

107

5. CODE GENERATION OF MALACATINY AGENTS

Figure 5.6: Graphical schema of the aspect weaving process example for response
time monitoring in VisitorAgent.

functions, but we consider that a goal policy can be easily integrated inside a

BDI agent. In order to avoid the combinatory explosion of states, we model the

behavior of the self-adjusting as a State Transition Diagram (STD) . In each state,

a specific number of SystemContext variables are considered and additionally, the

reachable states from a given state are also determined. The states of the system

that require self-management are modeled using situational patterns, which are a

boolean expression about the SystemContext.

The self-adjusting is implemented as an aspect that is applied each time some-

thing in the SystemContext changes. This concern has been separated as an aspect

because it clearly crosscuts the architecture of the agent. SelfAdjusting (see Al-

gorithm 2) works as follows: for each transition associate to the current state (Ti),

we check if its situational patterns (Pi) is held (lines 4-10). If Pi is held, then the

STD associated to the SelfAdjusting aspect transits and the aspect generates goals

to solve the situation (lines 11-12). These goals are transmitted to the Reasoning

Engine of the agent, which selects plans to accomplish them in the Plan Library

(see Figure 5.4). The algorithm assumes that the zero or one pattern is held and

if it is the second, nothing in the system changes. In the case that more than one

pattern is held, only the first of the patterns is considered.

The use of STD to model the behavior of the self-adjusting is inspired by the

Strategy Realization System (SRS) presented in [Janik and Zielinski, 2010]. In our

approach, the states of the STD represent the correct configuration of the agent

and when the STD transits, new aspects and rules for composition are enabled

and disabled in order to achieve a goal. The programming of the STD has been

checked at the modeling stage using APPEL and the UMC Model checker. The

self-management strategy of the SecurityAgent is an example of this (see Figure

5.7).

108

Algorithm 2 SelfAdjustment(C, S)

Input: the SystemContext C, the self-adjusting state S = {T1, T2, . . . , Tn} where
Ti = (Pi, Gi, S

′
i) and Pi is a situational pattern, Gi are a set of goals and S ′i is

the next state of the self-adjusting algorithm.
Output: a set of system level goals G
1: match← false
2: i← 0
3: G← ∅
4: while !match ∧ i < n do
5: if Pi(C) then
6: match← true
7: G← Gi

8: end if
9: i← i+ 1
10: end while
11: if G! = ∅ then
12: S ← Si−1
13: end if

By default, SecurityAgent has an Encryption aspect enabled to send infor-

mation to GuideAgents (non-priority encryption) and to SecurityAgents (priority

encryption) (State 1), but the main priority is that the device in which the agent

is running continues to work. When the battery is running low, to save energy the

first step is to disable the non-priority encryption. This is not a trivial task, the

encryption takes place on both sides of the communication and a GuideAgent can

receive information from various SecurityAgents. Therefore, it is not reasonable

for all the GuideAgents in the museum to disable the Encryption aspect for a spe-

cific agent. In order to resolve this issue, we modify the route of the messages of

SecurityAgent using a special SecurityAgent named SuperAgent. This agent acts

as a bridge between an agent and a group of agents, indicating to the group of

the agent that it will be the new receptor of the messages for a specific agent. So,

before disabling the non-priority encryption, the SecurityAgent sends a request to

SuperAgent (State 2) and when it receives the confirmation from this agent (State

3), it generates goals to disable the encryption. We accomplish these tasks by

modifying the composition rules of the SecurityAgent, i.e. adding and removing

aspects and modifying its transitions for its application. When the system transits

109

5. CODE GENERATION OF MALACATINY AGENTS

Figure 5.7: State Transtion Diagram of the self-management strategy for Secu-
rityAgent.

to State 4 and the battery is low we follow a similar procedure as the one used

to disable the non-priority encryption, but for the priority encryption (States 4, 5

and 6).

Plans that accomplish SystemLevelGoal (showed in italic tags in arrows in

Figure 5.7) are selected by the Reasoning Engine from the Plan Library. This

stores a set of Plan Description elements that specifies the class of the plan, the

preconditions for the execution of such a plan and the goals that they can fulfill.

Plans are sent to the Scheduler (Figure 5.3 and Arrow 4 in Figure 5.4), which

executes them. Plans for SystemLevelGoals use the Agent Configuration Service.

This interface has the same methods and purpose as the AgentConfigurationService

of MalacaTiny (see Figure 5.1).

5.2 Code generation process of the MalacaTiny

agents

In order to generate executable code for AmI devices, a final step in the process is

necessary. Given the XMI file (corresponding to the modeling of our MAS), this is

translated to Java code by a set of M2T transformations. We have a M2T trans-

formation process for each type device and version, involved in MalacaTiny. That

results in 4 M2T transformation processes implemented using xPand (see Subsec-

tion 2.4.4.3). These processes are very similar and the main differences between

them are the self-management concern of MalacaTiny and Goal-Oriented Mala-

110

caTiny. So, in this Section we focus on the generation of MalacaTiny for devices

with MIDP profile and point out their differences to Goal Oriented MalacaTiny.

5.2.1 Code generation of the internal architecture of agents

Firstly, each Agent element in the MalacaTiny model file is equivalent to a Mala-

caTiny class. So, for each Agent a MalacaTiny class with the same name, knowl-

edge, context, components, facet, aspects and composition rules is generated (see

Figure 5.1). With the information provided by the Pineapple metamodel, it is

only possible to derive empty Java classes for knowledge, context, components

and facets with the corresponding name. Therefore, these elements are added but

they are linked to artifacts (classes, interfaces, attributes) that must be filled in

by programmers.

For the aspects, there is a default set of aspects, principally corresponding to

agent communication (such as JadeLeapPlugin or SolPlugin for the distribution

aspect in Figures 5.5 and 5.3), that have already been implemented. The incor-

poration of these aspects and their composition rules are derived from the M2M

transformation process from Pineapple to Malaca, and the use of predefined aspect

patterns. For these aspects, the programmer only needs to indicate the IP address

and port in which the agent platform is running.

Returning to our case study, Example 5.2.1 shows the generated implementa-

tion of the composition rules for SensorAgent. The composition rule for sending

messages (SND MSG) requires the composition of the representation aspect named

AURORA ADAPTOR aspect (line 10) and then the ORDINARY ADAPTOR dis-

tribution aspect (line 11). In the interception point RECV MSG requires, firstly

the composition of the Representation aspect (line 14) and then one of the fol-

lowing coordination aspects or self-adjusting aspects (lines 15-17), if the message

belongs to the corresponding protocol, determined by an instance of the class

MessagePattern: dataProvider MP (line 2), sensorSelfOptimizing MP (line 4), or

sensorSelfHealing MP (line 6). This code is generated automatically from the

agent in the MalacaTiny metamodel. Generated values for RoleInstance and Scope

usually have to be changed to guarantee the correct behavior of the system. By

default, Scope for coordination aspects is PROTOCOL SCOPE, but it depends on

111

5. CODE GENERATION OF MALACATINY AGENTS

the application whether this is applicable or not. If it is necessary to change the

Scope, then RoleInstance is modified using the Malaca aspect identification mech-

anism [Amor and Fuentes, 2009]. Finally, for the THROW EVENT interception

point (lines 19-22), all the coordination and self-adjusting aspects are applied (all

the aspects catch the event). If an aspect is not supposed to handle the event, it

simply does nothing (i.e protocol connector does not change its internal state and

an exception is not thrown), but for greater efficiency it is preferable to remove

the lines of code that do not match the THROW EVENT interception point.

Example 5.2.1. Section of code of composition rules for the SensorAgent agent.

1 // Message patterns.

2 MessagePattern dataProvider_MP=new MessagePattern();

3 dataProvider.setProtocol("RequestRoomCondition");

4 MessagePattern sensorSelfOptimizing_MP=new MessagePattern();

5 sensorSelfOptimizing_MP.setProtocol("SensorSelfOptimizing");

6 MessagePattern sensorSelfHealing_MP=new MessagePattern();

7 sensorSelfHealing_MP.setProtocol("SensorSelfHealing");

8

9 // Message sending

10 applyAspect(InterceptionPoint.SEND_MSG, Role.REPRESENTATION,

null, "AURORA_ADAPTOR", null, true, Scope.AGENT_SCOPE);

11 applyAspect(InterceptionPoint.SEND_MSG, Role.DISTRIBUTION,

null, "ORDINARY_ADAPTOR", null, true, Scope.AGENT_SCOPE);

12

13 // Message reception

14 applyAspect(InterceptionPoint.RECV_MSG, Role.REPRESENTATION,

null, "AURORA_ADAPTOR", null, true, Scope.AGENT_SCOPE);

15 applyAspect(InterceptionPoint.RECV_MSG, Role.COORDINATION,

dataProvider_MP, "RequestRoomCondition",

RequestRoomConditionDataProvider.class.getName(), true,

Scope.AGENT_SCOPE);

16 applyAspect(InterceptionPoint.RECV_MSG, "SelfAdjusting",

sensorSelfOptimizing_MP, "SensorSelfOptimizing",

SensorSelfOptimizing.class.getName(), true, Scope.

AGENT_SCOPE);

17 applyAspect(InterceptionPoint.RECV_MSG, "SelfAdjusting",

sensorSelfHealing_MP, "SensorSelfHealing",

SensorSelfHealing.class.getName(), true, Scope.AGENT_SCOPE)

112

;

18

19 // Event throwing

20 applyAspect(InterceptionPoint.THROW_EVENT, Role.COORDINATION,

dataProvider_MP, "RequestRoomCondition",

RequestRoomConditionDataProvider.class.getName(), true,

Scope.AGENT_SCOPE);

21 applyAspect(InterceptionPoint.THROW_EVENT, "SelfAdjusting",

sensorSelfOptimizing_MP, "SensorSelfOptimizing",

SensorSelfOptimizing.class.getName(), true, Scope.

AGENT_SCOPE);

22 applyAspect(InterceptionPoint.THROW_EVENT, "SelfAdjusting",

sensorSelfHealing_MP, "SensorSelfHealing",

SensorSelfHealing.class.getName(), true, Scope.AGENT_SCOPE)

;

Composition rules generated for GuideAgent, SecurityAgent and VisitorAgent

have the same structure. The only difference is the composition rules for these

agents (i.e. Goal Oriented MalacaTiny agents) include the advice to access aspect

behavior.

5.2.2 Code generation of aspects

The initial Coordination aspect element is transformed to a set of Java classes;

at least one class for each Coordination element is included, and additionally,

one class for each Transition element. The resultant code for initial setup of

RoutePlanningRequester behavior can be seen in Example 5.2.2. This example

shows the setup method of this class, where the states and transitions of the FSM

are defined. There is a direct mapping between the XMI of Figure 4.5 and the

Java code in Example 5.2.2. Line 13 of the XMI file that defines the message

pattern messagePattern 10 is used to generate line 21 in the Java code. The

InstancePattern defined in lines 8-9 is mapped to initialEventRoutePlanning IP

in the Java code (line 20). Lines 6-14 describe the transitions of the finite state

machine at model level, that are mapped to lines 25-27 in Java code.

Example 5.2.2. Section of code in Java of the RequestRoomConditionDataPro-

113

5. CODE GENERATION OF MALACATINY AGENTS

vider coordination aspect.

1 public class RoutePlanningRequester extends ProtocolConnector {

2

3

4 public String getProtocolName() {

5 return "RoutePlanning";

6 }

7

8 @Override

9 protected void setup() {

10 // States

11 ProtocolState initialRoutePlanning=new ProtocolState(this,"

InitialRoutePlanning");

12 ProtocolState forkRequestInformation=new ProtocolState(

this,"ForkRequestInformation");

13 ProtocolState forkMyRoute=new ProtocolState(this,"

ForkMyRoute");

14

15 // Goals

16 Goal sendRouteRequestGoal=new Goal("SendRouteRequest",

GoalType.APPLICATION);

17 Goal sendMyRouteInformationGoal=new Goal("

SendMyRouteInformation",GoalType.APPLICATION);

18

19 // Patterns

20 InstancePattern initialEventRoutePlanning_IP=new

InstancePattern(new GUIEvent());

21 MessagePattern messagePattern_10=new MessagePattern();

22 dataProvider.setProtocol("RoutePlanning");

23

24

25 // Transitions

26 registerTransition(initialEventRoutePlanning_IP,

initialRoutePlanning, forkRequestInformation,

sendRouteRequestGoal);

27 registerTransition(messagePattern_10, forkRequestInformation,

forkMyRoute, sendMyRouteInformationGoal);

28

29 // Setup

114

30 setInitial_state(initialRoutePlanning);

31 setCurrent_State(initialRoutePlanning);

32 }

33 }

One important difference between the code section of Example 5.2.2 and the

model depicted in Figure 5.2.2 is the presence of goals. Pineapple and the Mala-

caTiny metamodel do not explicitly define agent goals, neither does MalacaTiny.

However, this is not the case of Goal-Oriented MalacaTiny. The solution that

we have adopted is to automatically generate goals from plans. If a plan can ac-

complish more than one goal, these goals are added to the plan after the M2M

transformation using the Ecore utility provided by the Eclipse Modeling Frame-

work. Therefore, the code generation for agents with MIDP profile has a direct

mapping, while the transformation for Goal Oriented MalacaTiny is a bit more

complicated.

Plans attached to goals or coordination aspects are generated in the same way

for MalacaTiny and Goal Oriented MalacaTiny. The code section shown in Exam-

ple 5.2.3 is generated from the SendRouteRequest plan of Figure 4.5. This plan

requires the execution of the following internal tasks: receive the event that causes

the execution of the plan (line 7), compose the route request (line 7) and compose

and send the message requesting information to other agents (lines 9-14). Plans

implement an interface that contains methods that must be directly implemented

by programmers. In our example, the interface SendRouteRequestInterface (line 1)

contains the methods composeRequest() and composeSendRequestInformation(...).

Example 5.2.3. Section of code in Java of the SendRouteRequest plan.

1 public class SendRouteRequest extends Plan implements

SendRouteRequestInterface{

2

3 @Override

4 protected void execute() {

5 Object receiveEvent=getInput();

6

7 Room source=composeRequest();

8

115

5. CODE GENERATION OF MALACATINY AGENTS

9 ACLMessage sendRequestInformation=new ACLMessage();

10 sendRequestInformation.setOntology("

IntelligentMuseumOntology");

11 sendRequestInformation.setPerformative(ACLMessage.REQUEST)

;

12 composeSendRequestInformation(sendRequestInformation,

source);

13

14 getAgent().sendMessage(sendRequestInformation);

15 }

16

17 }

5.2.3 Code generation of self-management

The code generation for self-management is where the M2T transformation for

MalacaTiny and Goal Oriented MalacaTiny presents their biggest difference. As

stated in Subsubsection 5.1.3.1, the MalacaTiny policies are hard-coded in the

analyze() method of the abstract class SelfManagement. While Goal Oriented

MalacaTiny uses goal policies implemented in an STD (see Subsubsection 5.1.3.2).

However, the finite state machine of the SelfAdjusting aspect in the MalacaTiny

metamodel (see Figure 4.4) is more similar to an STD. So, although the SelfAdjus-

ting aspect of Goal Oriented MalacaTiny is more complex than the implementation

of the analyze() method in MalacaTiny, the first code generation process is simpler.

In the case of the self-management for MalacaTiny agents, a class is generated

that extends SelfManagement for each SelfAdjusting aspect of the MalacaTiny

model. The behavior of the SMMachine included in the aspect is encoded in the

analyze() method using a combination of the switch and the If-then-else control

structure. Each state of finite state machine is a case of the switch structure (lines

29 and 43) and each transition for one state is an if-condition included in the case

(lines 34 and 37 for InitialSelfOptimizingState and line 48 for DecreaseLightMo-

nitoringFrequencyPolicyState). Plans associated with the SMMachine are stored

in an internal plan library (lines 16-20) with an automatic generated goal that

corresponds to the plan name (lines 2-5).

116

Example 5.2.4. Section of code in Java of the SendRouteRequest plan.

1 ...

2 public static String DecreaseLightMonitoringFrequencyPlan="

DecreaseLightMonitoringFrequencyPlan";

3 public static String DecreaseNoisetMonitoringFrequencyPlan="

DecreaseNoiseMonitoringFrequencyPlan";

4 public static String AcceptLightProposalPlan="

AcceptLightProposalPlan";

5 public static String AcceptNoiseProposalPlan="

AcceptNoiseProposalPlan";

6 ...

7 public static int InitialSelfOptimizingPolicyState=0;

8 public static int DecreaseLightMonitoringFrequencyPolicyState

=1;

9 public static int DecreaseNoiseMonitoringFrequencyPolicyState

=2;

10 ...

11 private int currentState;

12

13 public SensorSelfOptimizing(){

14

15 currentState=0;

16 this.addSMAction(DecreaseLightMonitoringFrequencyPlan,

DecreaseLightMonitoringFrequencyPlan.class.getName());

17 this.addSMAction(DecreaseNoisetMonitoringFrequencyPlan,

DecreaseNoisetMonitoringFrequencyPlan.class.getName());

18 ...

19 this.addSMAction(AcceptLightProposalPlan,

AcceptLightProposalPlan.class.getName());

20 this.addSMAction(AcceptNoiseProposalPlan,

AcceptNoiseProposalPlan.class.getName());

21 ...

22 }

23

24 public String analyze(Object input) {

25

26 String goal="none";

27

28 switch (currentState) {

117

5. CODE GENERATION OF MALACATINY AGENTS

29 case InitialSelfOptimizingPolicyState:

30 boolean lowBattery=service.getKnowledge("

lowBattery");

31 boolean activeLightMonitoring=service.getKnowledge

("activeLightMonitoring");

32 boolean lightMonitoringFrequencyModifiable=service

.getKnowledge("

lightMonitoringFrequencyModifiable");

33

34 if (lowBattery && activeLightMonitoring &&

lightMonitoringFrequencyModifiable){

35 currentState=

DecreaseLightMonitoringFrequencyPolicyState

;

36 goal=DecreaseLightMonitoringFrequencyPlan;

37 }else if (lowBattery && activeNoiseMonitoring &&

noiseMonitoringFrequencyModifiable){

38 currentState=

DecreaseNoiseMonitoringFrequencyPolicyState

;

39 goal=DecreaseNoiseMonitoringFrequencyPlan;

40 }

41

42 break;

43 case DecreaseLightMonitoringFrequencyPolicyState:

44 boolean lowBattery=service.getKnowledge("

lowBattery");

45 boolean activeLightMonitoring=service.getKnowledge

("activeLightMonitoring");

46 boolean lightMonitoringFrequencyModifiable=service

.getKnowledge("

lightMonitoringFrequencyModifiable");

47 ...

48 if(lowBattery && activeLightMonitoring &&

lightMonitoringFrequencyModifiable){

49 currentState=RequestLightMonitoringState;

50 goal=RequestLightMonitoringPlan;

51 }

52 ...

118

53 break;

54 ...

55 }

56 return goal;

57 }

58 ...

In the case of self-management for Goal Oriented MalacaTiny agents, the map-

ping is direct. But in order to achieve policies with loops like the policy depicted

in Figure 5.7 the developer must modify the MalacaTiny model. This is because

ECA policies does not consider states. Example 5.2.5 depicts a code section of

the EncriptionOptimizer self-adjusting aspect. The self-management goals of the

policy are mapped from plans included in the transitions of SMMAchine (lines

5-7). GoalState elements, that represent states of the policy, are generated from

States of the SMMachine element (lines 5-7). SMTransitions from MalacaTiny

metamodel are transformed into GoalTransition objects, with the same states and

patterns for transitions (lines 14-22).

Example 5.2.5. Section of code in Java of the SendRouteRequest plan.

1 public class HMSelfAdjusting extends SelfAdjusting{

2

3 @Override

4 public void setup() {

5 GoalState initialEncryptionOptimizerPolicyState=new GoalState(

this);

6 GoalState requestGuideForwardPolicyState=new GoalState(this);

7 GoalState disableNonPriorityEncryptionPolicyState=new

GoalState(this);

8 ...

9

10 Goal requestGuideForwardPlanGoal=new Goal("

RequestGuideForwardPlan",GoalType.SYSTEM);

11 Goal disableNonPriorityEncryptionPlanGoal=new Goal("

DisableNonPriorityEncryptionPlan",GoalType.SYSTEM);

12 ...

13

14 GoalTransition transition_12=new GoalTransition();

119

5. CODE GENERATION OF MALACATINY AGENTS

15 transition_12.setNextState(requestGuideForwardPolicyState,

requestGuideForwardPlanGoal);

16 registerTranstion(initialEncryptionOptimizerPolicyState,

new LowBatteryPattern(),transition_12);

17

18 GoalTransition transition_13=new GoalTransition();

19 MessagePattern messagePattern_18=new MessagePattern();

20 messagePattern_18.setPerformative(ACLMessage.CONFIRM);

21 transition_13.setNextState(

disableNonPriorityEncryptionPolicyState,

disableNonPriorityEncryptionPlanGoal);

22 registerTransition(requestGuideForwardPolicyState,

messagePattern_18,transition_13);

23

24 ...

25

26 this.setCurrentState(initialEncryptionOptimizerPolicyState);

27 }

28 }

Finally, plans to accomplish self-management goals are mapped using the same

procedure as described in Subsection 5.2.2, used for regular plans. Additionally,

new mapping rules are required to generate the code for associated actions for

self-management.

5.3 Summary

In this chapter we have presented the code generation process for MalacaTiny

and Goal Oriented MalacaTiny. Using the metamodel presented in Chapter 4 we

are able to generate code for the different versions of MalacaTiny. This requires

having 4 M2T transformation process that has been implemented using the xPand

technology. We are able to generate code for MalacaTiny and Goal Oriented

MalacaTiny because the MalacaTiny metamodel, like the Pineapple metamodel,

can accommodate agents with different architectures. However, the MalacaTiny

metamodel does not have explicit goals that must be automatically generated in

M2T process for Goal Oriented MalacaTiny.

120

In this chapter we have also shown the generation of the code for self-mana-

gement. For MalacaTiny, the finite state machines presented in Chapter 4 are

transformed in the implementation of the analyze() method from the SelfManage-

ment class. In order to translate the states and transitions, we have codified a

switch structure with if-conditions. The code generation for Goal Oriented Mala-

caTiny is simpler because it only requires translating the SMMachine model to

Java code.

121

5. CODE GENERATION OF MALACATINY AGENTS

122

Chapter 6

The communication concern

In this chapter we present the two distribution aspects that we have developed

specifically for MalacaTiny and Goal Oriented MalacaTiny agents, Blue and the

Sol agent platform. Blue is a distribution aspect specific for mobile phones with

MIDP profile that we developed to study the energy consumption of MalacaTiny

agents. On the other hand, the Sol agent platform is our solution to communicate

heterogenous devices with heterogenous communication means. This platform has

been specially important for the development of the Intelligent Museum presented

in Chapter 3.

This chapter is structured as follows: Section 6.1 describes the internal design of

the Blue agent platform; Section 6.2 presents the Sol agent platform; and Section

6.3 summarizes the contributions of this chapter.

6.1 The Blue agent platform

To illustrate how we accomplish the Challenge C2.2 (Cope with wireless network

diversity), we will demonstrate how to extend the distribution aspect to enable

the communication of agents with different wireless technologies and without the

use of agent platform distribution services. In AmI environments, the communi-

cation of neighboring devices is very popular. In this scenario, Bluetooth allows

devices to wirelessly communicate over short distances. This wireless technology

enables ad hoc networks to be formed dynamically between Bluetooth-capable de-

123

6. THE COMMUNICATION CONCERN

vices. Bluetooth makes it possible to use the Bluetooth network interface to send

and receive TCP/IP transport data. However, Bluetooth’s specification defines

four major transport protocols, nearly all of which are special purpose. Of these

protocols, the Radio Frequency Communications (RFCOMM) protocol is often

the best choice, and sometimes the only choice (some environments only support

this protocol). RFCOMM is a general-purpose reliable stream-based protocol. It

provides, roughly, the same service and reliability guarantees as TCP. The Logical

Link Control and Adaptation Protocol (L2CAP) is a packet-based protocol that

is also widely used when the streaming nature of RFCOMM is not needed.

In order to enable MalacaTiny to communicate with other agents using Blue-

tooth RFCOMM connections, we just need to implement a new plugin. From

the agent perspective, its functionality remains the same: the distribution of ACL

messages is provided by the distribution aspect. However, this implementation

of the distribution aspect encapsulates all the particularities of Bluetooth: device

and service discovery, and the establishment of RFCOMM connections. Prior to

data transmission, Bluetooth devices need to perform device inquiry and service

discovery. When these processes have finished, a Bluetooth device can establish

a connection that enables communication with devices nearby. The device that

starts the search plays a client role in the communication and the devices discov-

ered are servers. This initial process is not so different to the agent management

service and the directory facilitator query in agent platforms1.

A FIPA compliant agent platform offers a directory facilitator for service dis-

covery, but a service must be previously registered in the directory facilitator. In a

Bluetooth network, service discovery is very similar, since each Bluetooth-enabled

device running an agent publishes services that can be found by clients (i.e. agents

running in other Bluetooth devices). The published services allow the agents to

communicate. Then the distribution aspect uses the Service Discovery Protocol

(SDP) to discover devices (i.e. agents), and, for each device, it seeks a specific

service that allows agents to exchange ACL messages (the approach in Bluetooth

is to assign every single service a unique identifier). The service record returned by

the SDP contains the URL that allows the distribution aspect, acting as a client,

to establish a RFCOMM connection with the distribution aspect of the other agent

1http://www.fipa.org/

124

http://www.fipa.org/

(that plays the role of a server). In parallel, the distribution aspect publishes its

own service for communicating with other agents. Therefore, each agent that uses

the distribution aspect for Bluetooth plays a server role and additionally, if it seeks

other agents it is considered to be an inquiring client. Finally, both roles are a

way to get Bluetooth connections, which are identified by the Bluetooth address

of the other side’s device. As a Bluetooth address is the unique identifier for each

device, this guarantees that each connection can be univocally identified.

The design of this aspect is shown in Figure 6.1. The BluetoothPlugin class is

in charge of the communication between agents using Bluetooth. By default it sets

up a BTHost object that waits for requests from BTClient objects (a Bluetooth

device never inquiries in itself). When one of these artifacts sets a connection,

it creates a BluetoothConnection object that is transmitted to BluetoothPlugin,

which keeps a hashtable with all connections indexed by the Bluetooth address as

a key. The purpose of BluetoothConnection is to hide the complexity of the mes-

sage exchange from BluetoothPlugin. The class BlueAgentPlatform implements

the FIPAAgentPlatform interface, providing agent platform services to the Mala-

caTiny agent and additionally it is in charge of initializing the internal objects of

the distribution aspect (e.g. the BluetoohPlugin object). Since the data transmit-

ted between Bluetooth devices using the RFComm sockets cannot be Java objects,

then a message representation aspect based on String format has also been devel-

oped. This format is called BlueMessage and the aspect that processes messages

in this format is called BlueMRepresentation (see Figure 6.1).

The effort required to develop this plug-in and integrate it as part of the agent

internals to support a new communication protocol was not very high, thanks to

the good modularization of the MalacaTiny architecture that uses aspects orien-

tation. In addition, the plug-in can be reused in any MalacaTiny agent, regardless

of whether the MAS of the agent is involved. As a result, agents can decide to use

this communication protocol, to support the communication of neighboring agents.

Moreover, it is possible to provide plug-ins to enable the discovery and commu-

nication of agents using other wireless technologies (e.g. IEEE 802.15.4/Zigbee

for agents running in Sun SPOT sensors), or the services provided by new agent

platforms as they appear. In addition, the composition of aspects inside the agents

allows the use of more than one plug-in at a time. This feature makes the com-

125

6. THE COMMUNICATION CONCERN

Figure 6.1: UML class diagram of the distribution aspect for Bluetooth in Mala-
caTiny.

munication of agents in multiple heterogeneous devices possible, even at the same

time.

6.2 The Sol Agent platform

In this Section we present the internal design of the Sol agent platform. This

platform addresses limitations of agent technology in the AmI environment at two

different levels: (i) improving the design of a communication subsystem inside the

agent architecture (i.e. agent level) to facilitate the reconfiguration of an agent

communication mechanism to adjust it to different contexts; and (ii) endowing the

agent infrastructure with the necessary means to manage interoperability limita-

tions because of device and communication protocol heterogeneity, and extending

the message transport service provided by the agent infrastructure to support an

efficient group communication (i.e. the agent platform level). At the agent level,

we provide agents with the capacity to self-configure their internal architecture in

order to use different communication protocols, taking into account the context

and the necessities of the application. This flexibility inside the agent’s internal de-

sign also makes the simultaneous use of different message distribution mechanisms

easier. Sol facilitates (1) the communication and interoperation of agents running

126

in heterogeneous sets of devices (such as SunSPOT sensor motes, Android-based

lightweight devices and other mobile phones) and is even able to use different com-

munication protocols; (2) group message delivery (one-to-many communication)

efficiently. Sol supports the native communication protocols of each device (e.g.

ZigBee, WiFi) and acts as a gateway, performing specific functions in order to en-

sure interoperability. In order to address the efficient group message distribution,

the Sol agent platform provides support for membership management (joining and

leaving members) and adequate communication mechanisms when possible (e.g.

using IP multicast). We illustrate the benefits of our approach for several scenarios

in our case study.

6.2.1 An agent platform for AmI applications

6.2.1.1 The Sol agent platform services

The Sol agent platform (see Figure 6.2), partially implements the FIPA1 abstract

architecture for lightweight devices. The main goal of Sol is to support the in-

teroperability of agents deployed in different AmI devices, through heterogeneous

communication protocols. The current version of the platform works with wire-

less personal and local area networks (WPAN and WLAN) mainly composed of

phones with MIDP profile, Android devices, Sun SPOT sensor motes, and recently

also Libelium waspmotes2. This agent platform acts as a middleware that provides

a set of services to the agents that are deployed on it, and behaves as a gateway

to support communication heterogeneity (fulfilling the Challenge C2.2-Cope with

wireless network diversity). Specifically, our agent platform supports:

1. The registering and discovering of agents (AMS).

2. The registering and discovering of services (DF).

3. The registration and membership of groups (Group Management Service-

GMS).

1http://www.fipa.org/
2http://www.libelium.com/products/waspmote

127

http://www.fipa.org/
http://www.libelium.com/products/waspmote

6. THE COMMUNICATION CONCERN

4. A message transport service (MTS), which allows the communication be-

tween agents registered in the agent platform, extended to facilitate the

distribution of group-based communication.

The distribution of communication messages is supported internally by the

Internal Platform Message Transport (IPMT), which realizes the MTS and resolves

communication interoperability issues. Note that the AMS, DF and MTS are

classical services provided by any agent platform (these services are defined by the

FIPA Abstract Architecture Specification [for Intelligent Physical Agents, 2002]).

Apart from these services, we have extended the MTS to support an efficient group

communication, which is complemented with the new GMS service.

The internal design of Sol is shown in Figure 6.3. The main class (named Sol)

encapsulates the provision of the services enumerated below and stores information

about the agents and groups deployed in the platform and also about the services

provided by agents that are signed up, in the MAS. However, agents do not inter-

act with this class directly to access these services. Instead, all the interactions

between Sol and the attached agents is ACL message-based. The ACL messages

are represented in a special string-based format named SolMessage (see Fig. 6.3).

Once an agent starts its execution, its first interaction is to join the agent plat-

form (i.e. register in Sol). Requests for registration are attended to by Listeners.

The platform provides specific listeners for different protocols and technologies

(TCP, SunSpot, Bluetooth listeners in Figure 6.3). Internally, these classes in-

stantiate threads which have sockets that listen to requests from hand-held devices

(Android enabled devices and mobile phones with MIDP profile) and Sun SPOT

sensor motes. Agents send a request message to register in the agent platform

through this listener. In the registration message they specify their type, their

identifier and the set and type of transport protocols (e.g. Bluetooth) supported.

This information is stored in an instance of the AgentProfile class. Agent profiles

are stored in a hash table (attribute profiles) indexed by the agent identifier. This

data will be used to help the agent access the MTS. Additionally, Sol adds each

agent to a group composed of all the agents with the same type. Both MTS access

and group management are described further in this section. Registration has to

be performed by every agent in the Museum (Guide, Visitor and Sensor agents).

128

Figure 6.2: Schema of the communication in the Sol agent platform

129

6. THE COMMUNICATION CONCERN

Figure 6.3: UML class diagram of the Sol agent platform.

The DF provided by Sol supports the main functions of a FIPA DF. This

service is also supported by a set of specific listener classes. Agents may register

their services with the DF or query the DF to find out what services are offered

by other agents. Service descriptions provided by agents when they register with

the DF are stored in an internal hash table (services attribute in Figure 6.3). In

the IM, each agent registers the services that it can provide to the system. Service

exchange between agents registered in the platform is illustrated in the following

scenario.

Scenario 1 . In our museum, Room 2 has different types of sensors with

an embedded SensorAgent, which can measure and provide data on acceleration,

luminosity, person detection, and temperature. Let us consider that it is near

closing time, so the Security agent has to close this room, but before doing so they

need to check whether Room 2 is empty or not. This action requires monitoring

the sensor dedicated to person detection.

Each SensorAgent is registered in the agent platform (DF) as a provider of a

certain type of sensing data for Room 2. So, the SecurityAgent queries the DF of

Sol to find out the identifier of the agent providing this service (person detection

in Room 2). Finally, it sends a request for data, to this sensor agent, which

periodically sends inform messages with data on person detection until it detects

130

that the museum is completely empty and can be closed.

6.2.1.2 Managing Groups at Sol

Another of the contributions of Sol is the support for different communication

paradigms and technologies. Specifically, Sol supports peer to peer communica-

tion (the usual communication paradigm in FIPA compliant MAS) and multicast

communication, which is often required by ubiquitous systems. Multicast commu-

nication facilitates the distribution of the same information to clustered compo-

nents of the system. In order to introduce this kind of communication in the MAS,

the Sol agent platform incorporates the concept of group. A group is formed by a

set of agents that share features. By default, there is a group for each type of agent

that comprises the system, but additionally the user can define its own groups tak-

ing into account the role that the agent plays in the MAS and the application’s

communication needs. The different groups that are formed in the museum are

illustrated in the following scenario.

Scenario 2. In the museum, there are groups for each category of staff: a

group formed by the guides, a group that agglutinates the security staff members,

and the visitors are also organized into different groups. Individual visitors (i.e.

VisitorAgents) only belong to the global visitors group, but visitors of organized

groups (e.g. the “Colegio El Atabal” group) form a separate group with the cor-

responding guide composed of a GuideAgent (e.g. Inmaculada) and a number of

Visitor agents (those registered in the “Colegio El Atabal”).

Note that membership of a group could change over time and according to the

context. The members of the group (“being in Room 2”) depends on the current

location of Guide, Visitor, and Security agents. The creation of groups can be done

at any time. With Sol it is easier to advertise information related to the museum,

relevant for visitors and staff, such as “closing time is near”, or “there is a special

offer in the cafeteria”). Figure 6.4 depicts the user interface for notifications to

a visitor in the museum. How group communication can make the functioning of

the museum more efficient is illustrated in the following scenario.

Scenario 3. Since it is usual to communicate simultaneously with a set of ser-

vice providers, we can define a group to include all the agent providers of the same

131

6. THE COMMUNICATION CONCERN

Figure 6.4: Visitor user interface for the reception of notifications.

service. A group is defined to facilitate the propagation of information between

agents, and to make service provision more efficient. In the museum, there is a

group for all the SensorAgents that monitor a specific room. Although these agents

monitor and provide different data (e.g. presence or humidity), they are physically

situated in the same room, which is considered one of the common features used to

define the group (i.e. their location in the museum). The other feature is “being

a sensor agent”. This way, when Room 2 of the museum is empty (i.e. no users

are in it) a message “room empty” can be sent to the group and SensorAgents

can decrease their activity in order to save energy, which is crucial to making the

system sustainable in terms of energy.

From Scenarios 2 and 3, we can see the high demand of group creation in our

system, and how it facilitates the communication between the agents. The creation

and the maintenance of groups are left to the GMS provided by Sol. This service

supports group creation and allows agents to join and leave groups. Agents request

to join a group, usually as part of the AmI application functionality. If it is the

first member of the group, then a new group is created represented by an instance

132

of GroupConnection in the GMS. This data structure maintains information about

the active members of the group which makes a reliable group communication pos-

sible. The joining of an agent to a group and the information that is stored in

the corresponding GroupConnection depends on its profile (detailed in the Agent-

Profile class in Figure 6.3). If the agent supports TCP/IP and multicast IP, a

MulticastConnection is created (even if there is no MulticastConnection in this

group) and added to the GroupConnection. A MulticastConnection is assigned a

multicast IP address. Once the joining process ends, the agent platform sends a

message to the agent that includes the IP multicast address and port (how the

agent uses this information to complete the joining process is described in Section

6.2.2.2) associated that group. If the agent does not support TCP/IP (or multicast

IP) then the individual (and preferred) agent transport address (represented by

an implementation of SenderConnection interface) is included in the group con-

nection object. In Figure 6.5, we can see a UML sequence diagram that depicts

the registration process of the first VisitorAgent that joins a group in the IM. In

this case, the agent has support for multicast, so the registration process retrieves

the IP and port of the new MulticastConnection inside the GroupConnection. The

sequence of actions that an agent performs to join different groups is illustrated in

Scenarios 4 and 5.

Scenario 4. Ernesto has decided to visit the museum. When he enters the

main hall, he is invited to download and install the museum application on his

mobile phone. When the application starts up, a new VisitorAgent is created. The

new agent is registered in the AMS and joins a group that represents new visitors.

A minute later, a message announces that a new guided tour will start in a few

minutes and invites him to join.

The user is unaware of how this information is disseminated, but the fact is

that Ernesto’s mobile phone only supports Bluetooth connections. In the case of

Ernesto’s visitor agent, when it joins the newcomers group, an active Bluetooth-

Connection object is added to the corresponding GroupConnection (if the connec-

tion is not established, then it is created).

Scenario 5. A new sensor for Room 2 is going to be installed. Zigbee-based

sensors communicate using IPv6 on top of IEEE 802.15.4 access protocol. Sensors

transmit data on special UDP datagrams named radio datagrams. The agent that

133

6. THE COMMUNICATION CONCERN

Figure 6.5: UML sequence diagram of the joining of an agent to a group in Sol.

will run in this new sensor is programmed to join the group of “sensors in Room

2”. However, the joining of the new agent does not require any special type of

connection (i.e. MulticastConnection) because the sensor agents already use UDP-

based datagrams to communicate, so it just needs to obtain the IP multicast address

and the corresponding port to correctly configure its own SolPlugin instance.

6.2.1.3 Extending the MTS to support multicast

The MTS delivers messages between agents registered in Sol. All the agents have

access to at least one specific MTS provided by the agent platform. Sol ’s MTS is

supported by a set of connections. For each agent that is registered in the platform,

the platform maintains a connection. After registering the agent through the AMS,

a connection between the agent and the agent platform is established using the

technology access that has been detailed at the registration stage. A connection

is supported by concrete implementations of the SenderConnection interface. All

the active connections are stored in a hash table. For each connection, the infor-

mation stored is the identifier of the agent or the group in the agent platform and

a class that implements the interface SenderConnection. Sol supports five types

of connections (i.e. implementation of the interface): TCPConnection, Bluetooth-

Connection, MulticastConnection, SunSpotConnection and GroupConnection.

The TCPConnection and BluetoothConnection are used by agents running in

134

hand-held devices to send and receive messages by means of TCP sockets and

Bluetooth connections. These devices can receive multicast messages using UDP

sockets by means of MulticastConnection objects. The SunSpotConnection is used

to send UDP datagrams in order to communicate with Sun SPOT sensor motes.

Finally, GroupConnection represents a group of devices and stores an internal

list of connections (connections attribute), which can refer to the other types of

connections that have been described. With this design it is easy to add new

devices and communication protocols to the MTS of the agent platform, since

we only have to implement a listener (for the AMS and the DF service) and

the SenderConnection interface for the new type of connection or device specific

communication mechanism. The features that are described at this point address

the Challenge C2.2 (Cope with wireless network diversity), because Sol has support

for heterogeneous communication means.

In addition, we have already checked how this design meets Challenge C2.2,

paying particular attention to the flexibility of the communication infrastructure.

The case of Sun SPOT sensor motes is special and different to Bluetooth and

classical TCP/IP because these devices connect to Sol by means of the so called

Sun SPOT base station. The problem is that each time the base station is plugged

into the system it is bound with a different IPv6 address, which must be known by

the sensor motes before connecting to it. Therefore an initial discovery process is

necessary. This discovery process is implemented in the SunSpotBroadcaster class,

which is a thread that periodically sends broadcast messages with the IPv6 address

of the base station. Finally, SunSpotListener is an UDP socket to listen/sending

datagrams from/to Sun SPOT sensor motes.

As mentioned, the distribution of messages to groups is also implemented as

another type of connection represented by the class GroupConnection (in Figure

6.3). An instance of GroupConnection has an internal hash table of SenderCon-

nection implementations. The reason is that, although the best way to multicast

a message to a group is to use a multicast IP address, we can not be sure that all

the devices in the group support TCP/IP, UDP or IP multicast. So, although Sol

defines an IP multicast address to identify each group and use UDP sockets to send

multicast messages, the agent platform makes sure that the group’s members, that

do not support IP multicast, can also receive group messages by sending unicast

135

6. THE COMMUNICATION CONCERN

messages. In this way, we still fulfill C2.

6.2.1.4 Services for MAS administrator

The current version of Sol offers a graphical user interface (GUI) that allows sys-

tem administrators to visualize and manage the MAS, agents and groups deployed

in the agent platform. The GUI, which is called SolGUI, provides the MAS ad-

ministrator with access to the main agent plaform services (i.e. AMS and DF),

in a similar way as does the administrator GUI of the Jade agent platform [Bel-

lifemine et al., 2001]. In addition, the GUI allows access to the GMS (see Figure

6.6). Therefore, we can see in the main interface, each agent deployed in the

agent platform with its identifiers (tree view on the left side). The left hand side

is dedicated to each service’s (AMS, DF and GMS) facilities, which are assigned

to different tabs. AMS and DF views allow the visualization of the agents and

services registered in these services, respectively. The button of the main window

allocates a specific interface to visualize the platform’s status messages.

SolGUI provides an interface (tab labeled “GMS”) to monitor and control the

different groups registered in the platform (see Figure 6.6). This panel shows all

the groups, and, when a group is selected, its members and the different trans-

port addresses associated with the group are shown. Additionally, it offers the

possibility to create and remove a group (buttons labeled “Add Group” and “Re-

move Group”, respectively), and add and remove members of the existing groups

(buttons labeled “Add Agent” and “Remove Agent” respectively). In addition, it

supports sending a message to the selected group (button labeled “Send Message”).

6.2.2 Supporting interoperability between heterogeneous

devices

In this section we describe how our approach manages heterogeneity and enables

the communication of agents through different network technologies, transport

protocols and agent platforms. Figure 6.2 provides a graphical schema of the set

of access network technologies and transport protocols used by the agents involved

in our AmI application, and how the Sol agent platform is able to support and

manage such heterogeneity.

136

Figure 6.6: Interface for the visualization and management of groups in the Sol
agent platform.

137

6. THE COMMUNICATION CONCERN

6.2.2.1 Supporting interoperability in the agent infrastructure

Currently, the Sol IPMT supports Bluetooth RFCOMM, UDP and TCP protocols

at the transport level (protocol stacks for these network connections are detailed

in Figure 6.2). This feature makes it possible to use Sol as a gateway since it can

resolve the incompatibilities of different communication protocol stacks (mainly at

the data link level). Sensors are normally connected, forming a WSN, using the

IEEE 802.15.4 standard (also known as ZigBee), while the connectivity of typical

personal hand-held devices (such as smart phones, mobile phones and tablets) is

supported by WiFi (IEEE 802.11) and Bluetooth (IEEE 802.15.1). So, Sol allows

Sun SPOT sensor motes to communicate with each other and with the so-called

Sun SPOT base station using ZigBee, but it also allows them to send and receive

data from hand-held devices, behaving as a gateway. Apart from the differences in

the data link level protocol, the Sol implementation has to deal with the limitations

imposed on the TCP protocol implementation, by the 802.15.4 network interface,

especially those related to the number of active connections. The heterogeneity

of our case study and how this can be solved using the Sol agent platform is

illustrated in the following scenario.

Scenario 6. There is a SensorAgent monitoring the presence of people in

Room 2. Each time a visiting group or a person enters or leaves Room 2, the

SensorAgent sends data to the SecurityAgent that runs in Luis’s smartphone (who

is member of the security staff and is assigned to control Room 2). However,

Luis’s smartphone only supports WiFi and Bluetooth connectivity, while sensors

communicate through Zigbee networks. In this case, the SensorAgent in the sensor

sends the data in a UDP datagram, which is received and processed by the Zigbee

interface of the Sol agent platform. The IPMT extracts the ACL message (which

contains the target agent and the data) from the UDP datagram and sends it to

Luis’s SecurityAgent. The ACL message is now encapsulated as a byte stream of

a TCP connection and sent to the WiFi interface to be received by the Security

agent.

138

6.2.2.2 The self-configurable communication concern

The basis for achieving Challenge C2.2 flexibly is an agent architectural design

and implementation that endows software agents with enough flexibility to com-

municate using different access technologies and communication protocols (even

simultaneously). By doing this, we solve the interoperability issue at the agent

level (as part of the agent architecture itself), which gives more control to the

agent developer to adapt the agent to communicate through any network interface

supported by the device in which it is embedded. The agent platform presented

has been designed to work with the family of MalacaTiny agents. Anyway, Sol

can provide useful services to any agent implementation interested in providing

self-configurable communication facilities. As we stated in Chapter 5, MalacaTiny

agents can self-configure their communications easily, by using different distribu-

tion aspect implementations to distribute messages. These distribution aspect

implementations can be changed at runtime and several of them can even be used

simultaneously whenever necessary.

The distribution aspect for Sol (i.e. SolPlugin in Figure 6.7) has the same

design for the agents running in the different devices (sensors, hand held devices

and desktop computers). This aspect allows the agent to communicate by means

of different MTSs and network technologies through Sol. The main functionality

of this aspect is the distribution of agent communication messages: it receives the

incoming messages and delivers outgoing messages through a specific network ac-

cess technology (Wi-FI or Bluetooth) or communication transport protocol (TCP,

UDP or RFCOMM). This aspect hides any infrastructure dependency (derived

both from the use of a specific agent platform or wireless technology) defining a

high-level interface to send and receive messages to and from different communi-

cation technologies.

For each network interface and protocol the agent can access, this aspect is in

charge of instantiating the corresponding device and API-dependent functionality.

For example, Sun SPOT sensor motes use UDP datagrams to distribute sensed

data. When the agent joins a group, this aspect deals with the instantiation of

a new UDP socket for receiving group messages. The IP multicast address and

the corresponding port is provided by the GMS of the Sol agent platform when

139

6. THE COMMUNICATION CONCERN

Figure 6.7: UML class diagram of the SolPlugin

the agent joins the group. The aspect also notifies the transport layer that it has

joined a multicast IP address.

However, these devices require a discovery process before being able to send

any data through the network interface (similar to Bluetooth). The distribution

aspect realizes this discovery process when the agent is initializing. Moreover, the

implementations of the SolPlugin distribution aspect for Android devices and mo-

bile phones with MIDP profile differ, mainly in how each API sets and establishes

the TCP connection.

Although the implementation of each distribution aspect differs, all of them

together make up the FIPAAgentPlatform interface. This interface is common to

all the distribution aspects and allows a uniform access to FIPA compliant agent

platforms. The SolAPInterface class extends the services of FIPAAgentPlatform

with services to allow the joining and leaving of groups.

Internally, the functionality of this communication concern is divided into two

main parts (see Figure 6.7): the access to the Sol platform services (i.e. the AMS,

DF and GMS services); and sending and reception of communication messages

through the MTS of the platform (SolPlugin, MulticastPlugin and BluetoothPlu-

140

gin).

The SolPlugin and the BluetoothPlugin classes extend the Distribution aspect

and allow sending messages through the Sol agent platform using a specific trans-

port or access technology. They are implemented as threads that listen to mes-

sages. In the case of the SolPlugin, from a TCP socket connection established with

the Sol agent platform, and in the case of the BluetoothPlugin from a RFCOMM

Bluetooth connection to a service also running in Sol. The case of MulticastPlugin

is special because it is a thread for only listening to messages targeted at multicast

groups. As stated before, agents can ask the platform to join a group and this

is done by means of the SolAPInterface. If the technology for the connection is

IP then Sol answers the request with a multicast IP address and a transport port

(see Figure 6.5). With this information a new MulticastPlugin is instantiated and

added to the agent architecture. If an agent wants to send a message to a group (see

Figure 6.8), this is done via SolPlugin or BluetoothPlugin and uses, as receivers,

the identifier of the group. When the message arrives in Sol, this sends the message

using the corresponding GroupConnection as described in Section 6.2.1.1. Figure

6.8 depicts the situation in which a GuideAgent (that uses RFCOMM Bluetooth)

sends a message to a group of VisitorAgents. As you can see, when the message

arrives to Sol, this sends the message using the GroupConnection that sends the

message to the different connections included in the group.

As stated before, aspect orientation gives the MalacaTiny agents the possibility

of using different agent platforms and mechanisms for communication. But as a

counterpart it also requires the transformation of the messages during sending and

reception in order to compose messages in the format used by the underlying agent

platform. This task can be defined as a translation, which is encapsulated in the

Representation aspect [Amor and Fuentes, 2009]. For our case study, SensorAgent

and SecurityAgent are involved in an interaction ruled by a protocol that consists

of SensorAgent send lectures of the light sensor to the SecurityAgent under request.

The SensorAgent sends an ACL message that is transformed by the Representation

aspect to a SolMessage and is sent to the Sol agent platform as a datagram via

SolPlugin. When the message arrives at the platform, this is sent by means of the

TCPConnection that sends the message as a stream of bytes to the SecurityAgent.

A differentiated feature of MalacaTiny agents is that they can simultaneously

141

6. THE COMMUNICATION CONCERN

use different network access technologies, transport protocols, and even agent plat-

forms. This is possible simply by instantiating more than one Distribution aspect,

one each per communication mechanism used. In addition, an agent with two

or more distribution aspects instantiated can act as a proxy between agents in

different agent platforms, using different transport protocols or access network

technologies. However, given that Sol resolves heterogeneity of transport proto-

cols and access network technologies satisfactorily, the use of the MalacaTiny agent

as a proxy is left to resolve interoperability between agent platforms. The use of

proxy agents is illustrated in the following scenario.

Scenario 7. As a first approach in the Museum application, we had previously

developed an agent-based solution implemented in Jade-Leap to organize groups

(given a set of visitors, the agent-based application distributed them in groups de-

pending on user profile, such as age and physical disabilities) and calculate the

optimized route to visit the museum. The Jade agent in charge of organizing

groups (named GroupOrganizer) is still useful for our system, so we wanted to

reuse it. But, Jade-Leap agents communicate using WiFi, and TCP/IP, so the

MTS of Jade-Leap cannot interoperate with the IPMT of the Sol agent platform

one.

We were not too concerned with resolving such interoperability problems in Sol,

because it had already been solved inside the MalacaTiny agents. So, we devel-

oped an agent (ProxyAgent in Figure 6.2), which acts as a proxy that is able to

interact simultaneously using two different agent platforms (Sol and Jade/Leap

by instantiating two Representation aspects and two Distribution aspects (SolPlu-

gin and JadePlugin respectively). Thanks to this proxy agent, it was possible to

reuse the GroupOrganizer agent. Once the GroupOrganizer agent organizes the

groups, it has to communicate them to each GuideAgent. But, this communication

is performed through the proxy agent, which receives the ACL message from the

GroupOrganizer Jade agent (through the JadePlugin) and sends it to the Guide-

Agent Self-StarMAS agent through the SolPlugin). Another possible solution, is to

instantiate the JadePlugin as part of each GuideAgent. But, since we are trying

to optimize the performance of agents in lightweight devices, we do not want to in-

troduce unnecessary overhead. The proxy agent could be executed in a device with

more capacity to instantiate many distribution aspects, maintaining good response

142

Figure 6.8: UML sequence diagram of sending a message to a group in Sol.

times.

6.3 Summary

In this Chapter we have presented our progressing in enabling the communication

between MalacaTiny agents. Firstly, we have presented the internal design of

the Blue agent platform, that enables Bluetooth-based communications between

agents deployed in mobile phones with MIDP profiles. Secondly, we have presented

the Sol agent platform that contributes to achieving at agent platform level some

of the challenges raised in Chapter 1. Sol facilitates (1) the communication and

interoperation of agents running in a heterogeneous set of devices (such as Sun

SPOT sensor motes, Android-based lightweight devices and mobile phones) and it

is even able to use different communication protocols; (2) group message delivery

(one-to-many communication) efficiently. The Sol agent platform supports the

native communication protocols of each device (e.g. ZigBee, WiFi) and acts as a

gateway, performing specific functions in order to ensure interoperability.

143

6. THE COMMUNICATION CONCERN

144

Chapter 7

Validation

In order to evaluate the work presented in this thesis, we present and discuss some

results with regard to the automatic generation process of agents for AmI systems

and the energy consumption and performance of MalacaTiny. Additionally, we

present the results of the self-management functionality and distribution aspects

implemented for MalacaTiny; Jade-Leap, Blue and the Sol agent platform.

This chapter is structured as follows: Section 7.1 presents the results for the

Degree of Automation of our MDD process; Section 7.2 presents the results of the

power consumption, performance and scalability of MalacaTiny agents; Section 7.3

studies the benefits and performance of the self-management functionality; Section

7.4 studies the performance of the Sol agent platform; and Section 7.5 summarizes

the contributions of this Chapter.

7.1 Degree of automation

For measuring Productivity, Automation and Reuse in systems based on applica-

tion frameworks (such as MalacaTiny or Jade) we cannot use the Line Of Code

metric (LOC) as it cannot be directly used to compare the size of the generated

MAS. Instead we use an adaptation of the approach presented in [Harrington and

Cahill, 2011], called degree of automation.

The effort (of development) required to implement a case study such as the IM

is recorded using the number of elements (NE) a metric of the elements (concepts

145

7. VALIDATION

from the metamodel) required for modeling the agents, coordination protocols,

plans and self-management functionality of the case study with the Pineapple

metamodel. Our experiments extend the IM by adding new agents with new

capabilities, new states to protocols and plans that complete protocol specification

and new rules to self-management policies. After each experiment is performed,

the NE metric is calculated again for the extended model. The increased agent,

coordination and self-management data produced by the transformation process

is recorded and used as an alternative measure for the increased functionality in

the extended scenario.

The ratio of the increased Pineapple model development effort can be com-

pared to the ratio of the increased number of features in protocols and agents for

MalacaTiny. These ratios indicate the expressive power of the Pineapple abstrac-

tions and their contribution to the transformation process to generate application

functionality. This ratio is measured as:

δ(Model)/δ(Feature Size) (7.1)

where

δ(Model) =
ExtendedP ineappleModel(NE)

OriginalP ineappleModel(NE)
(7.2)

and

δ(Feature Size) =
ExtendedFeatureSize

OriginalFeatureSize
(7.3)

The degree of automation metric is useful for measuring the related evalua-

tion criteria of productivity gain, automation and reuse. The extension of agent

specifications, protocols and self-management policies, and the re-running of the

transformation process show the reuse of domain model components. Since we

principally transform three elements (agents, protocols and self-management poli-

cies), we apply these metrics three times. On the one hand, for the transformation

process that generates agents (knowledge, components, aspects and composition

rules), the feature studied is the number of these elements. The NE measure is

applied to the Pineapple model that contains these features (MAS, organization,

146

collaboration, agent). On the other hand, the second transformation process cor-

responds to the protocol description by means of a finite state machine for each

participant role. In this case, the feature studied is the number of the transition

rules; plans executed in these transitions (transition descriptions) and atomic ac-

tions contained in these plans. The NE measure is applied to the protocol concept

and associated plan in the Pineapple model. Finally, for the transformation pro-

cess of self-management policies, the feature studied are similar to the case of the

coordination protocols. So, we study the number of transitions of the SMMachine,

plans executed in these transitions and atomic actions. Additionally, we consider

the knowledge and plans included in SelfManagement role capabilities. The NE

measure is applied to the SelfManagement role concept (condition, triggers, plans

and knowledge).

Scenario 1. Firstly, we add a new agent to our MAS for IM named ExhibitA-

gent that represents an exhibit in the museum and gives information about the

item that it represents. In the current implementation of the museum, VisitorA-

gent queries an internal data base to find out what exhibits could be interesting

to a each user. However, this solution is difficult to maintain because each time a

new exhibit is added to the collection, the internal database of VisitorAgents must

be updated. Our solution is the ExhibitAgent, these agents provide information

of the items and are members of a group that is composed of the items that are

located in the same room.

When the user enters a new room in the museum, its VisitorAgent automat-

ically sends a message to the corresponding group requesting information on the

exhibits and receives information about the items in order to make a recommen-

dation. So, when a new item is added to the exhibition, we only need to program

and instantiate a new ExhibitAgent while the VisitorAgent remains unchanged.

This solution is advantageous when we want to add more information to an ex-

hibit. In this case, we only need to update the ExhibitAgent that represents the

exhibit. Adding the ExhibitAgent means adding the following elements: we add a

new agent, which is a member of the IntelligentMuseum organization (Figure 3.3)

through a new role named Exhibit ; a component that stores the information of

the exhibit that must be shared; a new protocol to model the interaction between

ExhibitAgent and VisitorAgent ; a plan for the visitor agent to model the sharing

147

7. VALIDATION

of the information; we modify the plan to recommend items in a room. We recal-

culate the NE for the extended design model. The number of elements of agent

features in the original model is 142, while the NE for the extended model is 166.

The number of generated entities in the original model for these features is 55 and

for the extended model is 65. Therefore, the value of the measure is:

δ(Model) : δ(Feature Size) =
144

132
:

126

112
(7.4)

An increase of 9% in agent development effort results in a 13% increase in

the application functionality (measured by the number of coordination aspects,

default aspects, distribution and representation, composition rules, components

and knowledge).

Scenario 2. In order to check the Degree of Automation in the coordination

protocol transformation process, for the case study presented above, we trans-

form the SearchGuide protocol, which is a classical FIPA-Request1 protocol, into

a FIPA-ContractNet2 protocol (this protocol is similarly modeled in the Pineapple

metamodel to the RoutePlanning protocol (see Figure 3.4), but we add new mes-

sages, messages flows and sub-actors associated with the actors). This protocol

involves one initiator and a set of participants, so it is a more complex protocol,

with more messages and states. The Initiator solicits an m proposal from other

agents by issuing a call for proposals (cfp for short) communicative act, as well

as any conditions the Initiator is placing upon the execution of the task (in our

example the Initiator requires the room in the museum where the guide is).

In order to modify the SearchGuide protocol to follow the FIPA Contract

Net protocol it is necessary to modify the corresponding protocol diagram and

the associated plans. The number of entities obtained for these elements in the

original model is 130 and for the extended model is 220. The number of generated

entities in the original model for these features (coordination aspects, interchanged

messages, plans and atomic actions in plans) is 203 and for the extended model is

358. Therefore, the value of the degree of automation is:

1http://www.fipa.org/specs/fipa00027/
2http://www.fipa.org/specs/fipa00029/

148

http://www.fipa.org/specs/fipa00027/
http://www.fipa.org/specs/fipa00029/

δ(Model) : δ(Feature Size) =
226

130
:

371

184
(7.5)

This result shows that an increase of 73% in the protocol development effort

results in an increase of 101% in agent functionality (in terms of the number of

transition rules, transition descriptions and atomic actions generated). So, in this

scenario, the percentage of generated model is 28%, showing that the grade of

automation is high for complex change scenarios, justifying the use of an MDE

approach.

Scenario 3. In order to check the Degree of Automation in the transformation

of self-management policies, we extend the policies associated with VisitorAgent.

In the original model, VisitorAgent has a policy that enables a cache for the

contents of the museum when the response time of the application is low. In the

extended model, VisitorAgent is aware of the power consumption and when the

battery level is low disables the context-aware behavior that recommends exhibits

when the user enters a new room (LocationAwareRecommendation in Figure 3.5).

In order to add this new self-management functionality, we modify the policy

associated with the ContentOptimizer SelfManagementRole (see Figure 3.3). This

policy is a ComposedRule (see Figure 3.7) that uses the Parallel RuleOperation and

is composed of two BasicRule (for enabling the cache and for disabling the cache).

Then, in the extended model, we add two extra BasicRule elements to enable

or disable the LocationAwareRecommendation. At the PIM level, the number of

elements that compose the ContentOptimizer SelfManagementRole is 22 and in

the extended model 56. The number of generated entities in the original model

for these self-management features (SelfAdjusting, Knowledge and SMPlan) is 46

and for the extended model 126. Therefore, the value of the measure is:

δ(Model) : δ(Feature Size) =
56

22
:

146

46
(7.6)

This result shows that an increase of 154% in the protocol development effort

results in an increase of 217% in agent functionality (in terms of the number

of elements that compose the SelfAdjusting aspect, atomic actions included in

SMPlans and knowledge associated with self-management). Therefore, in this last

scenario, the percentage of the generated model is 63%.

149

7. VALIDATION

7.2 Validation of MalacaTiny agents

This section presents some results showing the energy efficiency and performance

of MalacaTiny agents for devices with profile MIDP and Android devices compared

with Jade-Leap. Agents implemented in Java ME and in Android have been widely

used to develop AmI systems [Bromuri et al., 2010; Lech and Wienhofen, 2005;

Muldoon et al., 2006; Sánchez-Pi et al., 2008]. In our case study GuideAgent,

SecurityAgent and VisitorAgent runs on the mobile phone of the users.

Although, the experiments for Java ME were performed in a 5630 XpressMusic

[Developer, 2013b] and in a N96 [Developer, 2013a], in this section we present only

those results obtained for XpressMusic. The mobile phone parameters have been

monitored with the Nokia Energy Profiler. This application offers real time values

collected while the mobile phone is functioning. The experiments for Android were

performed in a HTC Desire [Encyclopedia, 2013] and in a Samsung Galaxy [Mobile,

2013], but in this section we only present the results obtained from the HTC Desire.

However, the memory footprint of a process is difficult to measure in Android

because a lot of memory is actually shared across multiple processes [Hackborn,

2010], so we only present static results captured in the Android emulator in order

to provide a notion of the size of the agents.

7.2.1 Resource consumption

The goal of the experiments presented in this section is twofold: (1) To quan-

tify the memory footprint and power consumption of MalacaTiny agents in MIDP

and Android versions and using (for all of them) two different communication

mechanisms, i.e. a Jade-Leap agent platform and Bluetooth (we will call them JL-

MalacaTiny and B-MalacaTiny, respectively); and (2) to compare them, in terms

of memory usage and power consumption, with a Jade-Leap version of the same

agent. We have made this comparison using Jade-Leap because, as can be seen

in Table 2.2, it is the only FIPA-compliant agent technology that supports both

Android and MIDP devices. Memory usage (in KiloBytes) is measured both in

MIDP and Android versions. Power consumption is only evaluated in milliamperes

(mA) in the MIDP versions using the Nokia Energy Profiler, since the Android

150

Figure 7.1: Memory occupation (left) and power consumption (right) averages for
IdleAgent.

emulator does not provide these data. In order to measure the resource consump-

tion of MalacaTiny agents and perform the comparison with the corresponding

Jade-Leap agents, we have conducted a battery of tests based on different exe-

cutions of the JL-MalacaTiny, the B-MalacaTiny and Jade-Leap agents in MIDP

and Android mobile phones. For each MIDP agent (in Jade-Leap, JL-MalacaTiny

and B-MalacaTiny), each test took fifteen seconds and was repeated ten times.

The average of the results for each test is shown graphically. For Android agents,

the tests for memory footprint (in KiloBytes) were performed in the emulator and

the results shown are the average of the result obtained after ten executions. Table

7.1 summarizes the results of the different tests for Android agents.

Firstly, we considered memory and power consumption for idle agents (i.e with-

out performing any action). Therefore, we monitored mobile phone resources while

an idle agent was running (IdleAgent) and then we compared these results with

the mobile resources consumption without agents. This test was carried out for

JL-MalacaTiny and Jade-Leap agents. The results are shown in Figure 7.1. As ex-

pected, resource consumption is lowest when there is no agent running. However,

the MalacaTiny agent resource consumption is lower than the resource consump-

tion exhibited by the Jade-Leap agent. So, the MalacaTiny implementation is

more efficient in terms of memory and power consumption than Jade-Leap. In

MalacaTiny we have optimized the resources by enabling and disabling aspects,

depending on the agent’s needs. The same test was performed in Android phones

with similar results (as can be seen in Table 7.1, row labeled IdleAgents), i.e. the

151

7. VALIDATION

Figure 7.2: Memory occupation (left) and power consumption (right) for ChattyA-
gents during reception.

memory size of the Jade-Leap agent is 3915kB while the memory required by a

MalacaTiny agent is lower, 3290kB.

Memory and power consumption have also been measured during agent inter-

action. Some tests were performed where multiple messages were sent or received.

For this experiment, two paired agents were developed: an agent which waited ten

seconds and sent ten messages, and an agent that waited for these messages. These

agents are named ChattyAgents. Figures 7.2 and 7.3 show the memory occupa-

tion and power consumption results for the time slot in which a message is sent

or received. For message reception (Figure 7.2), Jade Leap has good results for

memory occupation (although higher than B-MalacaTiny), but the worst results

for power consumption. For MalacaTiny, the memory occupation is the highest for

JL-MalacaTiny, but the lowest in the B-MalacaTiny implementation. Regarding

power consumption, MalacaTiny is the most energy efficient with the lowest power

consumption in JL- and B-MalacaTiny versions, something so important in AmI

systems as it means it is possible to extend the lifetime of devices. Again, the B-

MalacaTiny agent had the best results for message sending in memory and power

consumption tests (Figure 7.3). The difference is notable for power consumption

with an average of 64’8mA, while the average of Jade-Leap is 116’4mA and for JL-

MalacaTiny is 121’9mA. The second best results for both measures are Jade-Leap

but they are quite similar to those of JL-MalacaTiny. Different implementations

of the ChattyAgent agents are also executed on Android mobile phones. Memory

footprint results are given in Table 7.1 (row labeled ChattyAgents). For reception,

Jade-Leap has a memory footprint of 4721kB and MalacaTiny of 4780kB. For

152

Figure 7.3: Memory occupation (left) and power consumption (right) for ChattyA-
gents during sending.

Table 7.1: Memory-footprint of Jade-Leap and MalacaTiny agents in Android
devices for resource consumption tests in KiloBytes.

Jade-Leap MalacaTiny

Reception Sending Reception Sending
IdleAgent 3915 3290
ChattyAgent 4721 4798 4780 4925

sending, the results are similar and Jade-Leap achieves 4798kB, while MalacaTiny

4925kB.

Finally, to summarize, the conclusions of these tests are: (1) MalacaTiny does

not introduce a critical overhead when it is used on top of an agent platform, and

therefore developers can benefit from the advantages offered by the MalacaTiny

approach at design and implementation with a minimum resource penalty, and (2)

the implementation of B-MalacaTiny is the one which better scales in memory and

power consumption, showing that it is worth having agents with the capacity of

interacting through different communication protocols. This offers the possibility

of choosing the optimal communication protocol, taking into account the expected

resource and power consumption.

7.2.2 Scalability

In this section we include some of the tests that show how MalacaTiny for MIDP

scales with respect to the number of aspects instantiated by the agent. The results

153

7. VALIDATION

Figure 7.4: Memory occupation with different numbers of coordination aspects.

of the tests for Android agents are not shown since they are not very reliable be-

cause the memory between Android processes is mostly shared and it is difficult

to measure the real memory footprint of a process. We chose to measure aspects

since the functionality in MalacaTiny is encapsulated in components implemented

by classes, as with Jade-leap. Furthermore in MalacaTiny each agent conversation

implies the instantiation of a coordination aspect. If we measure how well Mala-

caTiny scales with regard to the number of aspects, implicitly we are measuring

how well it scales regarding the active behaviors of the agent. The tests measure

the increment of the agents memory footprint when the number of active aspects

for MalacaTiny or behaviors for Jade-Leap increases. We measured the average

memory footprint for fifteen seconds with a different number of coordination as-

pects or conversations for Jade-leap (5, 10, 20, 100), repeating each test ten times

and calculating the average of these results (Figure 7.4).

As the results show, B-MalacaTiny again scales better than the other agent

implementations. For a low number of active aspects, results are very similar

for Jade-Leap and JL-MalacaTiny but for a high number of aspects Jade-Leap

performs much better.

154

Table 7.2: Average and standard deviation for message sending and reception in
MIDP devices in milliseconds.

Jade-Leap JL-MalacaTiny B-MalacaTiny

Average 139.4 176.4 257.8
Standard deviation 39.8 68.1 9.6

Table 7.3: Average and standard deviation for message sending and reception in
Android devices in milliseconds.

Jade-Leap JL-MalacaTiny

Average 411.3 360.2
Standard deviation 217.64 180.01

7.2.3 Performance

In this section the performance of MalacaTiny agents is evaluated and compared

with Jade-Leap agents. The evaluation and comparison are presented in Tables

7.2 through 7.5. The numbers given correspond to the average and the standard

deviation of the results that come from the multiple execution of each experiment.

Our first experiment measured the time required for sending and receiving a mes-

sage (round-trip delay time). Two paired agents were implemented: an agent

that sends a message and waits for a response, and an agent which receives a

message and sends a reply. These agents were implemented using Jade-Leap and

MalacaTiny for MIDP and Android. MalacaTiny agents have been executed using

Jade-Leap and Bluetooth. Each experiment was repeated thirty times. Table 7.2

shows the results for the agents implemented in MIDP. As can be seen, the results

for Jade-Leap agent and the MalacaTiny agent deployed in this agent platform are

quite similar (a difference of just 37 milliseconds). The result for the agent using

Bluetooth shows that this is the slowest communication system, as expected. The

results for agents implemented for Android (showed in Table 7.3) are different. In

this experiment, the times measured are a little better for MalacaTiny (51.1ms).

Table 7.4 shows the latency of an interaction following the FIPA-Query pro-

155

7. VALIDATION

Table 7.4: Average and standard deviation for FIPA-Query protocol execution in
MIDP devices in milliseconds.

Jade-Leap JL-MalacaTiny B-MalacaTiny

Average 676.7 530.5 22418.6
Standard deviation 39.1 76.8 18045.9

Table 7.5: Average and standard deviation for FIPA-Query protocol execution in
Android devices in milliseconds.

Jade-Leap JL-MalacaTiny

Average 262.3 372.73
Standard deviation 142.1 292.06

tocol. The result includes message delivery, internal message processing and the

realization of a simple activity. In the implementation of the FIPA-Query proto-

col used in our experiment, the initiator requests the participant to perform some

kind of informing action by sending a query-if message. Once the participant re-

ceives and processes the query-if message, it decides whether to accept or refuse

the query request (in this implementation the query is always accepted) and sends

the corresponding message to the initiator.

In Table 7.4, we can see the average and standard deviation of ten executions of

the agents implemented in Jade-Leap, JL-MalacaTiny agent and the B-MalacaTiny

agent for MIDP. The highest result is achieved for the B-MalacaTiny agent (as ex-

pected). The reason is that both service discovery and message delivery (see Table

7.2) is slower in agents using Bluetooth than in the agents using the Jade-Leap

agent platform with MIDP. In addition, we want to highlight that JL-MalacaTiny

exhibits the lowest result (despite message delivering being slightly slower in JL-

MalacaTiny agent). Finally, as in the previous experiment, the results are different

for the Android versions of the agents, being the performance of the Jade-Leap

agent for Android better than MalacaTiny agents for Android. From these results

we can conclude that the internal design of MalacaTiny agents does not introduce

a critical overhead and the differences in the performance are not notable.

156

7.3 Performance of self-management functiona-

lity

In this section we are going to show the results of the different tests that have

been carried out in order to validate the performance and efficiency of the self-

configuring capacity inside the agent. Due to the fact the response time is a major

concern in AmI systems, these tests focus on the times required to accomplish

the different tasks of the self-configuring loop inside MalacaTiny agents. All the

experiments has been repeated fifty times and the average and the standard devi-

ation have been calculated. The tests have been performed in HTC Desire mobile

phones and Sun SPOT sensors.

The current implementation of our agents is able to do the following self-

configuring tasks: (T1) to change the sampling frequency of a monitoring compo-

nent/aspect; (T2) to change the distribution aspect at runtime; and (T3) to require

a new source of data in case of failure of the data provider. The following experi-

ments focus on measuring the time that is required for the different self-configuring

tasks, which is, in our agent architecture, independent of the specific application

scenario (medication prompting, health monitoring, location based services, etc.).

This is because the application/system in which agents are deployed only acts as

a trigger for the different self-configuring tasks.

In order to measure T1, we use a SensorAgent that when it detects its battery

level is low, changes the sampling time of an internal monitoring service (e.g. tem-

perature monitoring). This task is useful because it can contribute to increasing

the lifetime of the sensor. The time required for T1 in a SensorAgent is 1219

milliseconds with an standard deviation of 1 millisecond. The accomplishment of

this task requires localizing the monitoring aspect and calling the method that

changes the temperature sampling in the hardware device. This self-management

policy can increase the life of a Sun SPOT sensor mote by 4%.

Secondly, in order to measure the time required for T2, we focus on a Guide-

Agent that changes its distribution aspect at runtime from the Sol agent platform

to Jade-Leap. This task only requires 316 milliseconds with an standard deviation

of 66 milliseconds. This can be considered the reference time for substituting an

aspect with an alternative implementation.

157

7. VALIDATION

The substitution of the distribution aspect can have great benefits in power

saving if we change between a distribution aspect based on WiFi (e.g. Jade-Leap)

and another based on Bluetooth (e.g. Blue). The platform over Bluetooth is slower

than Jade-Leap, but is much more energy efficient. So, we define a reconfiguration

to replace the Jade-Leap with the Bluetooth communication, in the mobile device

used in our case study. This device can manage the reconfiguration of many

devices, thereby minimizing the energy expenditure during the message delivery

and reception which is useful. In this example the agent being executed in the

mobile device uses a FIPA Request protocol1 to supervise the replacement of the

agent platform in all the devices managed by this agent. In our experiment we

have five agents managed by the supervisor agent. Considering that the cost of

sending a message with Jade-leap is 121.91mA and of receiving a message is 50mA

(see Subsection 7.2.1), the total cost of reconfiguration is 862.3mA. On the other

hand, the cost of sending a message via Bluetooth is 64.798mA and of receiving

a message is 45.93mA. Let us consider that the master agent sends and receives

50 messages (for example, with sensed data) per hour, using Jade-Leap we would

expend 8550mA, but with Bluetooth this cost is reduced to 5536.4mA. Adding to

the Bluetooth cost the self-configuring cost, this means that in just one hour we

have saved 28.79% in energy. Over the following hours the cost of reconfiguration

is no longer present so the energy saving increases by up to 64.65%, in all the

devices (five in our experiment), increasing the lifetime of both the AmI system

and the batteries.

Finally, in order to measure T3 we have deployed different environmental moni-

toring systems, principally composed of one SecurityAgent (executing in the smart

phone of a member of the security staff) and a variable number of SensorAgents

agents (used to monitor different elements of the same room in the museum). The

number of sensor agents can vary from just one sensor (for instance providing ac-

celeration data) to various. All the SensorAgents of the system are registered as

service providers of the specific service which fails and causes the T3 reconfigu-

ration. With these experiments we measure both the time required for T3 and

the scalability of this self-configuring task. This reconfiguration task is the most

complex one, implying several sub-task detailed below. When a SecurityAgent is

1http://fipa.org/specs/fipa00026/SC00026H.html

158

http://fipa.org/specs/fipa00026/SC00026H.html

Figure 7.5: Times (in milliseconds) for T3 for different numbers of agents.

waiting for a service from a SensorAgent and this service fails, the SecurityAgent

queries the directory facilitator of the Sol agent platform (see Chapter 6) in order

to get a new service provider. Then, it sends request messages to all the Sensor-

Agents that can provide the required service and chooses one, sending a confirm

message, discarding the others, sending a refuse message. The results of this ex-

periment (see Figure 7.5) shows that time for self-configuring scales up with the

number of agents, following a logarithmic curve. The resulting times are affordable

and the scalability of the self-configuring task is good. Note that in an extreme

situation, when the number of sensors-and agents is increased by more than 250%,

the time required for self-managing increases by 140%.

However, note that T3 requires more time than the other self-configuring tasks,

it being the worst case. This is mainly because the time to accomplish T3 is affected

by having to exchange a lot of messages. The exchange of messages is usually the

most time consuming task in any networked system. In the following section, we

will show the benefit of the group mechanism of Sol for this experiment.

The conclusion to be drawn from these experiments is that our system has a

reasonable response time for self-management.

159

7. VALIDATION

7.4 Performance of the Sol agent platform

In this section, we validate how our platform accomplishes the challenges presented

in Chapter 1. We have illustrated how Sol supports device and communication

heterogeneity (Challenges C2.1-Manage device and agent platform heterogeneity

and C2.2-Cope with wireless network diversity). Therefore in Subsection 7.4.1, we

show the performance of Sol when it enables communication between heterogenous

devices. Additionally, we illustrate the accomplishment of the Challenge C2.1,

showing the performance of the ProxyAgent presented in Subsection 6.2.2.2. In

Subsection 7.4.2, we validate the group communication showing its benefits for

agents running in Sun SPOT sensor motes and Android. Experiments in this

section for Android devices have been carried out using the Goal Oriented version

of MalacaTiny. We also provide an idea of the size and performance of these agents.

All the experiments presented in this section have been repeated fifty times and

the average and standard deviation have been calculated. The time is measured

in milliseconds (ms) and to accomplish these experiments we have used Android

Google Nexus [Inc., 2013] devices.

7.4.1 Interoperation between heterogeneous agents

In this section, we show the times for communication between the devices that

can compose the Intelligent Museum and that communicate through the Sol agent

platform. Specifically, we measured the performance in the communication be-

tween an agent that uses WiFi and another agent that uses Bluetooth and an

agent that uses WiFi and another agent that uses ZigBee. Firstly, we focus on the

case of Bluetooth and WiFi, e.g. the communication between a GuideAgent and a

VisitorAgent where the first one can use Bluetooth or WiFi to exchange messages.

In this experiment, we measured the round-trip delay time of a message sent by

the GuideAgent to a VisitorAgent. The goal of these experiments is twofold: (1)

to show that the time spent in communicating through Sol is reasonable and (2) to

show that the communication through the Sol agent platform does not introduce

a critical overhead. The round trip delay time for a GuideAgent and VisitorAgent

using only Bluetooth and exchanging messages of 207 Bytes size is 413 ms with a

160

standard deviation of 157 ms. In this situation, the communication requires two

RFCOMM sockets using the same network technology (Bluetooth). On the other

hand, the result for communicating these agents using the GuideAgent WiFi is 647

ms with an standard deviation of 115 ms. The round trip delay time for two agents

exchanging messages of 207 Bytes size and using WiFi is 823 ms with a standard

deviation of 136 ms. In this situation, the communication requires two TCP con-

nections using the same network technology. On the other hand, the result for

communicating one agent that uses WiFi (e.g. SecurityAgent) and a SensorAgent

is 619 ms with an standard deviation of 60 ms. This situation involves the use

of two transport protocols (UDP and TCP). These results show that the round

trip times in these scenarios are reasonable for communicating smart phones and

sensors making up the IM. We also show that the communication between mo-

bile phones and sensors through the Sol agent platform using different transport

protocols does not introduce a critical overhead.

An additional problem that we have found is that interoperability is not possi-

ble in all cases (for instance, sensors use IEEE 802.15.4 standards to communicate,

which are still not supported by personal lightweight devices). In order to achieve

interoperability we need additional solutions and one of them is using proxies. In

this situation our approach can enable the interoperation by means of designing

an agent to act as a proxy (see Section 6.7). This is invaluable if we consider the

development of specific purpose agents and their subsequent integration with a

MAS composed of general purpose agents such as Self-StarMAS.

In the following experiment, we measure the performance of an MalacaTiny

agent acting as a proxy between Sol and Jade-Leap agent platforms as depicted

in Scenario 7. As stated before, the experimental scenario (see Figure 7.6) has

3 agents, one deployed in Jade-Leap agent platform (GroupOrganizer agent), an-

other in Sol agent platform (GuideAgent agent) and a third agent which is de-

ployed in both the Sol and Jade-Leap agent platform. This agent, which acts as

a gateway and is called ProxyAgent, is a MalacaTiny agent that has instantiated

two different distribution aspects (JadePlugin and SolPlugin). The behavior of

this agent is very simple; each message it receives from the GroupOrganizer agent

through the JadePlugin is processed until an internal representation of the ACL

message has been obtained and forwarded through the SolPlugin to the Guide-

161

7. VALIDATION

Figure 7.6: MalacaTiny agent acting as a proxy between agents deployed in Sol y
Jade-Leap agent platforms.

Agent. The reverse is true, each message it receives from GuideAgent through

the SolPlugin is processed until an internal representation of the ACL message

has been obtained and forwarded through the SolPlugin to the GroupOrganizer

agent. As we stated in Scenario 7 it has the possibility to operate in both agent

platforms simultaneously. In the experiment, we measured the round-trip delay

time of a message that is sent by the GuideAgent, is forwarded by ProxyAgent and

received by GroupOrganizer. To compare the work of ProxyAgent acting as proxy,

we developed 2 additional scenarios with the same schema of communication, but

the final agents (i.e. GroupOrganizer and GuideAgent agents) are deployed in the

same agent platform (i.e. Jade-Leap or Sol). Despite this, messages pass through

the ProxyAgent. Additionally, we measured the heap memory of the ProxyAgent

in the three scenarios.

Table 7.6 shows the results of this experiment, the standard deviation is around

200 ms for the 3 scenarios considered. As you can see regarding the delay of mes-

sage delivery, the worst result is for the real proxy (row “Sol+Jade-Leap”), while

memory usage does not increase significantly due to the translation process (the

differences in the heap memory of the three proxy agents are not notable). These

results were expected, because of the additional coding and decoding from one

agent platform message transport format to another required by the inter-platform

communication. However, we did not expect the difference between the only-Sol

and only-Jade-Leap experiments. In order to detect why Sol is almost double, the

162

Table 7.6: Average round-trip delay time (in milliseconds), heap memory (in
MegaBytes) for the proxy experiment.

Target Platforms Time (ms) Memory (MB)

Sol+Jade-Leap 2031 11.250
Sol 1490 11.133
Jade-Leap 866 11.07

profiling tool of the Android DDMS1 was used to analyze and determine the source

of such an overhead, finding that the time-consuming task was the Representation

aspect behavior (see Section 6.2.2.2) that deals with the codification of transport

messages of the Sol platform. The problem is that Sol agent platform uses a com-

mon message format based on String (to ensure the interoperability between its

multiple, supported communication mechanisms), and MalacaTiny agents format

messages prior to their delivery, while Jade-Leap agents directly use object seri-

alization to transport ACL messages. Therefore, the work of the Representation

aspect when it has to translate a SolMessage is a time-consuming task (Jade-Leap

agents serialize the internal representation of ACL messages). In the future, we

plan to optimize the formatting of SolMessage in order to enhance communication

times.

7.4.2 Group communication

As stated before, MalacaTiny agents can accomplish different tasks for self-confi-

guring. The T3 task, requires a new service data provider of data in case of failure

of the service provider and can greatly benefit from Sol. In Section 7.3, we evaluate

this task considering that the agent, each time it loses the service provider, queries

the directory facilitator of Sol in order to get a new service provider. Then, it

sends request messages to all the service provider agents that can provide the

required service and chooses one, sending a confirmation message and discarding

the others, sending a refuse message. In this section, the set of service provider

1http://developer.android.com/tools/debugging/debugging-tracing.
html

163

http://developer.android.com/tools/debugging/debugging-tracing.html
http://developer.android.com/tools/debugging/debugging-tracing.html

7. VALIDATION

Figure 7.7: Times (in milliseconds) for the T3 task for different numbers of agents.

agents are replaced by a group (GroupConnection, see Subsection 6.2.1.2) and

we can see the benefits of the group mechanism by comparing it to the classical

unicast messaging (TCPConnection, SunSpotConnection or BluetoothConnection).

Specifically, we compare one GroupConnection with a set of SunSpotConnections

to see the benefits for the T3 self-configuring task.

In order to evaluate T3 with the two communication mechanisms (a single

GroupConnection and a set of SunSpotConnections), we repeat the experiment

presented in Subsection 7.3, but this time replacing the set of SunSpotConnection

with a single GroupConnection. As in the previous experiment, the number of

SensorAgents can vary from just one sensor (for instance providing luminosity

data) to several. All the SensorAgents of the system are registered as service

providers of the specific service which fails and causes the T3 reconfiguration. In

Figure 7.7, we can see the mean of the results for the two experiments. Although

the times obtained are affordable and the scalability of the self-configuring task

using the set of SunSpotConnection is good (SunSpot label), the benefit of using the

mechanism for group-based communication (Group label) is clear. The time when

using the GroupConnection is lower in all scenarios. Additionally, note that when

the number of sensors and agents increases by more than 250%, the time required

for self-managing increases 140% in the case of the set of SunSpotConnections and

120% in the case of the GroupConnection.

164

The group mechanism offers a great advantage when communicating a dynamic

MAS whose agents can vary at runtime. In our case study, the GuideAgent can

send information to its group of visitors without it being necessary to know what

the identifiers of the agents that compose the group are, or when the members join

or leave the group. Additionally, it is not necessary for the agent to control the

group member’s presence in the MAS. We validated the performance of the group

mechanism for Android and compared it with unicast standard communication.

The experiment consists of a group composed of 20 VisitorAgents (17 of them

running in virtual devices and 3 agents in real devices) and a GuideAgent. We

have measured the round-trip-delay time for a message sent by the GuideAgent

using 3 mechanisms: (1) a single GroupConnection; (2) sending a unique message

including 20 target agents as in the receivers field (the identifiers of the members

of the group); and (3) sending 20 different messages (with the same content

data) from the GuideAgent to each member of the group. The difference between

mechanisms (2) and (3) is that in (2) Sol only receives a message and then it sends

the message through each TCPConnection associated with an agent depicted in

the receiver field of the message (1+20 sendings in total), while in mechanism (3)

GuideAgent sends 20 different messages to Sol that only have one agent depicted

in their receiver fields (20+20 sendings in total). In (1) the number of sendings

is just 2, because the sending of individual messages to the group members is left

to the multicast facility of the network level (i.e. IP). The average and standard

deviation results in ms are 935 and 93 for (1), 1023 and 214 for (2), and 1340

and 312 for (3). These results are slightly better for the GroupConnection, but as

stated before, the advantage of using it is not only an improvement in performance.

The results for (2) and (3) show that there is a penalty in the performance if the

agent sends messages with a single receiver. This is because in MalacaTiny agent

aspects are composed each time a message is sent or received, or when an event is

thrown. So in (3) aspects are composed 20 times (for each member of the group

of visitors), while in (2) only once. However, this overhead is easily avoided by

sending messages with multiple receivers such as in (2).

165

7. VALIDATION

7.5 Summary

In this chapter we have presented the validation of our approach, taking into

consideration the M2M generation process, the MalacaTiny agents and the self-

management functionality. We have evaluated the convenience of applying a model

driven approach by assessing the Degree of Automation of the MDD process pre-

sented in Chapter 4. The results have shown that it is possible to automatically

generate more or less 40% of the model in complex AmI systems. We have pre-

sented and discussed an evaluation of the MalacaTiny implementation for MIDP

devices and Android enabled phones by assessing different parameters: perfor-

mance, memory consumption and energy efficiency comparing Jade-Leap and us-

ing different communication protocols. The results have demonstrated that the

internal design of MalacaTiny is very efficient, so using our framework even over

another agent platform like Jade-Leap has very little or no penalty in resource con-

sumption. We have shown the feasibility of our self-management functionality in

terms of the response time of reconfiguration. Finally, we have presented an eval-

uation of the Sol agent platform. This platform has a reasonable response time in

terms of wireless data exchange. Additionally, Sol enhances the self-configuration

of agents thanks to the group communication.

166

Chapter 8

Conclusions

This chapter summarizes the proposal that has been explained throughout this

dissertation, highlighting the contributions of our work, in Section 8.1. Then, in

Section 8.2, we detail the main publications obtained from these contributions. A

section discussing lessons learned is also provided (Section 8.3). Finally, we outline

our prospective future work in Section 8.4.

8.1 Summary and conclusions

After the Introduction (Chapter 1) and Background (Chapter 2), this thesis presents

an MDD process to automatically generate agents-based systems using the Mala-

caTiny platform-neutral framework, that provides agent technologies especially

suitable for AmI systems. The model driven solution proposed, covers the design

and implementation phases by the transformation of a design model of the AmI

system in Pineapple. This is a general purpose agent metamodel that we adapted

to support an explicit modeling of context aware systems and the modeling of

the self-management functionality. Pineapple models are transformed into a set of

self-managed MalacaTiny agents, able to be executed in heterogeneous lightweight

devices.

We have defined Pineapple, a PIM to design self-managed AmI systems based

on agents (Chapter 3). The foundation of Pineapple is the PIM4Agents meta-

model, that we have adapted to support the modeling of context-awareness and

the specification of policies for self-management. We have defined a new modeling

167

8. CONCLUSIONS

viewpoint called Self-Management, which permits the roles for self-management

to be modeled (including the knowledge related with self-management) and the

policies that drive the self-managed behavior of the AmI system. Policies are de-

scribed using a domain specific language that follows the APPEL syntax. The use

of APPEL enables conflict between policies to be detected using the UMC model

checker. Finally, the new viewpoint also includes specific actions for modeling the

autonomic functions that a self-managed system should support: self-awareness,

self-situation; self-monitoring and self-adjusting.

We have defined the MalacaTiny metamodel, the PSM of the MalacaTiny

agents (Chapter 4). This metamodel translates the advantages of the Malaca

agent architecture to the metamodel level. The main feature of the internal archi-

tecture of a MalacaTiny agent is that it represents separately, application-specific

functions from extra-functional agent properties. This separation improves the in-

ternal modularization of the agent architecture, which is based on the composition

of components and aspects, and enhances the adaptation, reuse and maintenance

of the software agent. Additionally, aspects encapsulate agent platform dependant

functionality that makes MalacaTiny platform-neutral for FIPA compliant agent

platforms.

We have defined an MDD process from the Pineapple metamodel to a set

of MalacaTiny agents, able to be executed in heterogeneous lightweight devices

(Chapters 4 and 5). With MalacaTiny at modeling and upon implementation,

the model derivation process is simplified. In a typical MDD process, in order

to add a new agent technology, it is necessary to implement a new model-to-

model transformation process and a new model-to-text transformation process. In

contrast, in MalacaTiny, this only implies the implementation of a specific plug-in,

that is included in the MalacaTiny agent at deployment.

We have presented the internal design of the MalacaTiny agents and the goal

oriented MalacaTiny (Chapter 5). MalacaTiny is a family of lightweight imple-

mentations of the Malaca agent architectural model. These agents are able to

be executed in Sun SPOT sensor motes, mobile phones with MIDP profile and

Android enabled devices. Additionally, they can use different mechanisms for

communication, that include the Jade-Leap agent platform, a mechanism based

on Bluetooth called the Blue agent platform or our platform to communicate he-

168

terogeneous agents, Sol. Goal Oriented MalacaTiny is a more advanced version

of these agents, specifically for Android devices, that is goal oriented and has a

dynamic aspect weaving process.

We have presented our implementation for the communication concern of Mala-

caTiny agents (Chapter 6). We have implemented a communication mechanism

based on Bluetooth to directly communicate devices with MIDP profile. Addi-

tionally, in order to provide a workable solution to implement AmI applications

based on agents, we have developed the Sol agent platform. Sol is a FIPA com-

pliant agent platform, which can communicate agents from heterogeneous devices

(Sun SPOT sensor motes, Android devices and mobile phones with MIDP profile)

using heterogenous communication means (ZigBee, Bluetooth and WiFi). This

platform acts as a gateway that facilitates interoperation between agents running

in different and interoperable devices. Additionally, it provides services for the

distribution of information to a set of related nodes. Many of the applications and

services deployed in AmI environments require the dissemination of data to a set

of group-related nodes.

Self-management is a concern of great importance in AmI environments. In

this thesis, we have provided a framework to model self-management policies using

the APPEL notation, to validate such policies using the UMC model checker and

to configure the agent at runtime (Chapters 3, 4 and 5).

Finally, in Chapter 7 we have shown the evaluation of the different implemen-

tations that we have developed for this thesis. We have evaluated the convenience

of applying a model driven approach by assessing the degree of automation of

the proposed MDD process. The results show that it is possible to automatically

generate more or less 40% of the code in complex AmI systems. We have pre-

sented and discussed an evaluation of the MalacaTiny implementation for MIDP

devices and Android enabled phones using Jade-Leap and the Blue agent platform

by assessing different parameters: performance, memory consumption and energy

efficiency compared with Jade-Leap agents and using different interaction proto-

cols. The results have demonstrated that the internal design of MalacaTiny is very

efficient in terms of performance, memory occupation and energy efficiency, so us-

ing our framework even over another agent platform like Jade-leap has very little

or no penalty in resource consumption. In particular, with the use of Bluetooth-

169

8. CONCLUSIONS

based communication we obtained very good results: MalacaTiny/Bluetooth is

the combination that scales the best in terms of memory and power consump-

tion, showing it is worth having agents with the capability to act through different

communication protocols and technologies. Additionally, we have had to carry

out other experiments to show that the self-management process implementation

of MalacaTiny agents is also feasible. Chapter 7 concludes with the evaluation of

our agent platform for AmI environments, the Sol agent platform. We have shown

the feasibility and advantages of this agent platform in terms of the wireless data

exchange, so important in the AmI.

Summarized, the main contributions of our work are as follows:

1. The Pineapple metamodel to model AmI systems based on agents with self-

management capacities.

2. The MalacaTiny metamodel, an agent metamodel for platform neutral agents

based on aspects.

3. Model Driven Development process from Pineapple to MalacaTiny agents.

4. Implementation and evaluation of the family of MalacaTiny agents for mobile

phones with MIDP profile, Android and Sun SPOT sensor motes.

5. The goal oriented version of MalacaTiny for Android devices.

6. The Sol Agent platform to communicate heterogeneous agents using het-

erogenous communication means.

7. Implementation and evaluation of distribution aspects for Jade-Leap, Blue

and the Sol agent platform.

8. Self-management modeling and functionality integrated inside the agent us-

ing aspect-orientation.

8.2 Publications

The results of the work involved in this research have been published in interna-

tional journals, conferences and workshops, with peer-review, as follows:

170

Journals

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. A model driven en-

gineering process of platform neutral agents for ambient intelligence devices.

Autonomous Agents and Multi-Agent Systems, pages 1-42, 2013.

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Self-configuring

agents for ambient assisted living applications. Personal and Ubiquitous

Computing, pages 1-11, 2012.

Conferences

• Inmaculada Ayala, MercedesAmor Pinilla, and Lidia Fuentes. Enhancing

agent metamodels with self-management for ami environments. In Progress

in Artificial Intelligence volume 8154 of Lecture Notes in Computer Science,

pages 420-431. Springer Berlin Heidelberg, 2013.

• Inmaculada Ayala, Mercedes Amor and Lidia Fuentes. Exploiting dynamic

weaving for self-managed agents in the IoT. In Ingo J. Timm and Christian

Guttmann (editors) Multiagent System Technologies, volume 7598 of Lecture

Notes in Computer Science, pages 5-14. Springer Berlin Heidelberg, 2012.

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Self-starmas: A

multi-agent system for the self-management of AAL applications. In Pro-

ceedings of the 2012 Sixth International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing, IMIS’12, pages 901-906, Wash-

ington, DC, USA, 2012. IEEE Computer Society.

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Self-management of

ambient intelligence systems: a pure agent-based approach. In Proceedings

of the 11th International Conference on Autonomous Agents and Multia-

gent Systems-Volume 3, AAMAS’12, pages 1427-1428, Richland, SC, 2012.

International Foundation for Autonomous Agents and Multiagent Systems.

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Autonomic agents

for mobile ambient assisted living applications. In José Bravo; Diego López

171

8. CONCLUSIONS

de Piña; Sergio Ochoa y Jesús Favela (editors). In Proceedings of the 5th

International symposium on ubiquitous computing and ambient intelligence.

UCAmI 2011. Riviera Maya, Mexico, december 5-9, December 2011.

• Inmaculada Ayala, MercedesAmor Pinilla, and Lidia Fuentes. Modeling

context-awareness in agents for ambient intelligence: An aspect-oriented ap-

proach. In Luis Antunes and H. Sofia Pinto (editors). Progress in Artificial

Intelligence, volume 7026 of Lecture Notes in Computer Science, pages 29-43.

Springer Berlin Heidelberg, 2011.

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. A model driven

development of platform-neutral agents. In Jürgen Dix and Cees Witteveen

(editors). Multiagent System Technologies, volume 6251 of Lecture Notes

in Computer Science, pages 3-14. Springer Berlin Heidelberg, 2010.

• Mercedes Amor, Inmaculada Ayala, and Lidia Fuentes. A4VANET: Con-

text aware Jade-Leap agents for vanets. In Yves Demazeau, Frank Dignum,

Juan M. Corchado, and Javier Bajo Pérez (editors). Advances in Practical

Applications of Agents and Multiagent Systems, volume 70 of Advances in

Intelligent and Soft Computing, pages 279-284. Springer Berlin Heidelberg,

2010.

• Mercedes Amor, Inmaculada Ayala, and Lidia Fuentes. A4VANET: una

aplicación basada en agentes Jade-Leap para redes VANET. In XIII Con-

ferencia de la Asociación Española para la Inteligencia Artificial. CAEPIA

TTIA 2009. Sevilla, 9-13 de Noviembre de 2009. Actas, pages 561-570.

Asociación Española para la Inteligencia Artificial, February 2009.

Workshops

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. An agent platform

for self-configuring agents in the Internet of Things. In Proceedings of the

Thirds International Workshop on Infrastructures and Tools for Multiagent

Systems. ITMAS 2012. June 5, 2012 Valencia, Spain, pages 65-78.

172

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Towards the au-

tomatic derivation of Malaca agents using MDE. In Wiebe Van der Haek,

et. al. (editors). The Eleventh International Workshop on agent oriented

software engineering. AOSE 2010. Toronto, Canada, 10 of May 2010, pages

61-72, May 2010.

8.3 Lessons learned

Our approach is intended for the development of AmI systems in which agents

are the meaningful entities of the application. The related work has shown that

the use of agent technology is not required by all AmI systems. However, once

the use of the agent technology is justified by the specific requirements of the

AmI system, we want to discuss the lessons learned, which include the pitfalls and

main limitations of our approach from two view points: the MDE process, and

considering integration and interoperability.

8.3.1 Model Driven Engineering

We are conscious of the fact that our approach may not be attractive to AmI de-

velopers that are unfamiliar with agent technologies; and the election of Pineapple

as the PIM of the MDD process could also reduce the number of potential users of

our approach, even those users who are experts on agent technologies. The latter,

are normally familiar with agent toolkits (e.g. Jade), but in our approach they

must learn how to design a MAS using Pineapple. This inconvenience is mitigated

because: (1) Pineapple offers a syntax and concepts that are familiar to agent

developers; (2) the proposal can be easily extended with other PIMs just by pro-

viding corresponding M2M transformations to the MalacaTiny metamodel; and

(3) our MDD process starts in the design phase, with Pineapple as the solution

adopted.

On the other hand, it is not possible to specify AmI general requirements at

requirements level. What we have done is to extend the Pineapple agent meta-

model to incorporate some properties specific to AmI systems. A more complete

173

8. CONCLUSIONS

solution would be to include in our MDD process, the definition of a CIM for AmI.

A set of M2M transformation rules would transform the CIM to the corresponding

(extended) Pineapple model, including AmI specific requirements. In addition,

the CIM would be useful for identifying the weaknesses of other agent metamodels

when designing AmI systems.

Finally, the development tools that our approach uses (mainly the Eclipse

Modeling Framework) do not carry out the validation, evaluation or optimization

of the design. Therefore, we must assume that developers would provide the best

possible design of the MAS.

8.3.2 Integration and Interoperability

Another important lesson learnt is that the performance of our approach cannot

compete with specific agent technologies or ad-hoc solutions developed for envi-

ronments with special requirements (both hardware and software). Our approach

is an alternative to general purpose agent technologies such as Jade-Leap. The

added value of our approach is that it offers the possibility of modifying the agent

to meet specific requirements imposed by the agent platform or the communication

mechanism used by the system.

On the other hand, a good modularization of the agent’s internal architecture

makes the adaptation and the evolution of the agent and the MAS for new tech-

nologies and requirements easier. Currently, the appearance and disappearance

of network technologies and lightweight devices (i.e. mobile phones technologies,

sensors and actuators) is becoming a regular occurrence. Therefore, promoting

and facilitating the evolution of AmI systems for new technologies offers a great

advantage.

Nowadays the number of applications and services for lightweight devices (like

tablets, smartphones) is gaining market share. In this scenario, wireless network

technologies play an important role, providing full connectivity to these devices.

Some years ago, the cost and the immaturity of the wireless technologies limited

their use in lightweight devices. Currently this is no longer the case, most of

the personal devices and sensor technologies have multiple wireless interfaces that

can be successfully exploited in AmI systems. However, an additional problem

174

that we have found is that interoperability is not possible in all cases (for instance,

sensors use IEEE 802.15.4 standards to communicate, which are still not supported

by personal lightweight devices). In order to achieve interoperability we need

additional solutions. One solution is the use of gateways. In this situation, our

approach can enable the interoperation by generating of an adequate Distribution

aspect and in the design of the agent to act as a gateway. This is of great value if

we consider developing of specific purpose agents (using the corresponding toolkit)

and later integrating them with a MAS composed of general purpose agents.

Regarding the use of aspect-orientation in the internal design of MalacaTiny, it

provides an enhanced modularization, resulting in greater flexibility, which Mala-

caTiny exploits especially for separating the communication-related concerns. As

we have shown in the preceding chapters, the weaving process introduces an addi-

tional overhead (affecting the consumption of time and memory) as it is the weaver

which effectively invokes the agent functionality, introducing an extra level of indi-

rection. But, as shown in the experiments described in Chapter 7 the differences in

performance are not noticeable, especially as due to the limitations of most device

platforms (e.g. Java ME), the implementation of the weaving is static. A special

case is Goal Oriented MalacaTiny, where it was possible to implement dynamic

weaving. In this case, the overhead introduced by the dynamic weaving is a little

bit higher, but the flexibility and extensibility that agent implementations are en-

dowed with more than compensate this penalty in performance. The conclusion

is that the results shown throughout Chapter 7 demonstrate that the overhead is

acceptable and it does not prevent the use of aspect-oriented agents in real AmI

applications.

8.4 Future work

Having obtained good results from this thesis, we could say that our work is done,

however, a thesis is probably never strictly finished. Thus, there are still several

areas of our approach that could to be further investigated and improved upon.

In this section, we discuss some of these issues.

In this thesis we have presented an MDD process, however we have not ac-

175

8. CONCLUSIONS

complished some of the goals of the MDD. Models are used as the first entities in

our MDD process, however our process only has one direction. We have generated

code from the PSM, and the PSM from the PIM, but we have not developed the

opposite transformation. In the different phases of the development of a project it

is normal that knowledge about the problem changes. So, having a bijective trans-

formation process would allow us to keep the consistency between the different

models of the system.

Related to the MDD process, we plan to develop a graphical Domain Specific

Language for Pineapple and MalacaTiny. Currently, we model the system using

tools provided by the EMF, but this process can be difficult for developers who

are unfamiliar with this Eclipse tool. The great advantage of the EMF is that

it provides ready to use tools for manipulating models. Graphical syntax for

Ecore models (like our approach) are generally developed using the Graphical

Modeling Framework (GMF) of Eclipse. There is a strong relationship between

Ecore metamodels and its graphical representation, so any change in the underlying

metamodel makes it impossible to use the graphical tool. If we use EMF tools, this

problem does not exist. So, before providing a graphical language, we have waited

for a more stable version of our metamodels. Now, we think is the appropriate

moment to start this task. Another future development for our approach is the

addition of the CIM level to the MDD process.

The development of the “Museo de la Informática” has been a great challenge,

that has inspired some ideas to extend the work of Sol and to make this agent

platform a workable solution to develop real AmI applications. Some ideas are

currently under development while others are planned for the near future.

Performance is a continuous concern in the development of technologies for

lightweight devices. As mentioned before, we are improving both the Sol agent

platform and the implementation of MalacaTiny agents to make the formatting

process performed by the Representation aspect more efficient. We are aware that

our agent approach introduces an overhead that is not introduced in approaches

that provide specific-purpose agents, but we are working hard to make this over-

head minimal and affordable. To accomplish this task, we are using software pro-

filing and testing tools (provided by Software Development Kits such as Android)

to analyze the implementation and optimize the code accordingly.

176

As stated before, AmI applications must be able to be executed in a diversity of

devices, with a variable set of physical features and software services availability. In

order to cover the largest number of devices and technologies, we are extending our

proposal with Libellium Waspmotes. This has been necessary because Sun SPOT

sensor motes only offer a limited set of monitoring capabilities. These new sensors

have fewer computational resources than Sun SPOT and although of Waspmote

motes use ZigBee, the implementation of this specification is incompatible with the

Sun SPOT base station (Waspmotes and Sun SPOT sensors form different sensor

networks). So, we are endowing Sol with the means necessary to interact with

these kinds of sensors considering their low computational capacities. Additionally,

we are adapting a lightweight MalacaTiny agent for TinyOS (which already run

in MicaZ motes) to execute in Libellium Waspmotes (achieving this task is well

underway).

The spacial distribution of the rooms of the “Museo de la Informática” has been

another concern for us. As stated in Chapter 3, the different rooms of the mu-

seum are distributed in different halls and rooms in the “E.T.S.I. en Informática”

buildings. The problem is to communicate devices with low-range communication

technology to the node in which Sol is running. Our initial solution has been

to introduce the use of Libellium Meshlium Routers1 that have support for con-

necting handheld and lightweight devices, supporting WiFi and Bluetooth, and

Libellium Waspmotes that use ZigBee. However, this is an expensive solution, so

we are working on a distributed version of our agent platform with the capacity

of having remote nodes which communicate internally. These remote nodes are

being implemented in a new type of connection of the IMTP.

Finally, in future work we plan to provide a more flexible mechanism for defin-

ing groups and managing their membership. Capabilities such as self-management

and context awareness are considered a high priority for the AmI. We have moved

these capabilities to groups. In the current implementation of Sol, agents join

groups using a previously-known group identifier, that in some situations can be a

mechanism which is much too rigid. For example, an agent wants to join a group

with a specific feature (e.g. a group whose number of members is lower than 10, a

group of female visitors, a group of older visitors, or a group of English-speaking

1http://www.libelium.com/products/meshlium

177

http://www.libelium.com/products/meshlium

8. CONCLUSIONS

visitors) but it does not know its group identifier, so for this agent it becomes

impossible to join such a group.

In addition, we want to facilitate the automatic joining of agents to a group

once it has been created. For instance, a group of foreign student visitors could be

created to tell them that they are to be given a gift. So, all the VisitorAgents whose

users are foreign students would be automatically added to the group as soon as

it is created. In addition, we plan to extend the GMS to facilitate group search

queries (like a group directory service). In the current implementation of Sol, the

GMS does not support query information of groups registered in the platform.

However, extending the GMS is not an easy task because we have to extend group

description (to include the features that characterize the group) and define an

ontology with the necessary terms for AmI and specific domain applications.

178

Appendix A: Resumen

La Inteligencia Ambiental (AmI por sus siglas en inglés, Ambient Intelligence)

propone una nueva visión de la tecnoloǵıa que fomenta una relación más natural

entre las personas y la electrónica que las rodea. En la AmI, los dispositivos

electrónicos se vuelven invisibles gracias a que se integran de manera natural en

nuestro entorno. En general, los sistemas AmI son distribuidos y están formados

por una plétora de dispositivos que se interconectan a través de una gran diversidad

de tecnoloǵıas de comunicación. El desarrollo de estos sistemas plantea nuevos

retos que deben de hacerse frente utilizando tecnoloǵıas software apropiadas. En

esta tesis se explora la mejora del desarrollo de las aplicaciones AmI a través de

los agentes software, el desarrollo dirigido por modelos (MDD por sus siglas en

inglés, Model Driven Development) y la orientación a aspectos.

Los agentes software y los Sistemas Multi-Agente (MAS por sus siglas en inglés,

Multi-Agent System) son considerados buenas alternativas para el desarrollo de

aplicaciones en el dominio de la AmI [Sadri, 2011]. La inteligencia, la reactividad,

la proactividad y el comportamiento social de los agentes software satisfacen los

requisitos de los sistemas AmI. Sin embargo, para hacer de los agentes una tec-

noloǵıa ampliamente aceptada para el desarrollo de sistemas AmI, seŕıa necesario

facilitar tanto el diseño como la implementación de estos sistemas, proporcionando

herramientas de desarrollo adecuadas que automaticen algunas de las tareas del

desarrollador, mejorando la productividad de este tipo de aplicaciones.

El MDD [Stahl and Völter, 2006] es una propuesta para el desarrollo software

que promueve tanto el uso de modelos para representar de manera formal conceptos

espećıficos de un dominio de aplicación, como la automatización de las tareas

implicadas en el desarrollo de programas a través de la transformación de modelos

179

APPENDIX A

del sistema. Estos modelos siguen sintaxis que son establecidas por unos elementos

llamados metamodelos. Actualmente, existen varios metamodelos especficos para

agentes, pero los sistemas AmI tienen particularidades que deben de ser modeladas

desde las fases más tempranas del desarrollo del sistema y no son tenidas en cuenta

por dichos metamodelos. Las más relevantes son la necesidad de ser consciente

de ciertas propiedades del entorno (sensibilidad al contexto) y la capacidad de

reaccionar a cambios en estas propiedades (auto-gestión) [Kephart and Chess,

2003].

En esta tesis se define un proceso dirigido por modelos adaptado a las necesi-

dades del desarrollo de agentes con capacidades de auto-gestión que pueden ser eje-

cutados en los dispositivos más usuales de los entornos AmI, teléfonos inteligentes

o sensores. Nuestra solución está centrada en una arquitectura de MAS total-

mente distribuida y descentralizada, gracias a la integración de los agentes en los

dispositivos heterogéneos que suelen formar parte de un sistema AmI. La principal

motivación para promover la integración de los agentes en dispositivos ligeros es

que es posible adaptar la funcionalidad del agente al hardware y a sus recursos

computacionales. Algunas de las propuestas de agentes más conocidas han lanzado

nuevas versiones espećıficas para dispositivos ligeros (Jade-Leap [Bellifemine et al.,

2001; Bergenti and Poggi, 2002], µFIPA-OS [Laukkanen et al., 2002]) y además,

han aparecido propuestas concretas para estos terminales (Andromeda [Agüero

et al., 2009], MAPS [Aiello et al., 2009]). Sin embargo, estas propuestas presen-

tan serias limitaciones y deficiencias a la hora de enfrentarse con la diversidad de

dispositivos y tecnoloǵıas de red tan presentes en la AmI. Estas limitaciones son

abordadas como parte de esta tesis.

El MDD nos ayuda a separar las propiedades independientes de la plataforma

de las que son espećıficas de una plataforma concreta. De esta manera, es posible

modelar los requisitos especiales de los sistemas AmI independientemente de la

plataforma de ejecución en la que será desplegado el sistema final. Sin embargo,

en la AmI la generación de agentes es necesaria para distintos tipos de dispositivos

(teléfonos móviles, diferentes tipos de sensores,. . .), con diferentes sistemas ope-

rativos (Android, TinyOS,. . .) e interconectados con distintas tecnoloǵıas de red.

Para hacer frente a esta problemática, hemos usado técnicas de desarrollo software

orientado a aspectos (AOSD por sus siglas en inglés, Aspect-Oriented Software De-

180

velopment) que nos permiten separar los elementos del agente concernientes a la

comunicación de la funcionalidad espećıfica del sistema.

A.1 Inteligencia ambiental: motivación y retos

El siglo XX fue testigo de numerosas ficciones que reflejaban la visión de escritores

y cineastas sobre como seŕıan nuestras vidas en el presente milenio. Escritores

tan famosos como Philip K. Dick o Isaac Asimov capturaron en sus historias un

futuro cuyo desarrollo tecnológico hace que cient́ıficos e ingenieros de hoy en d́ıa se

ruboricen. ¿Dónde están los robots que respetan las 3 leyes de la robótica? ¿Dónde

está HAL 9000? ¿Dónde está mi coche no tripulado? Por supuesto, están más cerca

que nunca, pero aún, lejos. Actualmente, los robots no tienen una conciencia que

haga necesarias unas leyes de la robótica, pero es una realidad que pueden hacer

muchas cosas por nosotros, entre ellas, ayudar a los ancianos en su d́ıa a d́ıa

[Pollack et al., 2002]. Tampoco tenemos computadores con tendencias psicópatas

como HAL 9000, pero tenemos sistemas que se auto-configuran teniendo en cuenta

nuestras preferencias para hacer nuestros hogares más confortables [Hagras et al.,

2004]. El coche no tripulado no está todav́ıa en nuestras calles, pero el Google

Driverless Car [Guizzo, 2011] y la DARPA Robotic Challenge1 demuestran que

estos veh́ıculos pueden ser una realidad en nuestras vidas. El objetivo de la AmI

es hacer que estos desarrollos tecnológicos dejen de ser ciencia ficción.

En ĺınea con estas ideas, el termino AmI fue acuñado por el IST Advisory Group

(ISTAG) en el año 2001 [Ducatel et al., 2001] y más tarde revisado en [Ducatel

et al., 2003]. Estos informes técnicos proporcionaban una serie de escenarios en los

que la AmI teńıa un rol muy importante en hacer nuestras vidas más confortables y

seguras. En estos documentos se destaca el papel que debe de cumplir la tecnoloǵıa

de agentes para hacer realidad esta visión. Además, se recalca la necesidad de

adaptar la tecnoloǵıa de agentes a este nuevo entorno compuesto de dispositivos

heterogéneos conectados mediante redes de comunicación diversas. Por lo tanto,

para convertir la computación basada en agentes en una tecnoloǵıa ampliamente

aceptada para desarrollar sistemas AmI es necesario hacer frente a unos retos

1http://www.theroboticschallenge.org/

181

http://www.theroboticschallenge.org/

APPENDIX A

espećıficos.

R1 Modelado de agentes para sistemas AmI: La programación con tec-

noloǵıa de agentes para dispositivos ligeros debe facilitarse proporcionando

la capacidad de expresar conceptos del dominio de la AmI con un nivel de

abstracción alto. Además, deben proporcionarse herramientas de desarrollo

que automaticen algunas de las tareas del programador. El objetivo de estas

utilidades es simplificar la programación de los agentes, mejorando la pro-

ductividad de aplicaciones de AmI, independientemente de las caracteŕısticas

de la plataforma donde se desplegará el sistema (tipo de dispositivo, proto-

colo de comuniación o tecnoloǵıa inalámbrica). Como se ha discutido en

la introducción, el MDD parece ser la tecnoloǵıa más adecuada para hacer

frente a este reto. Algunas propuestas ya han probado los beneficios del

MDD para agentes [Agüero et al., 2009; Hahn et al., 2009; Pavón et al.,

2006]. Con el MDD es posible diseñar un sistema AmI basado en agentes es-

pecificando conceptos de alto nivel en un modelo de agente independiente de

la plataforma (fijándonos en el modelo del dominio), para después transfor-

marlo automáticamente en diferentes modelos de implementación, cerrando

la brecha entre diseño e implementación. Por lo tanto, un reto es pro-

poner procesos MDD novedosos para la generación automática de agentes

que pueden ser ejecutados en dispositivos heterogéneos t́ıpicos de la AmI.

Sin embargo, con respecto al proceso MDD, la aplicación de esta solución

para desarrollar agentes de AmI presenta los siguientes retos:

R1.1 Facilitar el modelado de alto nivel de las caracteŕıstcas de las aplica-

ciones AmI : Estudios de tecnoloǵıas de AmI [Cook et al., 2009; Sadri,

2011] muestran que la mayoŕıa de los sistemas AmI actuales que están

basados en agentes proporcionan soluciones ad-hoc, sin considerar el

modelado de alto nivel de las propiedades de estos sistemas. En un

proceso MDD, estas propiedades espćıficas del dominio debeŕıan ser es-

pecificadas como parte de un metamodelo. Este metamodelo tendŕıa

que modelar tanto las propiedades genéricas de los agentes como aque-

llas que son espećıficas de la AmI. Aunque hay una gran cantidad de

metamodelos de agentes (PIM4Agents [Hahn et al., 2009], FAML [Bey-

182

doun et al., 2009],. . .) que pueden ser utilizados para modelar apli-

caciones muy diversas, estos debeŕıan ser extendidos para incorporar

propiedades espećıficas de entornos AmI, como la sensibilidad al con-

texto y la auto-gestión.

R1.2 Facilitar la extensión del proceso MDD: El proceso de generación debe

de considerar la continua aparición de dispositivos con nuevos sistemas

operativos y plataformas de agentes para ellos. Por lo tanto, un requisito

crucial para un proceso de generación automática de agentes en entornos

de AmI es facilitar la extensibilidad de estos procesos para incorporar

nuevas tecnoloǵıas. El reto, es definir un proceso que partiendo del

mismo modelo de agente, permita generar agentes que puedan ser eje-

cutados en plataformas distintas, en lugar de definir procesos espećficos

para cada plataforma o tecnoloǵıa de agentes (Jade-Leap o µFIPA-OS)

implicada en el sistema de AmI.

R2 Integración eficiente de agentes en dispositivos heterogéneos t́ıpicos

de la AmI: Las propuestas basadas en la integración de los agentes en dis-

positivos t́ıpicos de la AmI proponen normalmente soluciones ad-hoc que

son espećıficas de un sistema concreto. Integrar los agentes en estos dis-

positivos nos proporciona las siguientes ventajas: (i) pueden proporcionar

servicios personalizados a los recursos del dispositivos en el que se están eje-

cutando [Stock et al., 2007]; (ii) encapsulan datos y computación de manera

que permanecen ocultos de otros agentes en el MAS; (iii) permite variar los

componentes, es decir los agentes, de un sistema sin modificar su arquitec-

tura [Cook et al., 2006]; (iv) proporciona una mayor flexibilidad a la hora de

modelar sistemas abiertos porque permite modelar soluciones genuinamente

descentralizadas. En esta tesis nos centramos en una solución de este tipo.

Los agentes son integrados en dispositivos heterogéneos, que se comunican a

través de distintas de tecnoloǵıas de red y cuya ejecución debe de ser eficiente,

considerando las limitaciones en recursos de algunos dispositivos AmI. A la

hora de hacer frente a este desaf́ıo hemos identificado los siguientes retos:

R2.1 Gestionar la heterogeneidad a nivel de dispositivo y plataforma de

agentes: La mayoŕıa de los sistemas AmI están compuestos de un con-

183

APPENDIX A

junto heterogéneo de dispositivos. Sin embargo, las tecnoloǵıas de

agentes actuales para dispositivos ligeros solamente pueden ser uti-

lizadas en un conjunto reducido de dispositivos y no pueden interac-

tuar con agentes desplegados en una plataforma de agentes distinta a

la suya [Ayala et al., 2013b]. Esta es una limitación importante ya que

hace imposible el desarrollo de algunos sistemas AmI utilizando agentes.

Este caso se da si el dispositivo utilizado no soporta la plataforma de

agentes que hemos elegido para nuestro sistema. Debeŕıa ser posible

que agentes que pertenecen al mismo MAS sean capaces de interactuar

con independencia de la plataforma y los dispositivos en los que se están

ejecutando.

R2.2 Hacer frente a la diversidad de tecnoloǵıas de red: Normalmente, los

dispositivos AmI, como los teléfonos móviles, pueden utilizar varias tec-

noloǵıas de red para comunicarse. Actualmente las plataformas de

agentes que pueden ser utilizadas para el desarrollo de sistemas AmI

están limitadas a utilizar sólo una interfaz de red, y además, no están

diseñadas para ser extendidas con nuevas tecnoloǵıas de manera sencilla

[Bellifemine et al., 2001; Muldoon et al., 2006].

R2.3 Conseguir eficiencia en el código generado: En un sistema AmI basado

en agentes, la ejecución de los agentes en dispositivos ligeros como

teléfonos inteligentes, tabletas o sensores, con unos recursos computa-

cionales limitados debe ser posible y asequible en recursos computa-

cionales. Por lo tanto, el proceso de generación de código debe gestionar

estas limitaciones con el objetivo de producir un código que haga un

uso óptimo de los recursos computacionales disponibles.

R3 Agentes auto-gestionados: La mayoŕıa de los dispositivos AmI presentan

śıntomas de degradación de su funcionamiento, tales como pérdida de enerǵıa

o fallos de alguno de los nodos de su red. Este tipo de problemas requiere que

se tomen acciones de manera expĺıcita, como por ejemplo, ahorrar enerǵıa

de un determinado componente para asegurar la supervivencia del sistema.

En este contexto, la auto-gestión es de gran importancia para estos sistemas.

Sin embargo, integrar la auto-gestión que es requerida por los sitemas AmI

184

en los agentes que los componen supone un gran reto. Concretamente, hemos

encontrado los siguientes:

R3.1 Auto-gestión descentralizada: La descentralización y la naturaleza em-

potrada de los sistemas AmI dificulta la aplicación de estrategias de

control sobre cada uno de los dispositivos que forman el sistema. Esto

hace que las propuestas centralizadas que usan un agente o un conjunto

fijo de los mismos para controlar el sistema sean dif́ıciles de aplicar en

este dominio, además de inadecuadas y económicamente inviables. Por

lo tanto, el reto al que debemos de hacer frente es proponer soluciones

de auto-gestión descentralizadas y autonomas. La solución propuesta

debe de considerar que en un sistemas AmI coexisten dispositivos sim-

ples (unidades sensoras) con otros más complejos (teléfonos inteligentes

de última generación). Por lo tanto, deben considerarse distintos tipos

de auto-gestión adaptados a las capacidades de cada dispositivo y que

sean capaces de interactuar cuando sea necesario.

R3.2 Modelado e implementación de agentes auto-gestionados: El reto en

este punto es proporcionar al diseñador del sistema AmI con abstrac-

ciones de alto nivel que le permitan especificar el comportamiento de

la auto-gestión como parte del metamodelo fuente de un proceso MDD.

Las ventajas que nos proporcionaŕıa lograr este reto son las siguientes:

(i) modelar de manera expĺıcita la auto-gestión mejora la capacidad de

razonar sobre esta propiedad y su relación con el resto de elementos

del modelo de agente considerado; (ii) el diseñador no debe de preocu-

parse sobre los detalles de implementación de la auto-gestión, ya que

la funcionalidad es generada automáticamente por el proceso MDD; y

(iii) es posible comprobar el correcto funcionamiento de la auto-gestión

antes de desplegar el sistema final. Sin embargo, los metamodelos de

agentes actuales no disponen de los mecanismos que permitan modelar

de manera adecuada esta propiedad del sistema [Bernon et al., 2005;

Beydoun et al., 2009].

185

APPENDIX A

A.2 Visión general

En consonancia con el reto R1, se ha definido un proceso MDD que permite

generar de manera automática agentes que pueden ser integrados en distintos dis-

positivos t́ıpicos de los entornos AmI. Estos agentes pueden interactuar a través

de plataformas de agentes en consonancia con el estándar para agentes FIPA, uti-

lizando distintos protocolos de red (R2). Adicionalmente, nuestros agentes dispo-

nen de capacidades de auto-gestión que consideran los limitados recursos presentes

en los dispositivos que suelen componer un sistema AmI (R3).

La Figura 1 proporciona una visión general de nuestro proceso MDD. Con

el objetivo de abordar R1.1, se ha definido a nivel de modelado (etiqueta Mo-

deling en la parte superior de la Figura 1) un Metamodelo Independiente de la

Plataformateracción) como la auto-gestión (R3). La propiedad de auto-gestión

es modelada de forma separada al resto de los elementos del MAS utilizando un

lenguaje de especificación de poĺıticas (R3.2). La base de Pineapple es el metamo-

delo PIM4Agents, que unifica los conceptos más comunes en el desarrollo orientado

a agentes en un mismo metamodelo [Hahn et al., 2009]. Nosotros hemos exten-

dido de manera significativa este metamodelo con nuevos conceptos que permiten

diseñar las capacidades de auto-gestión del agente. Estos conceptos de mode-

lado están inspirados por el lenguaje de especificación de poĺıticas APPEL [Turner

et al., 2009]. Además, hemos separado estos conceptos del resto de las propiedades

del MAS añadiendo un nuevo punto de vista espećıfico para la auto-gestión de los

agentes. Por lo tanto, el primer paso de nuestro proceso MDD es el modelado del

sistema AmI utilizando Pineapple. Hay que considerar, tal como se ha explicado

en el reto R3.1, que el mismo MAS puede estar compuesto por agentes con dife-

rentes capacidades de auto-gestión. Aśı que el modelado en el punto de vista de

la auto-gestión dependerá de los requisitos del dispositivo donde el agente va a ser

desplegado.

El reto R1.2 está abordado en nuestro proceso por la definición e imple-

mentación de un modelo de agente de plataforma neutral (MalacaTiny), es decir,

un modelo de agente que es independiente de una tecnoloǵıa de desarrollo es-

pećıfica o de una plataforma de agentes concreta. El uso de MalacaTiny simplifica

notablemente el proceso MDD si lo comparamos con otras propuestas similares

186

Figure 1: Visión general del proceso MDD para agentes de entornos AmI

187

APPENDIX A

para agentes. En un proceso dirigido por modelos estándar, para cada una de las

plataformas de agentes implicadas en el proceso, se requieren 2 procesos de trans-

formación, de modelo-a-modelo (M2M por sus siglas en inglés, Model-to-Model) y

de modelo-a-texto (M2T por sus siglas en inglés, Model-to-text) [Gascueña et al.,

2012]. En nuestra solución, en lugar de generar un agente que sólo puede ser

desplegado en una plataforma (por ejemplo Jade-Leap), nuestro proceso genera

agentes que pueden ser desplegados en distintas plataformas, incluso de manera

simultánea. De esta forma, simplificamos el proceso MDD, dado que solo necesi-

tamos 2 procesos (M2M y M2T), independientemente del número de plataformas

de agentes implicadas en el proceso. La neutralidad a nivel de plataforma de

MalacaTiny se logra utilizando orientación a aspectos. Los conceptos relativos a

la plataforma de comunicaciones (e.g. distribución de mensajes, codificación,. . .)

son modelados utilizando aspectos. Esto hace posible generar agentes adaptados

a una plataforma de agentes concreta simplemente tejiendo el aspecto adecuado.

Una vez que el diseñador ha modelado el sistema AmI en Pineapple, la transfor-

mación M2M es ejecutada y se genera automáticamente un modelo en MalacaTiny

que contiene el conjunto de agentes que forman el sistema AmI. Hemos evaluado

los beneficios de aplicar un enfoque dirigido por modelos a nuestro proceso MDD

aplicando la métrica Grado de Automatización [Harrington and Cahill, 2011]. Los

resultados muestran que es posible generar automáticamente aproximadamente un

40% de el código en sistemas AmI complejos.

Con respecto a la propiedad de auto-gestión, algunos dispositivos AmI como

las motas (i.e. unidades sensoras) son muy simples, y no tiene sentido implementar

poĺıticas de auto-gestión complejas para ellas. Por lo tanto, nuestro proceso MDD

considera la generación de agentes con distintas capacidades de auto-gestión, pero

la interacción entre estas capacidades sigue siendo posible (R3.1). Para aque-

llos agentes MalacaTiny con necesidades de auto-gestión simples, es aplicado un

proceso de transformación M2T que genera agentes MalacaTiny reactivos. Para

agentes que requieren una auto-gestión más sofisticada es aplicado un proceso de

transformación diferente, que genera agentes cuyo comportamiento es orientado a

objetivos. La orientación a objetivos nos permite implementar comportamiento

de auto-gestión basado en objetivos de alto nivel (R3.2). Consideramos que un

agente es orientado a objetivos cuando las acciones que lleva a cabo son a causa

188

de la realización de un objetivo.

En nuestro modelo de implementación (etiqueta Implementation en la Figura

1), el agente puede ajustar su funcionamiento para hacer frente a circunstancias

cambiantes o a fallos en el hardware o en el software. Ambas implementaciones,

tanto la reactiva como la orientada a objetivos, usan orientación a aspectos en

su diseño interno. En consecuencia, los agentes MalacaTiny están compuestos de

componentes y aspectos, que contribuyen a la mejora de la adaptación del agente,

la reutilización de sus componentes y el mantenimiento de su arquitectura. Con

todo ello, nuestra propuesta hace frente a R2.3 (eficiencia del código generado) ya

que: (i) genera implementaciones adaptadas a los recursos del dispositivo, es de-

cir, tenemos una versión reactiva con un consumo de recursos bajo, y una versión

orientada a objetivos que consume más recursos, pero puede realizar una gestión

más sofisticada; (ii) el código generado por la transformación de modelo a texto

está optimizado para el dispositivo objetivo. Hemos evaluado la eficiencia y el

rendimiento de MalacaTiny comparadolo con Jade-Leap y los resultados muestran

que el diseño de MalacaTiny es muy eficiente. Usando nuestra propuesta, incluso

sobre otra plataforma como Jade-Leap, la penalización que se añade en el con-

sumo de recursos es mı́nima. Las distintas versiones de MalacaTiny pueden ser

integradas en varios dispositivos y desplegados en distintas plataforma que cum-

plan el estándar FIPA. Concretamente, los agentes MalacaTiny pueden ser ejecu-

tados en dispositivos Android, dispositivos con perfil MIDP (teléfonos móviles que

soportan Java ME [Oracle, 2013]) y motas sensoras Sun SPOT [Labs, 2013].

La orientación a aspectos también nos ayuda a hacer frente al reto R2.1 (Ges-

tionar la heterogeneidad a nivel de dispositivo y plataforma de agentes) y R2.2

(Hacer frente a la diversidad de tecnoloǵıas de red). El aspecto de distribución

de mensajes encapsula cómo usar y acceder al servicio de transporte de mensajes

(MTS por sus siglas en inglés, Message Transport Service), su implementación

por tanto depende de los servicios ofrecidos por la plataforma y el protocolo de

transporte utilizado. Este aspecto mantiene ocultos las dependencias a nivel de

plataforma y hace el resto de las clases de la arquitectura del agente (componentes

y aspectos) independientes de la plataforma de agentes (R2.1) y la tecnoloǵıa de

red usada en tiempo de ejecución (R2.2). Además, es posible que un agente se

comunique con otro a través de distintas plataformas de agentes. Para ello, sólo

189

APPENDIX A

es necesario instanciar el aspecto de distribución adecuado para cada plataforma

(e.g. Jade-Leap).

Gracias a la introducción de aspectos, la modularización de la arquitectura es

mejorada y se facilita añadir una nueva plataforma de agentes a nuestra propuesta,

sólo es necesario la implementación de un nuevo aspecto de distribución. Con el

objetivo de ilustrar el esfuerzo de añadir una nueva plataforma a nuestra propuesta,

y para hacer frente a R2.2, implementamos Blue, una plataforma de agentes

basada en Bluetooth. Además, para abordar R2.2, hemos implementado Sol, una

plataforma que soporta el despliegue de sistemas AmI compuestos por un conjunto

de agentes auto-gestionados que son desplegados en dispositivos heterogéneos. Las

principales caracteŕısticas de Sol son el soporte a la comunicación entre agentes

integrados en dispositivos heterogéneos (R2.1), a la vez que hacemos frente a

protocolos de transporte diversos (WiFi, Bluetooth y ZigBee), y la comunicación

grupal que suele ser necesaria en los sistemas AmI (R2.2).

Finalmente, los agentes generados por el proceso MDD pueden ser desplegados

en plataformas que cumplen el estándar FIPA (etiqueta Deployment en la Figura

1). Debido a la capacidad de auto-gestión, es posible que un agente integrado en un

dispositivo AmI (e.g. un teléfono inteligente) pueda auto-configurar la plataforma

de agentes en la que está desplegado y/o el protocolo de transporte utilizado

(este último caso solo se da con Sol) usado en cada momento, dependiendo de los

recursos disponibles. Con el objetivo de ilustrar los beneficios de la capacidad de

auto-gestión de los agentes MalacaTiny, hemos realizado una serie de experimentos

que muestran las ventajas de cambiar el protocolo de transporte con el objetivo de

ahorrar enerǵıa. Hemos implementado distintos objetivos de auto-gestión, como

extender la vida del sistema o recuperar el dispositivo de algunos fallos. Además,

hemos usado el proceso presentado aqúı para implementar: un museo inteligente

que puede encontrarse en la E.T.S.I. de Informática de Málaga, distintas versiones

de sistemas de transporte inteligentes y aplicaciones de ambientes asistidos.

190

A.3 Contribuciones

En esta sección enumeraremos las que consideramos que son las contribuciones

más relevantes de esta tesis.

1. Hemos desarrollado un metamodelo de agentes llamado Pineapple que in-

cluye conceptos para modelar la propiedad de auto-gestión [Ayala et al.,

2011b, 2013c]. Concretamente, nos hemos centrado en el modelado de poĺıti-

cas para describir cuando y cómo ajustar el comportamiento del agente y del

MAS. Las poĺıticas están integradas en los roles que desempeñará el agente

en tiempo de ejecución. La base de Pineapple es el metamodelo PIM4Agents.

Hemos integrado conceptos del lenguaje de descripción de poĺıticas APPEL.

La utilización de este lenguaje nos permite validar las poĺıticas utilizando

herramientas que ya están disponibles para APPEL, por ejemplo, el verifi-

cador de modelos UMC.

2. Hemos definido el metamodelo MalacaTiny [Ayala et al., 2013b]. Un meta-

modelo de plataforma neutral que usa orientación a aspectos para representar

de manera separada la funcionalidad espećıfica de la aplicación y los elemen-

tos concernientes a la comunicación del agente a través de un mecanismo

concreto.

3. Hemos definido un proceso MDD que genera agentes MalacaTiny [Ayala

et al., 2011a, 2013a,b]. Este proceso está compuesto por una transformación

M2M entre Pineapple y MalacaTiny, y un conjunto de transformaciones M2T

que permiten generar código de las distintas versiones de MalacaTiny. El uso

de estos agentes (a nivel de modelado y despliegue) facilita la extensión del

proceso MDD. Los agentes MalacaTiny son agentes de plataforma neutra,

aśı que podemos utilizar el mismo proceso MDD para generar agentes que

pueden ser desplegados en una variedad de plataformas de agentes.

4. Hemos implementado MalacaTiny [Ayala et al., 2011a, 2013a,b], una familia

de agentes orientados a aspectos que pueden ser ejecutadas en dispositivos

con pocos recursos computacionales. Los agentes MalacaTiny pueden ser

ejecutados en dispositivos Android, motas sensoras Sun SPOT y teléfonos

191

APPENDIX A

móviles que tengan soporte para J2ME. Estos agentes son de plataforma

neutra, lo que significa que pueden ser desplegados en distintas plataformas

de agentes, tales como Jade-Leap, Sol y Blue.

5. Hemos definido una versión orientada a objetivos de MalacaTiny que puede

ser ejecutada en dispositivos Android [Ayala et al., 2012d]. Esta arquitec-

tura de agentes explota la reflexividad de la API de Java para dispositivos

Android. El proceso de composición de aspectos de MalacaTiny es diferente

al de MalacaTiny orientada a objetivos, esta última considera un modelo de

puntos de unión (join point model) extensible.

6. Con el objetivo de superar las limitaciones actuales de las plataformas de

agentes para dispositivos ligeros hemos desarrollado la plataforma Sol [Ay-

ala et al., 2012a,b]. Las principales caracteŕısticas de esta plataforma son:

el soporte para múltiples tecnoloǵıas de red (ZigBee, WiFi y Bluetooth) y

la comunicación grupal. Además, para comprobar las posibilidades de la

neutralidad a nivel de plataforma, hemos desarrollado una plataforma de

agentes basada en Bluetooth llamada Blue y un aspecto de distribución de

mensajes para la plataforma Jade-Leap.

7. Hemos integrado la auto-gestión dentro de la arquitectura del agente [Ayala

et al., 2011a, 2012b,c,d, 2013a]. Asimismo, es tenida en cuenta en cada una

de las fases del desarrollo del sistema. Por lo tanto, puede ser especificado

y validado en la fase de modelado. Además, es posible generar el código

relacionado con la auto-gestión usando nuestro proceso MDD.

8. También pertenece al ámbito de esta tesis distintas aplicaciones y prototipos

que hemos desarrollado para estudiar la aplicación de la tecnoloǵıa de agentes

para el desarrollo de sistemas AmI. Usando Jade-Leap, implementamos una

aplicación de sistemas de transporte inteligente [Amor et al., 2009, 2010].

Con la tecnoloǵıa de agentes MalacaTiny, y enfocándonos en cuestiones de

comunicación entre dispositivos heterogéneos, desarrollamos un sistema de

detección de cáıdas que usaba un dispositivo Android y una mota sensora Sun

SPOT [Ayala et al., 2011a, 2013a]. Además, hemos desarrollado una apli-

cación para el “Museo de la Informática” situado en la “E.T.S.I. Informática”

192

de Málaga [Ayala et al., 2012a].

A.4 Estructura de la tesis

Continuando con esta introducción, el primer caṕıtulo de esta tesis explica al lector

los fundamentos de los principios utilizados en las soluciones propuestas. En este

caṕıtulo se explicarán los conceptos fundamentales, el estado del arte y el trabajo

relacionado. A continuación, nuestra propuesta será presentada en los siguientes 4

caṕıtulos. En la última parte de esta tesis, se presentarán resultados que validan

las soluciones propuestas y se discutirán las contribuciones de nuestro trabajo junto

con las conclusiones y el trabajo futuro.

Background

Este caṕıtulo muestra los conceptos necesarios para comprender el resto de esta

disertación. Las caracteŕısticas de la Inteligencia Ambiental son descritas, aśı como

las aplicaciones más relevantes en esta área. A continuación, se analiza como la

tecnoloǵıa de agentes es aplicada al entorno de la AmI. Tras esto, la auto-gestión,

otra parte muy importante de esta tesis, es descrita. Hemos prestado una atención

especial a la propuesta de IBM conocida como Autonomic Computing. La última

parte de este caṕıtulo está dedicada al MDD. Son descritas las bases de esta

tecnoloǵıa y se revisan sus contribuciones a la computación orientada a agentes.

Finalmente, revisamos las tecnoloǵıas de MDD usadas para el desarrollo de esta

tesis.

A metamodel for self-managed agents

En este caṕıtulo, presentamos el caso de estudio que vamos a utilizar para ilustrar

las distintas contribuciones de esta disertación. Este caso de estudio se corresponde

a la aplicación de un museo inteligente situado en la “E.T.S.I. Informática” de

Málaga. Además el metamodelo de Pineapple es descrito y además, se explica

cómo modelar una aplicación de AmI utilizándolo. Concretamente, en este caṕıtulo

193

APPENDIX A

nos centramos en cómo modelar la aplicación y las propiedades de auto-gestión.

Asimismo, describimos el método para validar el comportamiento auto-gestionado

de los agentes MalacaTiny usando el verificador de modelos UMC.

From Pineapple to MalacaTiny

Este caṕıtulo está centrado en la transformación entre Pineapple y MalacaTiny.

Comenzamos con la presentación del metamodelo MalacaTiny. A continuación,

proporcionamos una descripción detallada del proceso de transformación M2M que

utiliza Pineapple para generar modelos de MalacaTiny. Distinguimos 3 partes en

esta transformación, la transformación de la arquitectura del agente, la generación

de aspectos y la generación de la funcionalidad de auto-gestión.

Code generation of MalacaTiny agents

La implementación de las distintas versiones de MalacaTiny y el proceso de trans-

formación M2T son descritos en este caṕıtulo. Los agentes MalacaTiny pueden

ser ejecutados en teléfonos móviles con perfil MIDP, dispositivos Android y motas

sensoras Sun SPOT. Las arquitecturas de estos agentes presentan sólo pequeñas

diferencias, aśı que nos enfocamos en uno de ellas, los agentes que se ejecutan en

dispositivos con perfil MIDP. Además, se describe el diseño interno de MalacaTiny

orientada a objetivos y sus diferencias con las otras versiones de MalacaTiny. Con

respecto a la autogestión, este caṕıtulo trata el tema de cómo integrarla en la ar-

quitectura de los agente usando aspectos. Finalmente, son presentadas las trans-

formaciones M2T para MalacaTiny y MalacaTiny orientada a objetivos.

The communication concern

En este caṕıtulo describimos los dos aspectos de distribución que se han desarro-

llado espećıficamente para MalacaTiny y MalacaTiny orientada a objetivos, Blue

y el correspondiente a la plataforma de agentes Sol. Blue es un aspecto de dis-

tribución basado en Bluetooth espećıfico para teléfonos móviles con perfil MIDP

194

que fue desarrollado para estudiar el consumo de recursos de los agentes Mala-

caTiny. Por otro lado, la plataforma de agentes Sol es nuestra solución para co-

municar agentes ejecutándose en dispositivos heterogéneos y utilizando tencoloǵıas

de red diversas. El desarrollo de esta plataforma ha sido muy importante para el

Museo Inteligente.

Validation

La validación de ciertos aspectos de esta disertación es presentada en este caṕıtulo.

Concretamente, discutimos y presentamos resultados sobre la generación de código,

el rendimiento y el consumo de recursos de los agentes MalacaTiny. Además,

mostramos resultados que ilustran la latencia de la funcionalidad de auto-gestión

y del intercambio de mensajes, utilizando los distintos aspectos de distribución

implementados para MalacaTiny, Blue, Jade-Leap y Sol.

Conclusions

Este caṕıtulo resume el trabajo presentado a lo largo de esta disertación, resaltando

las contribuciones de nuestro trabajo. Además, detallamos las publicaciones más

importantes obtenidas de estas contribuciones. Para finalizar, se discuten las lec-

ciones aprendidas durante el desarrollo de este trabajo y se esbozan algunas posi-

bles ĺıneas de trabajo futuro.

Appendix A: Resumen

Este apéndice presenta un resumen de esta tesis en Español.

Appendix B: Conclusiones

Este apéndice presenta las conclusiones de este trabajo, las publicaciones obtenidas,

las lecciones aprendidas y el trabajo futuro en español.

195

APPENDIX A

196

Appendix B: Conclusiones

En este apéndice se resume la propuesta presentada a lo largo de esta disertación

resaltando sus contribuciones más relevantes (Section B.1). Además, en la Sección

B.2, se detallan las publicaciones más importantes obtenidas de estas contribu-

ciones. La Sección B.3 trata las lecciones aprendidas durante el desarrollo de esta

tesis. Finalmente, se explicaran nuestras ĺıneas de trabajo futuro (Sección B.4)

surgidas a partir de este trabajo.

B.1 Resumen

Después de los caṕıtulos de Introducción (Caṕıtulo 1) y Antecedentes (Caṕıtulo

2), se ha presentado un proceso MDD (Caṕıtulo 3) para generar automáticamente

sistemas basados en agentes a partir de un diseño de MAS. Este proceso se apoya

en MalacaTiny, un marco que incluye tecnoloǵıas de agentes para dispositivos

ligeros y plataformas de agentes, y que resulta especialmente adecuando para el

desarrollo de agentes en sistemas AmI. La solución dirigida por modelos que hemos

propuesto en esta disertación cubre las fases de diseño e implementación. En nues-

tro proceso, transformamos modelos de Pineapple, un metamodelo para MAS de

propósito general, que hemos adaptado para modelar sistemas sensibles al con-

texto con propiedades de auto-gestión. El resultado es un conjunto de agentes

MalacaTiny auto-gestionados, que pueden ser ejecutados en distintos dispositivos

ligeros t́ıpicos de la AmI.

Se ha definido el metamodelo Pineapple, cuyo propósito es el modelado de

sistemas AmI basados en agentes auto-gestionados (Caṕıtulo 3) y está basado en

197

APPENDIX B

el metamodelo PIM4Agents. Hemos extendido PIM4Agents con un nuevo punto

de vista de modelado, llamado Self-Management, que permite modelar roles para

la auto-gestión (incluyendo el conocimiento relacionado con esta propiedad) y las

poĺıticas que dirigen el comportamiento auto-gestionado del sistema AmI. Estas

poĺıticas son descritas utilizando un lenguaje de dominio espećıfico que sigue la

sintaxis de APPEL, un lenguaje de especificación de poĺıticas. Esta descripción

de las poĺıticas nos permite detectar conflictos entre las poĺıticas de auto-gestión

usando el verificador de modelos UMC. Finalmente, este nuevo punto de vista

en el modelado de MAS también incluye acciones espećıficas para modelar la fun-

cionalidad que todo sistema auto-gestionado debe de poseer: auto-conciencia (self-

awareness), auto-ubicación (self-situation), auto-monitorización (self-monitoring)

y auto-ajuste (self-adjusting).

En el Caṕıtulo 4, se define el metamodelo de MalacaTiny, un metamodelo es-

pećıfico de una plataforma, concretamente de la tecnoloǵıa de agentes MalacaTiny.

Este metamodelo traslada las ventajas de la arquitectura de agentes Malaca a

nivel de metamodelo. La principal caracteŕıstica de la arquitectura interna de los

agentes MalacaTiny es que mantiene separados a la funcionalidad espećıfica de la

aplicación y a las propiedades extra-funcionales del agente. Esta separación mejora

la modularización de la arquitectura interna del agente. Esto contribuye a mejorar

la adaptación, la reutilización y el mantenimiento del agente. Además, los aspec-

tos encapsulan la funcionalidad relacionada con la plataforma de comunicaciones

en la que el agente será desplegado, lo que convierte a los agentes MalacaTiny en

neutrales respecto a las plataformas de agentes FIPA.

Hemos presentado el diseño interno de los agentes MalacaTiny y los agentes

MalacaTiny orientados a objetivos (Caṕıtulo 5). MalacaTiny es una familia de

agentes para dispositivos ligeros que se inspira en la arquitectura de agentes

Malaca. Estos pueden ser ejecutados en motas sensoras Sun SPOT, teléfonos

móviles con perfil MIDP y dispositivos Android. Además, pueden utilizar distintos

mecanismos para comunicarse, que incluyen la plataforma de agentes Jade-Leap,

un mecanismo basado en Bluetooth llamado Blue y nuestra propia plataforma

para agentes heterogéneos, Sol. MalacaTiny orientada a objetivos es una versión

más avanzada de estos agentes espećıfica para dispositivos Android. Sus princi-

pales diferencias son el comportamiento orientado a la consecución de objetivos y

198

su proceso de tejido de aspectos dinámico.

El Caṕıtulo 6 se ha ocupado de presentar implementaciones que conciernen a

la comunicación entre agentes (Caṕıtulo 6). Hemos implementado un mecanismo

de comunicación basado en Bluetooth para comunicar directamente dos dispo-

sitivos con perfil MIDP. Además, con el objetivo de proporcionar una solución

factible para el desarrollo de sistemas AmI basados en agentes, hemos implemen-

tado la plataforma de agentes Sol. Esta plataforma, que está en consonancia con el

estándar FIPA, permite la comunicación entre agentes desplegados en dispositivos

heterogéneos usando tecnoloǵıas de red distintas. Sol actúa como una pasarela

(gateway) que facilita la comunicación y el intercambio de servicios entre agentes

que se ejecutan en dispositivos heterogéneos. Aśı mismo, proporciona servicios

para la gestón y comunicación de grupos de nodos del sistema AmI. Esta carac-

teŕıstica es importante, ya que muchas aplicaciones de ésta área requieren este tipo

de comunicación.

La auto-gestión es una propiedad de gran importancia para los entornos AmI.

En esta disertación, hemos proporcionado un marco de trabajo que permite mode-

lar poĺıticas de auto-gestión utilizando la notación de APPEL, validarlas utilizando

el verificador de modelos UMC y desplegarlas en los agentes MalacaTiny (Caṕıtulos

3, 4 and 5).

Finalmente, en el Caṕıtulo 7, hemos mostrado la evaluación de las distintas

implementaciones que se han desarrollado en el marco de esta disertación. Se ha

evaluado la conveniencia de aplicar un enfoque MDD utilizando la métrica Grado

de Automatización (Degree of Automation). Los resultados muestran que puede

generarse alrededor de un 40% del código en sistemas AmI complejos. Además,

hemos presentado y discutido una evaluación de la implementación de MalacaTiny

para dispositivos con perfil MIDP y Android usando Jade-Leap y la plataforma

Blue evaluando parámetros como el rendimiento, el consumo de memoria y la

eficiencia energética. También hemos realizado una comparativa con Jade-Leap

que pone de manifiesto que el diseño interno de MalacaTiny es muy eficiente con

respecto a la memoria, el consumo de batera y la latencia de los mensajes inter-

cambiado entre los agentes. Los resultados de los experimentos mostraron que

usando nuestro marco de trabajo, incluso sobre otra plataforma propietaria, te-

nemos una penalización muy leve con respecto a las variables mencionadas. En

199

APPENDIX B

particular, hemos obtenido muy buenos resultados con la comunicación basada

en Bluetooth con respecto a la escabilidad y el consumo de bateŕıa. De esta

manera, evidenciamos que es ventajoso disponer de agentes con mecanismos de

comunicación alternativos y configurables en tiempo de ejecución. Además, hemos

realizado otros experimentos mostrando que la auto-gestión de los agentes Mala-

caTiny es factible. Este caṕıtulo concluye con una evaluación del rendimiento de

la plataforma Sol, que muestra el rendimiento de esta plataforma en términos de

latencia de las comunicaciones inalámbricas.

En resumen, las principales contribuciones de nuestro trabajo son las siguientes:

1. El metamodelo Pineapple, para el modelado de sistemas AmI basados en

agentes con capacidades de auto-gestión y sensibles al contexto.

2. El metamodelo MalacaTiny, un metamodelo de agentes de plataforma neutra

basados en aspectos.

3. Un proceso de desarrollo dirigido por modelos que partiendo de un modelo

Pineapple y genera un conjunto de agentes MalacaTiny.

4. La implementación y la evaluación de los agentes MalacaTiny para teléfonos

móviles con perfil MIDP, motas sensoras Sun SPOT y dispostivos Android.

5. La versión orientada a objetivos de MalacaTiny para dispositivos Android.

6. La plataforma de agentes Sol para comunicar agentes heterogéneos que usan

mecanismos de comunicación distintos.

7. La implementación y la evaluación del aspecto de distribución para Jade-

Leap, Blue y la plataforma Sol.

8. El modelado de la auto-gestión y la integración de esta funcionalidad dentro

de la arquitectura del agente utilizando orientación a aspectos.

B.2 Publicaciones

Los resultados de este trabajo de investigación han sido publicados en las siguientes

revistas internacionales, conferencias y talleres de trabajo, con revisión por pares,

200

de la siguiente manera:

Revistas

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. A model driven en-

gineering process of platform neutral agents for ambient intelligence devices.

Autonomous Agents and Multi-Agent Systems, pages 1-42, 2013.

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Self-configuring

agents for ambient assisted living applications. Personal and Ubiquitous

Computing, pages 1-11, 2012.

Conferencias

• Inmaculada Ayala, MercedesAmor Pinilla, and Lidia Fuentes. Enhancing

agent metamodels with self-management for ami environments. In Progress

in Artificial Intelligence. Springer Berlin Heidelberg, 2013. To appear.

• Inmaculada Ayala, Mercedes Amor and Lidia Fuentes. Exploiting dynamic

weaving for self-managed agents in the IoT. In Ingo J. Timm and Christian

Guttmann (editors) Multiagent System Technologies, volume 7598 of Lecture

Notes in Computer Science, pages 5-14. Springer Berlin Heidelberg, 2012.

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Self-starmas: A

multi-agent system for the self-management of AAL applications. In Pro-

ceedings of the 2012 Sixth International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing, IMIS’12, pages 901-906, Wash-

ington, DC, USA, 2012. IEEE Computer Society.

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Self-management of

ambient intelligence systems: a pure agent-based approach. In Proceedings

of the 11th International Conference on Autonomous Agents and Multia-

gent Systems-Volume 3, AAMAS’12, pages 1427-1428, Richland, SC, 2012.

International Foundation for Autonomous Agents and Multiagent Systems.

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Autonomic agents

for mobile ambient assisted living applications. In José Bravo; Diego López

201

APPENDIX B

de Piña; Sergio Ochoa y Jesús Favela (editors). In Proceedings of the 5th

International symposium on ubiquitous computing and ambient intelligence.

UCAmI 2011. Riviera Maya, Mexico, december 5-9, December 2011.

• Inmaculada Ayala, MercedesAmor Pinilla, and Lidia Fuentes. Modeling

context-awareness in agents for ambient intelligence: An aspect-oriented ap-

proach. In Luis Antunes and H. Sofia Pinto (editors). Progress in Artificial

Intelligence, volume 7026 of Lecture Notes in Computer Science, pages 29-43.

Springer Berlin Heidelberg, 2011.

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. A model driven

development of platform-neutral agents. In Jürgen Dix and Cees Witteveen

(editors). Multiagent System Technologies, volume 6251 of Lecture Notes

in Computer Science, pages 3-14. Springer Berlin Heidelberg, 2010.

• Mercedes Amor, Inmaculada Ayala, and Lidia Fuentes. A4VANET: Con-

text aware Jade-Leap agents for vanets. In Yves Demazeau, Frank Dignum,

Juan M. Corchado, and Javier Bajo Pérez (editors). Advances in Practical

Applications of Agents and Multiagent Systems, volume 70 of Advances in

Intelligent and Soft Computing, pages 279-284. Springer Berlin Heidelberg,

2010.

• Mercedes Amor, Inmaculada Ayala, and Lidia Fuentes. A4VANET: una

aplicación basada en agentes Jade-Leap para redes VANET. In XIII Con-

ferencia de la Asociación Española para la Inteligencia Artificial. CAEPIA

TTIA 2009. Sevilla, 9-13 de Noviembre de 2009. Actas, pages 561-570.

Asociación Española para la Inteligencia Artificial, February 2009.

Talleres de trabajo

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. An agent platform

for self-configuring agents in the Internet of Things. In Proceedings of the

Thirds International Workshop on Infrastructures and Tools for Multiagent

Systems. ITMAS 2012. June 5, 2012 Valencia, Spain, pages 65-78.

202

• Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Towards the au-

tomatic derivation of Malaca agents using MDE. In Wiebe Van der Haek,

et. al. (editors). The Eleventh International Workshop on agent oriented

software engineering. AOSE 2010. Toronto, Canada, 10 of May 2010, pages

61-72, May 2010.

B.3 Lecciones aprendidas

Nuestra propuesta está ideada para el desarrollo de sistemas AmI en los que los

agentes son las entidades más significativas de la aplicación. El trabajo relacionado

ha mostrado que el uso de la tecnoloǵıa de agentes no es necesario en todos los sis-

temas AmI. Sin embargo, una vez que el uso de la tecnoloǵıa de agentes está justifi-

cado por los requisitos de la aplicación, queremos discutir las lecciones aprendidas

de este trabajo, que incluyen las principales limitaciones de nuestra propuesta. En

esta discusión, vamos a considerar 2 puntos de vista: por un lado, el del proceso de

ingenieŕıa dirigido por modelos; y por otro, la integración y la interoperabilidad.

B.3.1 Ingenieŕıa Dirigida por Modelos

Somos conscientes de que nuestra propuesta puede no resultar atractiva para los

desarrolladores de entornos AmI que no están familiarizados con la tecnoloǵıa de

agentes. Además, la elección de Pineapple como PIM de nuestro proceso MDD

puede reducir el número de usuarios potenciales, incluso en el caso de que sean

usuarios de la tecnoloǵıa de agentes. Estos últimos, suelen estar familiarizados

con herramientas para el desarrollo de agentes (e.g. Jade), pero en caso de que

quisieran usar nuestra propuesta, debeŕıan de aprender cómo diseñar MAS usando

Pineapple. En nuestra propuesta este inconveniente se ve aliviado debido a que (1)

Pineapple ofrece una sintaxis y unos conceptos que son familiares para los desarro-

lladores de agentes, (2) la propuesta puede ser extendida a otros PIM simplemente

proporcionando un transformación M2M para MalacaTiny, y (3) nuestro proceso

MDD comienza en la fase de diseño, utilizando Pineapple.

Por otra parte, nuestro proceso no cuenta con una fase de especificación de

203

APPENDIX B

requisitos generales para sistemas AmI. Lo que hemos hecho es extender el me-

tamodelo Pineapple para incorporar algunas propiedades espećıficas de sistemas

AmI. Una solución más completa incluiŕıa un metamodelo independiente de com-

putación (CIM) a nuestro proceso MDD. Una transformación M2M convertiŕıa este

CIM a su corresponiente (y extendido) modelo de Pineapple, que incluiŕıa requisi-

tos espećıficos de AmI. Además, este CIM seŕıa útil para identificar las debilidades

de otros modelos de agentes para diseñar sistemas AmI.

Finalmente, las herramientas de desarrollo que nuestra propuesta usa (princi-

palmente el marco de trabajo para modelado de Eclipse) no lleva a cabo una vali-

dación del modelo del sistema. Tampoco tiene en cuenta un proceso de evaluación

u optimización. Por lo tanto, debemos asumir que el diseñador nos proporcionará

en todos los casos el mejor de los diseños posibles del MAS.

B.3.2 Integración e Interoperabilidad

Otra importante cuestión que no podemos dejar de tener en cuenta, es que nuestra

propuesta no puede competir en rendimiento con tecnoloǵıas de agentes especial-

mente ideadas para un sistema en concreto. Nuestra propuesta es una alternativa

a las tecnoloǵıas de agentes de propósito general tales como Jade-Leap o AFME.

Nuestro valor añadido es ofrecer la posibilidad de modificar al agente para cumplir

un requisito impuesto por la plataforma de agentes, como el mecanismo de comu-

nicación utilizado por el sistema.

Por otro lado, la buena modularización de los agentes MalacaTiny hace más

sencilla la adaptación y la evolución de la arquitectura del agente. Si consideramos

la velocidad a la que aparecen y desaparecen nuevas tecnoloǵıas de comunicación

y dispositivos hoy en d́ıa, poder contar con una tecnoloǵıa que facilite la adopción

de nuevos avances, es una gran ventaja.

Actualmente, el número de aplicaciones y servicios para dispositivos ligeros,

como teléfonos inteligentes y tabletas está ganando cuota de mercado. En este

escenario, las tecnoloǵıas de comunicación inalámbricas tienen un papel muy im-

portante proporcionando conectividad a estos dispositivos. Hace algunos años, el

coste y la inmadurez de estas tecnoloǵıas limitaba su uso para este tipo de dispo-

sitivos. En la actualidad, la situación es muy distinta, ya que la mayoŕıa de los

204

dispositivos personales e incluso los sensores, pueden disponer de varias interfaces

de red que pueden ser explotadas con éxito por los sistemas AmI. Sin embargo,

un problema adicional que se presenta es que en ocasiones no es posible que es-

tos dispositivos se comuniquen entre ellos porque utilizan distintas tecnoloǵıas de

red, por ejemplo Bluetooth y WiFi. O que implementen de manera distinta el

mismo estándar de red y eso haga imposible la comunicación, como es el caso de

las motas sensoras Sun SPOT y MicaZ. En estas situaciones, necesitamos solu-

ciones adicionales, como es la utilización de pasarelas (gateways). En este punto,

nuestra propuesta puede habilitar la comunicación, desarrollando nuevos aspec-

tos de distribución que permitan al agente actuar como pasarela. Esto ofrece

la posibilidad de desarrollar sistemas en los que convivan e interactúen agentes

de propósito espećıfico, optimizados para cumplir unos requisitos concretos, con

agentes de propósito general.

Con respecto al uso de la orientación a aspectos en el diseño interno de Mala-

caTiny, nos proporciona una modularización mejorada que proporciona una gran

flexibilidad. Este hecho es explotado con éxito por estos agentes, a la hora de

separar los componentes relacionados con la comunicación. Como se mostró en el

Caṕıtulo 7 (Validación), las diferencias en el rendimiento no son notables, esto se

debe principalmente a que nuestro proceso de tejido de aspectos es estático para

los dispositivos con perfil MIDP. En el caso de MalacaTiny orientada a objetivos,

donde fue posible la implementación de un proceso de tejido dinámico, la sobre-

carga introducida es mayor, pero la flexibilidad y la extensibilidad de la que hemos

dotado al agente, compensan la penalización en el consumo de recursos. Lo que

conclúımos del Caṕıtulo 7, es que la sobrecarga introducida por la orientación a

aspectos es aceptable y no debeŕıa de ser una razón para dejar de beneficiarse de

la tecnoloǵıa de aspectos en aplicaciones de AmI reales.

B.4 Trabajo futuro

Si bien podemos considerar que las contribuciones de esta disertación forman un

trabajo completo, siempre es dif́ıcil dar por cerrada una tesis. En consecuencia,

en esta sección trataremos varias partes de nuestra propuesta que mereceŕıan una

205

APPENDIX B

investigación más a fondo o podŕıan ser mejoradas.

En esta tesis hemos presentado un proceso MDD, sin embargo no hemos llevado

a cabo alguno de los objetivos de esta disciplina. Los modelos son usados como

entidades primordiales de nuestro proceso de desarrollo, pero nuestro proceso es

en una sola dirección. Generamos código a partir de un modelo de PSM, y este

modelo es generado a partir de un modelo de PIM, pero no hemos desarrollado

la transformación contraria. En las diferentes fases de desarrollo de un proyecto

software es usual que el conocimiento sobre el problema cambie. Por lo tanto, tener

un proceso biyectivo nos permitiŕıa mantener una consistencia entre los distintos

modelos del sistema.

En relación con el proceso MDD, planificamos desarrollar un lenguaje gráfico

de dominio espećıfico (Graphical Domain Specific Language) para Pineapple y

MalacaTiny. Actualmente, modelamos el sistema utilizando las herramientas pro-

porcionadas por el marco de trabajo para modelado de Eclipse (EMF por sus siglas

en inglés, Eclipse Modeling Framework), pero esto puede ser complicado para de-

sarrolladores que no están familiarizados con este. La gran ventaja del EMF es

que proporciona herramientas listas para ser usadas, que nos permiten manipular

e instanciar nuestro metamodelo. Los lenguajes gráficos basados en metamodelos

Ecore (como es nuestro caso), son desarrollados utilizando el marco de trabajo

para gráficos de Eclipse (GMF por Graphical Modeling Framework). Hay una

relación muy fuerte entre el metamodelo Ecore y su sintaxis gráfica, por lo tanto

cualquier modificación en el metamodelo hará inservible la notación gráfica que

hayamos proporcionado. Si usamos simplemente las herramientas del EMF, este

problema no existe. Por lo tanto, antes de proporcionar un lenguaje gráfico, hemos

esperado a tener una versión más estable de nuestro metamodelo. De hecho, es en

este momento cuando nos planteamos acometer esta tarea. Otra ampliación para

nuestro proceso MDD es agregar un nivel CIM.

El desarrollo del “Museo de la Informática” ha sido un gran reto que ha inspi-

rado algunas ideas para extender la plataforma de agentes Sol, y hacer de ella una

solución factible para desarrollar aplicaciones AmI reales. Algunas ideas están ac-

tualmente en desarrollo, mientras que otras están planeadas como trabajo futuro.

El rendimiento es una preocupación constante cuando se está trabajando con

tecnoloǵıas de dispositivos ligeros. Como hemos mencionado anteriormente, esta-

206

mos mejorando tanto la implementación de Sol como la de los agentes MalacaTiny

para hacer el proceso de codificación de mensajes (el aspecto de Representación)

más eficiente. Somos conscientes de que nuestra propuesta incluye una sobre-

carga que no se da en otras tecnoloǵıas de agentes, aśı que estamos trabajando

para hacerla lo más ligera posible. Para llevar a cabo esta tarea, estamos usando

herramientas de perfilado de consumo de recursos y de realización pruebas, tales

como las proporcionadas por el entorno de desarrollo de Android.

A lo largo de esta tesis, hemos resaltado que las aplicaciones AmI deben de

poder ejecutarse en una gran diversidad de dispositivos, con un conjunto variable

de recursos computacionales y servicios disponibles. Para poder dar soporte a

un número mayor de tecnoloǵıas, estamos extendiendo nuestra propuesta para

motas sensoras Libellium Waspmotes. Esto ha sido necesario debido a que las

motas Sun SPOT ofrecen un número limitado de capacidades sensoras (luz, ruido,

sonido, aceleración y temperatura). Estas nuevas motas tienen menos recursos

computacionales que Sun SPOT y a pesar de que usan ZigBee, no pueden utilizar

la interfaz de red utilizada por las Sun SPOT. Por lo tanto, estamos dotando

a la plataforma Sol con los medios necesarios para interactuar con estas motas,

considerando sus reducidos recursos computacionales. Concretamente, estamos

adaptando un agente MalacaTiny para motas MicaZ.

La distribución espacial del “Museo de la Informática” ha supuesto otro reto

para nosotros. Como se menciona en el Caṕıtulo 3, las diferentes salas del museo

están distribuidas en pasillos y estancias a lo largo del edificio de la “E.T.S.I. de

Informática”. El problema surge cuando intentamos comunicar dispositivos que

usan comunicaciones de corto alcance y necesitan comunicarse con el ordenador

en el que Sol se está ejecutando. Nuestra solución inicial ha sido introducir enca-

minadores Meshlium1 de Libellium, que permiten conectar dispositivos personales

que usan WiFi y Bluetooth, y Libellium Waspmotes. Sin embargo, esta es una

solución cara, por lo tanto estamos trabajando en una versión distribuida de la

plataforma que tenga la capacidad de mantener nodos remotos. Estos nodos están

siendo implementados como un nuevo tipo de conexión para el IMTP de Sol.

Finalmente, planeamos integrar en Sol un mecanismo más fléxible para la

definición de grupos y su gestión. Capacidades como la auto-gestión y la sensibili-

1http://www.libelium.com/products/meshlium

207

http://www.libelium.com/products/meshlium

APPENDIX B

dad al contexto tienen una gran prioridad para la AmI. Aśı que nuestro objetivo es

integrar estas propiedades en los grupos. En la implementación actual de Sol, los

agentes se unen a los grupos utilizando un identificador que conocen previamente,

pero en algunas situaciones este mecanismo puede ser muy ŕıgido. Por ejemplo,

un agente puede necesitar unirse a un grupo con una caracteŕıstica en concreto

(e.g. un grupo cuyo número de miembros sea inferior a 10, un grupo compuesto

sólo por mujeres, un grupo de anglo-parlantes,. . .) pero no conoce su identificador

y por lo tanto para este agente seŕıa imposible formar parte de un grupo aśı.

Por otro lado, queremos facilitar que los agentes puedan unirse a ciertos grupos

una vez han sido creados. Por ejemplo, en el Museo, puede ser creado un grupo de

estudiantes extranjeros para informarles de que acaban de recibir un regalo. Aśı

que los VisitorAgent que están proporcionando sus servicios a estos estudiantes,

pasaŕıan a formar parte automáticamente de este grupo tan pronto como fuera

creado. Además, tenemos planeado extender el GMS para ofrecer la posibilidad

de hacer consultas sobre los grupos que están registrados en la plataforma. Sin

embargo, extender este servicio no es una tarea trivial debido a que debemos

extender las descripciones de grupos (i.e. incluir las propiedades que caracterizan

a un grupo) y definir una ontoloǵıa con los términos necesarios para la AmI y

aplicaciones concretas.

208

References

Jorge Agüero, Miguel Rebollo, Carlos Carrascosa, and Vicente Julián. Agent de-

sign using model driven development. In Yves Demazeau, Juan Pavón, Juan M.

Corchado, and Javier Bajo, editors, 7th International Conference on Practical

Applications of Agents and Multi-Agent Systems (PAAMS 2009), volume 55 of

Advances in Intelligent and Soft Computing, pages 60–69. Springer Berlin Hei-

delberg, 2009. ISBN 978-3-642-00486-5. doi: 10.1007/978-3-642-00487-2 7. 2,

4, 25, 32, 34, 35, 180, 182

Francesco Aiello, Giancarlo Fortino, Antonio Guerrieri, and Raffaele Gravina.

Maps: a mobile agent platform for wsns based on java sun spots. In Proceedings

of the third international workshop on Agent Technology for Sensor Networks

(ATSN), 2009. 2, 180

Francesco Aiello, Giancarlo Fortino, Raffaele Gravina, and Antonio Guerrieri. A

java-based agent platform for programming wireless sensor networks. The Com-

puter Journal, 54(3):439–454, 2011. 26

Mercedes Amor and Lidia Fuentes. Malaca: A component and aspect-oriented

agent architecture. Information and Software Technology, 51(6):1052 – 1065,

2009. ISSN 0950-5849. doi: 10.1016/j.infsof.2008.12.004. 67, 68, 91, 112, 141

Mercedes Amor, Lidia Fuentes, and Antonio Vallecillo. Bridging the gap between

agent-oriented design and implementation using mda. In James Odell, Paolo

Giorgini, and Jörg Müller, editors, Agent-Oriented Software Engineering V, vol-

ume 3382 of Lecture Notes in Computer Science, pages 93–108. Springer Berlin

209

REFERENCES

Heidelberg, 2005. ISBN 978-3-540-24286-4. doi: 10.1007/978-3-540-30578-1 7.

30

Mercedes Amor, Inmaculada Ayala, and Lidia Fuentes. A4vanet: una aplicación

basada en agentes jade-leap para redes vanet. In XIII Conferencia de la Aso-

ciación Española para la Inteligencia Artificial. CAEPIA TTIA 2009. Sevilla,

9-13 de Noviembre de 2009. Actas, pages 561–570. Asociación Española para la

Inteligencia Artificial, February 2009. ISBN 978-84-692-6424-9. 13, 192

Mercedes Amor, Inmaculada Ayala, and Lidia Fuentes. A4vanet: Context-aware

jade-leap agents for vanets. In Yves Demazeau, Frank Dignum, Juan M. Cor-

chado, and Javier Bajo Pérez, editors, Advances in Practical Applications of

Agents and Multiagent Systems, volume 70 of Advances in Intelligent and Soft

Computing, pages 279–284. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-

12383-2. doi: 10.1007/978-3-642-12384-9 33. 13, 192

Juan Carlos Augusto and Chris D. Nugent. The use of temporal reasoning and

management of complex events in smart homes. In Proceedings of the European

Conference on Artificial Intelligence, 2004, pages 778–782, 2004. 22

Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. A model driven develop-

ment of platform-neutral agents. In Jürgen Dix and Cees Witteveen, editors,

Multiagent System Technologies, volume 6251 of Lecture Notes in Computer Sci-

ence, pages 3–14. Springer Berlin Heidelberg, 2010a. ISBN 978-3-642-16177-3.

doi: 10.1007/978-3-642-16178-0 3. 12

Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Towards the automatic

derivation of malaca agents using mde. In Wiebe van der Haek, et. al. (eds.).

The Eleventh International Workshop on agent oriented software engineering.

AOSE 2010. Toronto, Canada, 10 of May 2010, pages 61–72, May 2010b. 12

Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Autonomic agents for mo-

bile ambient assisted living applications. In José Bravo; Diego López-de-Piña;

Sergio Ochoa y Jesús Favela (Eds.). 5th International symposium on ubiquitous

computing and ambient intelligence. UCAmI 2011. Conference proceedings. Riv-

210

REFERENCES

iera Maya, Mexico, december 5-9, December 2011a. ISBN 978-84-694-9677-0.

12, 13, 191, 192

Inmaculada Ayala, MercedesAmor Pinilla, and Lidia Fuentes. Modeling context-

awareness in agents for ambient intelligence: An aspect-oriented approach. In

Luis Antunes and H.Sofia Pinto, editors, Progress in Artificial Intelligence, vol-

ume 7026 of Lecture Notes in Computer Science, pages 29–43. Springer Berlin

Heidelberg, 2011b. ISBN 978-3-642-24768-2. doi: 10.1007/978-3-642-24769-9 3.

12, 191

Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. An agent platform for

self-configuring agents in the internet of things. In Proceedings of the Thirds In-

ternational Workshop on Infrastructures and Tools for Multiagent Systems. IT-

MAS 2012. June 5, 2012 Valencia, Spain, pages 65–78. Universidad Politècnica

de València, June 2012a. ISBN 978-84-8363-850-7. 13, 192, 193

Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Self-management of am-

bient intelligence systems: a pure agent-based approach. In Proceedings of the

11th International Conference on Autonomous Agents and Multiagent Systems

- Volume 3, AAMAS ’12, pages 1427–1428, Richland, SC, 2012b. International

Foundation for Autonomous Agents and Multiagent Systems. ISBN 0-9817381-

3-3, 978-0-9817381-3-0. 13, 23, 192

Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Self-starmas: A multi-

agent system for the self-management of aal applications. In Proceedings of the

2012 Sixth International Conference on Innovative Mobile and Internet Services

in Ubiquitous Computing, IMIS ’12, pages 901–906, Washington, DC, USA,

2012c. IEEE Computer Society. ISBN 978-0-7695-4684-1. doi: 10.1109/IMIS.

2012.28. 13, 192

Inmaculada Ayala, MercedesAmor Pinilla, and Lidia Fuentes. Exploiting dynamic

weaving for self-managed agents in the iot. In Ingo J. Timm and Christian

Guttmann, editors, Multiagent System Technologies, volume 7598 of Lecture

Notes in Computer Science, pages 5–14. Springer Berlin Heidelberg, 2012d.

ISBN 978-3-642-33689-8. doi: 10.1007/978-3-642-33690-4 3. 13, 192

211

REFERENCES

Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. Self-configuring agents for

ambient assisted living applications. Personal and Ubiquitous Computing, 17

(6):1159–1169, 2013a. ISSN 1617-4909. doi: 10.1007/s00779-012-0555-9. 12, 13,

191, 192

Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes. A model driven engineering

process of platform neutral agents for ambient intelligence devices. Autonomous

Agents and Multi-Agent Systems, pages 1–42, 2013b. ISSN 1387-2532. doi:

10.1007/s10458-013-9223-3. 5, 12, 184, 191

Inmaculada Ayala, Mercedes Amor Pinilla, and Lidia Fuentes. Enhancing agent

metamodels with self-management for ami environments. In Lúıs Correia,

Lúıs Paulo Reis, and José Cascalho, editors, Progress in Artificial Intelli-

gence, volume 8154 of Lecture Notes in Computer Science, pages 420–431.

Springer Berlin Heidelberg, 2013c. ISBN 978-3-642-40668-3. doi: 10.1007/

978-3-642-40669-0 36. 12, 191

Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Jade: a fipa 2000 com-

pliant agent development environment. In Proceedings of the fifth international

conference on Autonomous agents, AGENTS ’01, pages 216–217, New York,

NY, USA, 2001. ACM. ISBN 1-58113-326-X. doi: 10.1145/375735.376120. 2, 6,

136, 180, 184

Fabio Bellifemine, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa. Jade:

A software framework for developing multi-agent applications. lessons learned.

Information and Software Technology, 50(1):10 – 21, 2008. ISSN 0950-5849. doi:

10.1016/j.infsof.2007.10.008. 24

Federico Bergenti and Agostino Poggi. Leap: A fipa platform for handheld and

mobile devices. In John-JulesCh. Meyer and Milind Tambe, editors, Intelligent

Agents VIII, volume 2333 of Lecture Notes in Computer Science, pages 436–

446. Springer Berlin Heidelberg, 2002. ISBN 978-3-540-43858-8. doi: 10.1007/

3-540-45448-9 33. 2, 180

Carole Bernon, Massimo Cossentino, Marie-Pierre Gleizes, Paola Turci, and Franco

Zambonelli. A study of some multi-agent meta-models. In James Odell, Paolo

212

REFERENCES

Giorgini, and Jörg P. Müller, editors, Agent-Oriented Software Engineering V,

volume 3382 of Lecture Notes in Computer Science, pages 62–77. Springer Berlin

Heidelberg, 2005. ISBN 978-3-540-24286-4. doi: 10.1007/978-3-540-30578-1 5.

7, 32, 56, 57, 185

Ghassan Beydoun, Graham Low, Brian Henderson-Sellers, Haralambos Moura-

tidis, Jorge Jesús Gómez Sanz, Juan Pavón, and Cesar Gonzalez-Perez. Faml:

A generic metamodel for mas development. IEEE Transactions on Software

Engineering, 35(6):841–863, 2009. ISSN 0098-5589. doi: 10.1109/TSE.2009.34.

4, 7, 32, 182, 185

Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. Jadex: A bdi-agent

system combining middleware and reasoning. In Rainer Unland, Monique Cal-

isti, and Matthias Klusch, editors, Software Agent-Based Applications, Plat-

forms and Development Kits, Whitestein Series in Software Agent Technolo-

gies, pages 143–168. Birkhäuser Basel, 2005. ISBN 978-3-7643-7347-4. doi:

10.1007/3-7643-7348-2 7. 25, 32

Stefano Bromuri, Michael Schumacher, and Kostas Stathis. Towards distributed

agent environments for pervasive healthcare. In Jürgen Dix and Cees Wit-

teveen, editors, Multiagent System Technologies, volume 6251 of Lecture Notes

in Computer Science, pages 125–137. Springer Berlin / Heidelberg, 2010. ISBN

978-3-642-16177-3. 150

Arnaud Brossard, Mourad Abed, and Christophe Kolski. Taking context into

account in conceptual models using a model driven engineering approach. Inf.

Softw. Technol., 53(12):1349–1369, December 2011. ISSN 0950-5849. doi: 10.

1016/j.infsof.2011.06.011. 34

Giovanni Caire, Nicolas Lhuillier, and Giovanni Rimassa. A communication pro-

tocol for agents on handheld devices. In Proceedings of the First International

Workshop on Ubiquitous Agents on Embedded, Wearable, and Mobile Devices,

2002. 23

Bo Chen and Harry H. Cheng. A review of the applications of agent tech-

nology in traffic and transportation systems. IEEE Transactions on Intel-

213

REFERENCES

ligent Transportation Systems, 11(2):485–497, 2010. ISSN 1524-9050. doi:

10.1109/TITS.2010.2048313. 22

Beo Model Driven Company. Acceleo: transforming models into code. http:

//www.eclipse.org/acceleo/, 2013. 36, 40

Diane Cook and Sajal Das. Smart Environments: Technology, Protocols and

Applications (Wiley Series on Parallel and Distributed Computing). Wiley-

Interscience, 2004. ISBN 0471544485. 20

Diane Cook, Michael Youngblood, and Sajal Das. A multi-agent approach to

controlling a smart environment. In Juan Augusto and Chris Nugent, editors,

Designing Smart Homes, volume 4008 of Lecture Notes in Computer Science,

pages 165–182. Springer Berlin / Heidelberg, 2006. ISBN 978-3-540-35994-4. 5,

23, 183

Diane J. Cook, Juan C. Augusto, and Vikramaditya R. Jakkula. Ambient intel-

ligence: Technologies, applications, and opportunities. Pervasive and Mobile

Computing, 5(4):277 – 298, 2009. ISSN 1574-1192. doi: 10.1016/j.pmcj.2009.04.

001. 4, 18, 182

Juan M. Corchado, Javier Bajo, and Ajith Abraham. Gerami: Improving health-

care delivery in geriatric residences. IEEE Intelligent Systems, 23(2):19–25,

2008. ISSN 1541-1672. doi: 10.1109/MIS.2008.27. 19

Nokia Developer. Nokia n96. http://developer.nokia.com/Devices/

Device_specifications/N96/, 2013a. 150

Nokia Developer. Nokia 5630 xpressmusic. http://developer.nokia.com/

Devices/Device_specifications/5630_XpressMusic/, 2013b. 150

Simon Dobson, Roy Sterritt, P. Nixon, and M. Hinchey. Fulfilling the vision of

autonomic computing. Computer, 43(1):35–41, 2010. ISSN 0018-9162. doi:

10.1109/MC.2010.14. 28, 103

Ken Ducatel, Marc Bogdanowicz, Fabiana Scapolo, Jos Leijten, and Jean-Claude

Burgelman. Scenarios for ambient intelligence in 2010. Technical Report IPTS-

Seville, IST Advisory Group, February 2001. 3, 17, 181

214

http://www.eclipse.org/acceleo/
http://www.eclipse.org/acceleo/
http://developer.nokia.com/Devices/Device_specifications/N96/
http://developer.nokia.com/Devices/Device_specifications/N96/
http://developer.nokia.com/Devices/Device_specifications/5630_XpressMusic/
http://developer.nokia.com/Devices/Device_specifications/5630_XpressMusic/

REFERENCES

Ken Ducatel, Marc Bogdanowicz, Fabiana Scapolo, Jos Leijten, and Jean-Claude

Burgelman. Ambient intelligence: From vision to reality. Technical report, IST

Advisory Group, 2003. 3, 181

Wikipedia The Free Encyclopedia. Htc desire. http://en.wikipedia.org/

wiki/HTC_Desire, 2013. 150

Robert Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Aksit. Aspect-oriented

software development. Addison-Wesley Professional, first edition, 2004. ISBN

0321219767. 2, 41

Chien-Liang Fok, G. Roman, and Chenyang Lu. Mobile agent middleware for

sensor networks: an application case study. In Information Processing in Sensor

Networks, 2005. IPSN 2005. Fourth International Symposium on, pages 382–

387, 2005. doi: 10.1109/IPSN.2005.1440953. 26

Foundation for Intelligent Physical Agents. Fipa abstract architecture specifica-

tion. Technical Report SC00001L, Foundation for Intelligent Physical Agents,

Geneva, Switzerland, December 2002. 128

The Eclipse Foundation. Ecore Tools. http://wiki.eclipse.org/index.

php/Ecore_Tools, 2013a. 36

The Eclipse Foundation. Jet: Model to text transformations. www.eclipse.

org/emft/projects/jet/, 2013b. 40

David Franklin. Cooperating with people: the intelligent classroom. In Proceedings

of the fifteenth national/tenth conference on Artificial intelligence/Innovative

applications of artificial intelligence, AAAI ’98/IAAI ’98, pages 555–560, Menlo

Park, CA, USA, 1998. American Association for Artificial Intelligence. ISBN

0-262-51098-7. 20

Christopher Frantz, Mariusz Nowostawski, and Martin K. Purvis. Augmenting

android with aose principles for enhanced functionality reuse in mobile applica-

tions. In Francien Dechesne, Hiromitsu Hattori, Adriaan Mors, Jose Miguel

Such, Danny Weyns, and Frank Dignum, editors, Advanced Agent Technol-

ogy, volume 7068 of Lecture Notes in Computer Science, pages 187–211.

215

http://en.wikipedia.org/wiki/HTC_Desire
http://en.wikipedia.org/wiki/HTC_Desire
http://wiki.eclipse.org/index.php/Ecore_Tools
http://wiki.eclipse.org/index.php/Ecore_Tools
www.eclipse.org/emft/projects/jet/
www.eclipse.org/emft/projects/jet/

REFERENCES

Springer Berlin Heidelberg, 2012. ISBN 978-3-642-27215-8. doi: 10.1007/

978-3-642-27216-5 13. 25

Peter Friese. Getting started with Code Genera-

tion with Xpand. http://www.peterfriese.de/

getting-started-with-code-generation-with-xpand/, March

2010. 40

José M. Gascueña, Elena Navarro, and Antonio Fernández-Caballero. Model-

driven engineering techniques for the development of multi-agent systems. En-

gineering Applications of Artificial Intelligence, 25(1):159 – 173, 2012. ISSN

0952-1976. doi: 10.1016/j.engappai.2011.08.008. 9, 34, 188

Paolo Giorgini, John Mylopoulos, Anna Perini, and Angelo Susi. The tropos

metamodel and its use. Informatica, An International Journal of Computing

and Informatics, 29(4):251–273, Noviembre 2005. ISSN 0350–5596. 30, 32, 34

F. Gouaux, L. Simon-Chautemps, J. Fayn, S. Adami, M. Arzi, D. Assanelli, M.C.

Forlini, C. Malossi, A. Martinez, J. Placide, G.L. Ziliani, and P. Rubel. Ambient

intelligence and pervasive systems for the monitoring of citizens at cardiac risk:

New solutions from the epi-medics project. In Computers in Cardiology, 2002,

pages 289–292, 2002. doi: 10.1109/CIC.2002.1166765. 20

Dominic Greenwood and Giovanni Rimassa. Autonomic goal-oriented business

process management. In ICAS ’07, pages 43–48. IEEE Computer Society, 2007.

ISBN 0-7695-2859-5. 33

Object Management Group. Object Constraint Language (OCL). http://www.

omg.org/spec/OCL/, 2013a. 38

Object Management Group. OMG Formal Versions of QVT. http://www.omg.

org/spec/QVT/, 2013b. 38

Erico Guizzo. How google’s self-driving car works. IEEE Spectrum Online, October,

18, 2011. 3, 181

Arno Haase, Markus Völter, Sven Efftinge, and Bernd Kolb. Introduction to

openarchitectureware 4.1.2. In MDD Tool Implementers Forum, 2007. 36

216

http://www.peterfriese.de/getting-started-with-code-generation-with-xpand/
http://www.peterfriese.de/getting-started-with-code-generation-with-xpand/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/

REFERENCES

Dianne Hackborn. Service api changes starting with android 2.0.

http://android-developers.blogspot.com/2010/02/

service-api-changes-starting-with.html, 2010. 150

Hani Hagras, Victor Callaghan, Martin Colley, Graham Clarke, Anthony Pounds-

Cornish, and Hakan Duman. Creating an ambient-intelligence environment us-

ing embedded agents. IEEE Intelligent Systems, 19(6):12–20, 2004. ISSN 1541-

1672. doi: 10.1109/MIS.2004.61. 3, 19, 181

Christian Hahn, Cristian Madrigal-Mora, and Klaus Fischer. A platform-

independent metamodel for multiagent systems. Autonomous Agents and

Multi-Agent Systems, 18(2):239–266, 2009. ISSN 1387-2532. doi: 10.1007/

s10458-008-9042-0. 4, 7, 31, 34, 182, 186

Karen Zita Haigh, Liana M. Kiff, and Geoffrey Ho. The independent lifestyle as-

sistant: Lessons learned. Assistive Technology: The Official Journal of RESNA,

18(1):87–106, 2006. doi: 10.1080/10400435.2006.10131909. 22

Anthony Harrington and Vinny Cahill. Model-driven engineering of planning and

optimisation algorithms for pervasive computing environments. Pervasive and

Mobile Computing, 7(6):705 – 726, 2011. ISSN 1574-1192. doi: 10.1016/j.pmcj.

2011.09.005. 9, 145, 188

Paul Horn. Autonomic computing: IBM’s Perspective on the State of Information

Technology, 2001. 29

Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas. Jack intelli-

gent agents-summary of an agent infrastructure. In 5th International conference

on autonomous agents, 2001. 24

Markus C. Huebscher and Julie A. McCann. A survey of autonomic computing-

degrees, models, and applications. ACM Comput. Surv., 40(3):7:1–7:28, August

2008. ISSN 0360-0300. doi: 10.1145/1380584.1380585. URL http://doi.

acm.org/10.1145/1380584.1380585. 28

Google Inc. Galaxy nexus. http://www.android.com/devices/detail/

galaxy-nexus, 2013. 160

217

http://android-developers.blogspot.com/2010/02/service-api-changes-starting-with.html
http://android-developers.blogspot.com/2010/02/service-api-changes-starting-with.html
http://doi.acm.org/10.1145/1380584.1380585
http://doi.acm.org/10.1145/1380584.1380585
http://www.android.com/devices/detail/galaxy-nexus
http://www.android.com/devices/detail/galaxy-nexus

REFERENCES

A. Janik and K. Zielinski. Aaop-based dynamically reconfigurable monitoring

system. Information and Software Technology, 52(4):380–396, 2010. 108

Frèdèric Jouault, Freddy Allilaire, Jean Bèzivin, and Ivan Kurtev. Atl: A model

transformation tool. Science of Computer Programming, 72(1 - 2):31 – 39, 2008.

ISSN 0167-6423. doi: 10.1016/j.scico.2007.08.002. 36

Stephen Keegan, Gregory M. P. O’Hare, and Michael J. O’Grady. Easishop: Am-

bient intelligence assists everyday shopping. Information Sciences, 178(3):588 –

611, 2008. ISSN 0020-0255. 20, 23

Jeffrey O. Kephart. Research challenges of autonomic computing. In Software

Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on,

pages 15–22, 2005. doi: 10.1109/ICSE.2005.1553533. 28

Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.

Computer, 36(1):41–50, 2003. ISSN 0018-9162. doi: 10.1109/MC.2003.1160055.

2, 103, 180

Jeffrey O. Kephart and William E. Walsh. An artificial intelligence perspective

on autonomic computing policies. In Fifth IEEE International Workshop on

Policies for Distributed Systems and Networks, 2004. POLICY 2004., pages 3–

12, 2004. doi: 10.1109/POLICY.2004.1309145. 30, 46, 107

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,

Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet

Akşit and Satoshi Matsuoka, editors, ECOOP’97 - Object-Oriented Program-

ming, volume 1241 of Lecture Notes in Computer Science, pages 220–242.

Springer Berlin Heidelberg, 1997. ISBN 978-3-540-63089-0. doi: 10.1007/

BFb0053381. URL http://dx.doi.org/10.1007/BFb0053381. 41

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. An overview of aspectj. In Jürgen Lindskov Knudsen,

editor, ECOOP 2001 - Object-Oriented Programming, volume 2072 of Lecture

Notes in Computer Science, pages 327–354. Springer Berlin Heidelberg, 2001.

ISBN 978-3-540-42206-8. doi: 10.1007/3-540-45337-7 18. URL http://dx.

doi.org/10.1007/3-540-45337-7_18. 41

218

http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1007/3-540-45337-7_18

REFERENCES

Benjamin Klatt. Xpand: A closer look at the model2text transformation language.

In 12th European Conference on Software Maintenance and Reengineering, 2008.

36

Fernando Koch, John-Jules C. Meyer, Frank Dignum, and Iyad Rahwan. Pro-

gramming deliberative agents for mobile services: The 3apl-m platform. In

RafaelH. Bordini, MehdiM. Dastani, Jrgen Dix, and Amal Fallah Seghrouchni,

editors, Programming Multi-Agent Systems, volume 3862 of Lecture Notes in

Computer Science, pages 222–235. Springer Berlin Heidelberg, 2006. ISBN 978-

3-540-32616-8. 25

Young Min Kwon, Sameer Sundresh, Kirill Mechitov, and Gul Agha. Actornet: an

actor platform for wireless sensor networks. In Proceedings of the fifth interna-

tional joint conference on Autonomous agents and multiagent systems, AAMAS

’06, pages 1297–1300, New York, NY, USA, 2006. ACM. ISBN 1-59593-303-4.

doi: 10.1145/1160633.1160871. 26

Oracle Labs. Sun SPOT World. http://www.sunspotworld.com/, 2013. 10,

189

Edward Lank, Amy Ichnowski, and Shalid Khatri. Zero knowledge access to a

smart classroom environment. In Proceedings of the Workshop on Ubiquitous

Display Environments, 2004. 20

Mikko Laukkanen, Sasu Tarkoma, and Jani Leinonen. Fipa-os agent platform for

small-footprint devices. In John-JulesCh. Meyer and Milind Tambe, editors,

Intelligent Agents VIII, volume 2333 of Lecture Notes in Computer Science,

pages 447–460. Springer Berlin Heidelberg, 2002. ISBN 978-3-540-43858-8. doi:

10.1007/3-540-45448-9 34. 2, 25, 180

Till C. Lech and Leendert W. M. Wienhofen. Ambieagents: a scalable infras-

tructure for mobile and context-aware information services. In Proceedings of

the fourth international joint conference on Autonomous agents and multiagent

systems, AAMAS ’05, pages 625–631, New York, NY, USA, 2005. ACM. ISBN

1-59593-093-0. 150

219

http://www.sunspotworld.com/

REFERENCES

Ramon Lopes, Flávio Assis, and Carlos Montez. Maspot: A mobile agent system

for sun spot. In 10th International Symposium on Autonomous Decentralized

Systems (ISADS 2011), pages 25 –31, march 2011. 26

Goreti Marreiros, Ricardo Santos, Carlos Ramos, José Neves, Paulo Novais, José

Machado, and José Bulas-Cruz. Ambient intelligence in emotion based ubiqui-

tous decision making. In Juan Carlos Augusto and D. Shapiro, editors, of the

Second Workshop on Artificial Intelligence Techniques for Ambient Intelligence,

2007, pages 86–91, 2007. URL http://repositorium.sdum.uminho.pt/

handle/1822/18984. 20

Samsung Mobile. Samsung galaxy s. http://www.samsung.com/global/

microsite/galaxys/specification/spec.html?ver=high, 2013.

150

Ambra Molesini, Enrico Denti, and Andrea Omicini. Homemanager: Testing

agent-oriented software engineering in home intelligence. In Agents and Artificial

Intelligence, volume 67 of Communications in Computer and Information Sci-

ence, pages 205–218. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-11818-0.

32

Bill Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, and Philippe Van-

derheyden. Eclipse Development. IBM Corporation, International Technical

Support Organization, 2004. 36

Gianluca Morganti, Anna-Maria Perdon, Giuseppe Conte, and David Scaradozzi.

Multi-agent system theory for modelling a home automation system. In Bio-

Inspired Systems: Computational and Ambient Intelligence, volume 5517 of

LNCS, pages 585–593. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-02477-

1. 32

Miguel A. Muñoz, Marcela Rodŕıguez, Jesus Favela, Ana I. Martinez-Garcia, and

Victor M. González. Context-aware mobile communication in hospitals. Com-

puter, 36(9):38–46, September 2003. ISSN 0018-9162. 5, 23

Conor Muldoon, Gregory O’Hare, Rem Collier, and Michael O’Grady. Agent fac-

tory micro edition: A framework for ambient applications. In Vassil Alexandrov,

220

http://repositorium.sdum.uminho.pt/handle/1822/18984
http://repositorium.sdum.uminho.pt/handle/1822/18984
http://www.samsung.com/global/microsite/galaxys/specification/spec.html?ver=high
http://www.samsung.com/global/microsite/galaxys/specification/spec.html?ver=high

REFERENCES

Geert van Albada, Peter Sloot, and Jack Dongarra, editors, Computational Sci-

ence ICCS 2006, volume 3993 of Lecture Notes in Computer Science, pages

727–734. Springer Berlin / Heidelberg, 2006. 6, 25, 150, 184

Conor Muldoon, Gregory O’Hare, Michael J. O’Grady, and Richard Tynan. Agent

migration and communication in wsns. In Ninth International Conference on

Parallel and Distributed Computing, Applications and Technologies, 2008. PD-

CAT 2008., pages 425 –430, dec. 2008. 25

Jürgen Nehmer, Martin Becker, Arthur Karshmer, and Rosemarie Lamm. Living

assistance systems: an ambient intelligence approach. In Proceedings of the

28th international conference on Software engineering, ICSE ’06, pages 43–50,

New York, NY, USA, 2006. ACM. ISBN 1-59593-375-1. doi: 10.1145/1134285.

1134293. 19

Oracle. Java ME and Java Card Technology. http://www.oracle.com/

technetwork/java/javame/index.html, 2013. 10, 189

Oscar Pastor, Sergio España, José Ignacio Panach, and Nathalie Aquino. Model-

driven development. Informatik-Spektrum, 31(5):394–407, 2008. ISSN 0170-

6012. doi: 10.1007/s00287-008-0275-8. 31

Juan Pavón, Jorge Gómez-Sanz, and Rubén Fuentes. Model driven development of

multi-agent systems. In Proceedings of the Second European conference on Model

Driven Architecture: foundations and Applications, ECMDA-FA’06, pages 284–

298, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-35909-5, 978-3-540-

35909-8. doi: 10.1007/11787044 22. URL http://dx.doi.org/10.1007/

11787044_22. 30, 34

Juan Pavón, Jorge Gómez-Sanz, and Rubén Fuentes. Model driven development of

multi-agent systems. In Arend Rensink and Jos Warmer, editors, Model Driven

Architecture, Foundations and Applications, volume 4066 of Lecture Notes in

Computer Science, pages 284–298. Springer Berlin Heidelberg, 2006. ISBN 978-

3-540-35909-8. doi: 10.1007/11787044 22. 4, 182

221

http://www.oracle.com/technetwork/java/javame/index.html
http://www.oracle.com/technetwork/java/javame/index.html
http://dx.doi.org/10.1007/11787044_22
http://dx.doi.org/10.1007/11787044_22

REFERENCES

Joaquin Peña, Michael G. Hinchey, Manuel Resinas, Roy Sterritt, and James L.

Rash. Designing and managing evolving systems using a mas product line ap-

proach. Sci. Comput. Program., 66(1):71–86, April 2007. ISSN 0167-6423. 33

Loris Penserini, Paolo Bresciani, Tsvi Kuflik, and Paolo Busetta. Using tropos

to model agent based architectures for adaptive systems: a case study in am-

bient intelligence. In Proceedings of IEEE International Conference onSoft-

ware - Science, Technology and Engineering, 2005, pages 37–46, 2005. doi:

10.1109/SWSTE.2005.23. 22, 23, 32

Alexander Pokhar. Jadex Android user guide. http://jadex-agents.

informatik.uni-hamburg.de/xwiki/bin/view/Android+User+

Guide/01+Introduction, 2013. 25

Martha E. Pollack, Laura Brown, Dirk Colbry, Cheryl Orosz, Bart Peint-

ner, Sailesh Ramakrishnan, Sandra Engberg, Judith T. Matthews, Jacqueline

Dunbar-Jacob, Colleen E. McCarthy, et al. Pearl: A mobile robotic assistant for

the elderly. In AAAI workshop on automation as eldercare, volume 2002, pages

85–91, 2002. 3, 181

Andry Rakotonirainy and Richard Tay. In-vehicle ambient intelligent transport

systems (i-vaits): towards an integrated research. In Proceedings of the 7th In-

ternational IEEE Conference on Intelligent Transportation Systems, 2004, pages

648–651, 2004. doi: 10.1109/ITSC.2004.1398977. 20

Giuseppe Riva. Ambient intelligence in health care. CyberPsychology & Behavior,

6:295–300, July 2004. doi: 10.1089/109493103322011597. 20

Cesare Rocchi, Oliviero Stock, Massimo Zancanaro, Michael Kruppa, and Antonio

Krüger. The museum visit: generating seamless personalized presentations on

multiple devices. In Proceedings of the 9th international conference on Intelligent

user interfaces, IUI ’04, pages 316–318, New York, NY, USA, 2004. ACM. ISBN

1-58113-815-6. doi: 10.1145/964442.964517. 20

Stuart Jonathan Russell, Peter Norvig, John F. Canny, Jitendra M. Malik, and

Douglas D. Edwards. Artificial intelligence: a modern approach, volume 74.

Prentice hall, 1995. ISBN 0137903952. 29

222

http://jadex-agents.informatik.uni-hamburg.de/xwiki/bin/view/Android+User+Guide/01+Introduction
http://jadex-agents.informatik.uni-hamburg.de/xwiki/bin/view/Android+User+Guide/01+Introduction
http://jadex-agents.informatik.uni-hamburg.de/xwiki/bin/view/Android+User+Guide/01+Introduction

REFERENCES

Fariba Sadri. Ambient intelligence: A survey. ACM Comput. Surv., 43(4):36:1–

36:66, October 2011. ISSN 0360-0300. doi: 10.1145/1978802.1978815. 1, 4, 18,

21, 32, 179, 182

Nayat Sánchez-Pi, Javier Carbó, and José Molina. Jade/leap agents in an aml do-

main. In Emilio Corchado, Ajith Abraham, and Witold Pedrycz, editors, Hybrid

Artificial Intelligence Systems, volume 5271 of Lecture Notes in Computer Sci-

ence, pages 62–69. Springer Berlin / Heidelberg, 2008. ISBN 978-3-540-87655-7.

150

Andrea Santi, Marco Guidi, and Alessandro Ricci. Jaca-android: An agent-based

platform for building smart mobile applications. In Mehdi Dastani, Amal Fal-

lah Seghrouchni, Jomi Hbner, and Joo Leite, editors, Languages, Methodologies,

and Development Tools for Multi-Agent Systems, volume 6822 of Lecture Notes

in Computer Science, pages 95–114. Springer Berlin Heidelberg, 2011. ISBN

978-3-642-22722-6. doi: 10.1007/978-3-642-22723-3 6. 25

Bran Selic. The pragmatics of model-driven development. IEEE Software, 20(5):

19–25, 2003. ISSN 0740-7459. doi: 10.1109/MS.2003.1231146. 30

Weiming Shen, Sherman Y. T. Lang, and Lihui Wang. ishopfloor: an internet-

enabled agent-based intelligent shop floor. Systems, Man, and Cybernetics, Part

C: Applications and Reviews, IEEE Transactions on, 35(3):371–381, 2005. ISSN

1094-6977. doi: 10.1109/TSMCC.2004.843224. 20

Yuanchun Shi, Weikai Xie, Guangyou Xu, Runting Shi, Enyi Chen, Yanhua Mao,

and Fang Liu. The smart classroom: merging technologies for seamless tele-

education. Pervasive Computing, IEEE, 2(2):47–55, 2003. ISSN 1536-1268. doi:

10.1109/MPRV.2003.1203753. 20

Nikolaos Spanoudakis and Pavlos Moraitis. Modular jade agents design and imple-

mentation using aseme. In 2010 IEEE/WIC/ACM International Conference on

Web Intelligence and Intelligent Agent Technology (WI-IAT), volume 2, pages

221–228, 2010. doi: 10.1109/WI-IAT.2010.136. 34

Frank Sposaro and Gary Tyson. ifall: An android application for fall monitoring

and response. In Annual International Conference of the IEEE Engineering in

223

REFERENCES

Medicine and Biology Society, 2009. EMBC 2009, pages 6119–6122, 2009. doi:

10.1109/IEMBS.2009.5334912. 19

Thomas Stahl and Markus Völter. Model-driven software development. Wiley, first

edition, May 2006. ISBN 978-0470025703. 1, 179

David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:

Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition,

2009. ISBN 0321331885. 36

Oliviero Stock, Massimo Zancanaro, Paolo Busetta, Charles Callaway, Antonio

Krüger, Michael Kruppa, Tsvi Kuflik, Elena Not, and Cesare Rocchi. Adaptive,

intelligent presentation of information for the museum visitor in peach. User

Modeling and User-Adapted Interaction, 17:257–304, 2007. ISSN 0924-1868. 5,

23, 183

Dante I. Tapia, Ajith Abraham, Juan M. Corchado, and Ricardo S. Alonso.

Agents and ambient intelligence: case studies. Journal of Ambient Intelli-

gence and Humanized Computing, 1(2):85–93, 2010. ISSN 1868-5137. doi:

10.1007/s12652-009-0006-2. 22

Maurice H. ter Beek, Steffania Gnesi, Carlo Montangero, and Laura Semini. De-

tecting policy conflicts by model checking UML state machines. In ICFI X,

pages 59–74. IOS Press, 2009. 58, 59

Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and Franco Mazzanti. A

state/event-based model-checking approach for the analysis of abstract system

properties. Science of Computer Programming, 76(2):119 – 135, 2011. ISSN

0167-6423. doi: 10.1016/j.scico.2010.07.002. 58, 61

Ivan Trencansky, Radovan Cervenka, and Dominic Greenwood. Applying a uml-

based agent modeling language to the autonomic computing domain. In OOP-

SLA’06, pages 521–529. ACM, 2006. ISBN 1-59593-491-X. 33

Kenneth J. Turner, Stephan Reiff-Marganiec, Lynne Blair, Gavin A. Campbell,

and Feng Wang. Appel: An adaptable and programmable policy environment

224

REFERENCES

and language. Technical Report CSM-161, Computing Science and Mathemat-

ics, University of Stirling, April 2009. 9, 186

Radovan C̆ervenka, Ivan Trenc̆anský, Monique Calisti, and Dominic Greenwood.

Aml: Agent modeling language toward industry-grade agent-based modeling. In

James Odell, Paolo Giorgini, and Jörg P. Ml̈ler, editors, Agent-Oriented Software

Engineering V, volume 3382 of Lecture Notes in Computer Science, pages 31–

46. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-24286-4. doi: 10.1007/

978-3-540-30578-1 3. 33

Emil Vassev and Mike Hinchey. Assl: A software engineering approach to auto-

nomic computing. Computer, 42(6):90–93, 2009. ISSN 0018-9162. 33

Meritxell Vinyals, Juan A. Rodriguez-Aguilar, and Jesus Cerquides. A survey

on sensor networks from a multiagent perspective. Computer Journal, 54(3):

455–470, 2011. 26

Craig Walls and Ryan Breidenbach. Spring in Action. Manning Publications Co.,

5th edition, 2005. ISBN 1932394354. xv, 41

Danny Weyns, Sam Malek, and Jesper Andersson. Forms: Unifying reference

model for formal specification of distributed self-adaptive systems. ACM Trans.

Auton. Adapt. Syst., 7(1):8:1–8:61, May 2012. ISSN 1556-4665. 33

225

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Ambient Intelligence: motivation and challenges
	1.2 Overview
	1.3 Contributions
	1.4 Structure of the Thesis

	2 Background
	2.1 Ambient Intelligence
	2.1.1 AmI applications
	2.1.2 Ambient Intelligence characteristics
	2.1.3 Use of agents in AmI systems

	2.2 Agent technologies for AmI systems
	2.3 Self-management
	2.4 Model Driven Development and Agents
	2.4.1 Foundations of Model Driven Development
	2.4.2 Metamodels for agents
	2.4.3 Model Driven approaches for agents
	2.4.4 Model Driven Development technologies
	2.4.4.1 The Ecore languague
	2.4.4.2 The ATL language
	2.4.4.3 The xPand language

	2.5 Aspect Oriented Software Development

	3 A metamodel for self-managed agents
	3.1 Case study
	3.2 The Pineapple viewpoints
	3.3 Modeling of the agent-based application
	3.3.1 Multi-agent system design in Pineapple
	3.3.2 Design and validation of the self-management
	3.3.2.1 Organizations for self-management
	3.3.2.2 Policies using APPEL notation
	3.3.2.3 Actions for self-management

	3.4 Summary

	4 From Pineapple to MalacaTiny
	4.1 The MalacaTiny metamodel
	4.1.1 Agent modeling
	4.1.2 Aspect modeling
	4.1.3 Self-Management modeling

	4.2 From Pineapple to MalacaTiny
	4.2.1 Generating agents
	4.2.2 Generating aspects
	4.2.3 Generating self-management

	4.3 Summary

	5 Code generation of MalacaTiny agents
	5.1 The MalacaTiny agents implementation
	5.1.1 The core agent classes
	5.1.1.1 The Mediator class of MalacaTiny
	5.1.1.2 The Agent class of Goal-Oriented MalacaTiny

	5.1.2 Aspects and aspect weaving
	5.1.2.1 Aspects weaving of MalacaTiny
	5.1.2.2 Dynamic weaving of Goal-Oriented MalacaTiny

	5.1.3 Implementation of the Self-management properties in MalacaTiny
	5.1.3.1 Implementation of the SelfManagement class of MalacaTiny
	5.1.3.2 Implementation of Self-management functions in Goal-Oriented MalacaTiny

	5.2 Code generation process of the MalacaTiny agents
	5.2.1 Code generation of the internal architecture of agents
	5.2.2 Code generation of aspects
	5.2.3 Code generation of self-management

	5.3 Summary

	6 The communication concern
	6.1 The Blue agent platform
	6.2 The Sol Agent platform
	6.2.1 An agent platform for AmI applications
	6.2.1.1 The Sol agent platform services
	6.2.1.2 Managing Groups at Sol
	6.2.1.3 Extending the MTS to support multicast
	6.2.1.4 Services for MAS administrator

	6.2.2 Supporting interoperability between heterogeneous devices
	6.2.2.1 Supporting interoperability in the agent infrastructure
	6.2.2.2 The self-configurable communication concern

	6.3 Summary

	7 Validation
	7.1 Degree of automation
	7.2 Validation of MalacaTiny agents
	7.2.1 Resource consumption
	7.2.2 Scalability
	7.2.3 Performance

	7.3 Performance of self-management functionality
	7.4 Performance of the Sol agent platform
	7.4.1 Interoperation between heterogeneous agents
	7.4.2 Group communication

	7.5 Summary

	8 Conclusions
	8.1 Summary and conclusions
	8.2 Publications
	8.3 Lessons learned
	8.3.1 Model Driven Engineering
	8.3.2 Integration and Interoperability

	8.4 Future work

	Appendix A: Resumen
	A.1 Inteligencia ambiental: motivación y retos
	A.2 Visión general
	A.3 Contribuciones
	A.4 Estructura de la tesis
	Appendix B: Conclusiones
	B.1 Resumen
	B.2 Publicaciones
	B.3 Lecciones aprendidas
	B.3.1 Ingeniería Dirigida por Modelos
	B.3.2 Integración e Interoperabilidad

	B.4 Trabajo futuro

	References

