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Abstract. There exist local search landscapes where the evaluation
function is an eigenfunction of the graph Laplacian that corresponds
to the neighborhood structure of the search space. Problems that dis-
play this structure are called “Elementary Landscapes” and they have
a number of special mathematical properties. The problems that are
not elementary landscapes can be decomposed in a sum of elementary
ones. This sum is called the elementary landscape decomposition of the
problem. In this paper, we provide the elementary landscape decomposi-
tion for the Hamiltonian Path Optimization Problem under two different
neighborhoods.
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1 Introduction

Grover [7] originally observed that there exist neighborhoods for Traveling Sales-
person Problem (TSP), Graph Coloring, Min-Cut Graph Partitioning, Weight
Partitioning, as well as Not-All-Equal-SAT that can be modeled using a wave
equation borrowed from mathematical physics. Stadler named this class of prob-
lems “elementary landscapes” and showed that if a landscape is elementary, the
objective function is an eigenfunction of the Laplacian matrix that describes the
connectivity of the neighborhood graph representing the search space. When the
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landscape is not elementary it is always possible to write the objective function as
a sum of elementary components, called the elementary landscape decomposition
(ELD) of a problem [6].

Landscape theory has been proven to be quite effective computing summary
statistics of the optimization problem. Sutton et al. [14] show how to compute
statistical moments over spheres and balls of arbitrary radius around a given so-
lution in polynomial time using the ELD of pseudo-Boolean functions. Chicano
and Alba [4] and Sutton and Whitley [13] have shown how the expected value
of the fitness of a mutated individual can be exactly computed using the ELD.
Measures like the autocorrelation length and the autocorrelation coefficient can
be efficiently computed using the ELD of a problem. Chicano and Alba [5] proved
that Fitness-Distance Correlation can be exactly computed using landscape the-
ory for pseudo-Boolean functions with one global optimum.

The landscape analysis of combinatorial optimization problems has also in-
spired the design of new and more efficient search methods. This is the case of the
average-constant steepest descent operator for NK-landscapes and MAX-kSAT
of Whitley et al. [15], the second order partial derivatives of Chen et al. [3] and
the hyperplane initialization for MAX-kSAT of Hains et al. [8].

However, the first step in the landscape analysis is to find the ELD of the
problem. In this paper, we present the ELD of the Hamiltonian Path Opti-
mization Problem (HPO) for two different neighborhoods: the reversals and the
swaps. This problem has applications in DNA fragment assembling and the con-
struction of radiation hybrid maps. The remainder of the paper is organized as
follows. In Section 2 we present a short introduction to landscape theory. Sec-
tion 3 presents the HPO and its relationship with QAP. In Sections 4 and 5
we present the landscape structre of HPO for the reversals and swaps neighbor-
hood, respectively. Finally, Section 6 concludes the paper and outlines future
directions.

2 Background on Landscape Theory

Let (X,N, f) be a landscape, where X is a finite set of candidate solutions,
f : X → R is a real-valued function defined on X and N : X → 2X is the
neighborhood operator. The pair (X,N) is called configuration space and induces
a graph in which X is the set of nodes and an arc between (x, y) exists if
y ∈ N(x). The adjacency and degree matrices of the neighborhood N are:

Ax,y =

{
1 if y ∈ N(x),
0 otherwise;

Dx,y =

{
|N(x)| if x = y,
0 otherwise.

We restrict our attention to regular neighborhoods, where |N(x)| = d > 0
for a constant d, for all x ∈ X. Then, the degree matrix is D = dI, where I is
the identity matrix. The Laplacian matrix ∆ associated to the neighborhood is
defined by ∆ = A−D. In the case of regular neighborhoods it is ∆ = A− dI.
Any discrete function, f , defined over the set of candidate solutions can be
characterized as a vector in R|X|. Any |X| × |X| matrix can be interpreted as a



linear map that acts on vectors in R|X|. For example, the adjacency matrix A
acts on function f as follows (A f)(x) =

∑
y∈N(x) f(y), where the component

x of (A f) is the sum of the function values of all the neighbors of x. Stadler
defines the class of elementary landscapes where the function f is an eigenvector
(or eigenfunction) of the Laplacian up to an additive constant [11].

Definition 1. Let (X,N, f) be a landscape and ∆ the Laplacian matrix of
the configuration space. The landscape is said to be elementary if there ex-
ists a constant b, which we call offset, and an eigenvalue λ of −∆ such that
(−∆)(f − b) = λ(f − b). When the neighborhood is clear from the context we
also say that f is elementary.

We use −∆ instead of ∆ in the definition to avoid negative eigenvalues, since
∆ is negative semidefinite. In connected neighborhoods, where the graph related
to the configuration space (X,N) is connected, the offset b is the average value
of the function over the whole search space: b = f̄ . Taking into account basic
results of linear algebra, it can be proven that if f is elementary with eigenvalue
λ, af + b is also elementary with the same eigenvalue λ. If f is an elementary
function with eigenvalue λ, then the average in the neighborhood of a solution
can computed as:

Avg(f(y))
y∈N(x)

= f(x) +
λ

d
(f̄ − f(x)), (1)

known as Grover’s wave equation [7], which claims that the average fitness in
the neighborhood of a solution x can be computed from the fitness of x. The
reader interested in Landscape Theory can refer to the survey by Reidys and
Stadler [11].

3 Hamiltonian Path Optimization Problem

Given a complete edge-weighted graph, the Hamiltonian Path Optimization
Problem (HPO) consists in finding the minimum-cost path that visits all vertices
in the graph exactly once, without visiting any vertex twice. This problem has
applications in DNA “Linkage Marker” ordering, and in manufacturing, specif-
ically in “set-up cost” minimization. It is similar to the Traveling Salesperson
Problem (TSP), except that the result is not a circuit. The path can start at any
vertex in the graph and it can end at any other vertex. There exists a polynomial
time tranformation that converts any Hamiltonian Path Optimization Problem
over n vertices into a Traveling Salesman Problem over n+ 1 vertices. Assuming
the goal is minimization and that all of the edge weights are positive, an addi-
tional dummy vertex can be added that is connected to every other vertex with
zero cost. The optimal Hamiltonian Path is thus transformed into a circuit by
using the dummy vertex (and two zero cost edges) to return to the beginning of
the path: the Hamiltonian Path and the Circuit have exactly the same cost. We
will return to this observation in the conclusions.



The solutions for the HPO problem can be modeled as permutations, which
indicate in which order all the vertices are visited. Let us number all the vertices
of the graph and let w be the weight matrix, which we will consider symmetric,
where wp,q is the weight of the edge (p, q). The fitness function for HPO is:

f(π) =

n−1∑
i=1

wπ(i),π(i+1), (2)

where π is a permutation and π(i) is the i-th element in that permutation. HPO
is a subtype of a more general problem: the Quadratic Assignment Problem
(QAP) [2]. Given two matrices r and w the fitness function of QAP is:

fQAP (π) =

n∑
i,j=1

ri,jwπ(i),π(j). (3)

We can observe that (3) generalizes (2) if w is the weight matrix for HPO
and we define ri,j = δji+1, where δ is the Kronecker delta. HPO has applica-
tions in Bioinformatics, in particular in DNA fragment assembling [10] and the
construction of radiation hybrid maps [1].

4 Landscape for Reversals

Given a permutation π and two positions i and j with 1 ≤ i < j ≤ n, we can
form a new permutation π′ by reversing the elements between i and j (inclusive).
Formally, the new permutation is defined as:

π′(k) =

{
π(k) if k < i or k > j,
π(j + i− k) if i ≤ k ≤ j. (4)

Figure 1(a) illustrates the concept of reversal. The reversal neighborhood
NR(π) of a permutation π contains all the permutations that can be formed by
applying reversals to π. Each reversal can be identified by a pair [i, j], which are
the starting and ending positions of the reversal. We use square brackets in the
reversals to distinguish them from swaps. Then, we have |NR(π)| = n(n− 1)/2.

In the context of HPO, where we consider a symmetric cost matrix, the
solution we obtain after applying the reversal [i, j] = [1, n] to π has the same
objective value as π, since it is simply a reversal of the complete permutation.
For this reason, we will remove this reversal from the neighborhood. We will
call the new neighborhood the reduced reversal neighborhood, denoted with NRR
to distinguish it from the original reversal neighborhood. We have |NRR(π)| =
n(n−1)/2−1. In the remaining of this section we will refer always to the reduced
reversal neighborhood unless otherwise stated. The landscape analyzed in this
section is composed of the set of permutations of n elements, the reduced reversal
neighborhood and the objective function (2). We will use the component model
explained in the next section to prove that this landscape is elementary.



2 4 3 5 1 6

2 1 5 3 4 6

(a) Reversal

2 4 3 5 1 6

2 1 3 5 4 6

(b) Swap

Fig. 1. Examples of reversal and swap for a permutation of size 6.

4.1 Component Model

Whitley and Sutton developed a “component” based model that makes it easy to
identify elementary landscapes [17]. Let C be a set of “components” of a problem.
Each component c ∈ C has a weight (or cost) denoted by w(c). A solution x ⊆ C
is a subset of components and the evaluation function f(x) maps each solution x
to the sum of the weights of the components in x: f(x) =

∑
c∈x w(c). Finally, let

C −x denote the subset of components that do not contribute to the evaluation
of solution x. Note that the sum of the weights of the components in C − x is
computed by

∑
c∈C w(c)−f(x). In the context of the component model, Grover’s

wave equation can be expressed as:

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p2

(∑
c∈C

w(c)− f(x)

)
,

where p1 = α/d is the (sampling) rate at which components that contribute to
f(x) are removed from solution x to create a neighboring solution y ∈ N(x),
and p2 = β/d is the rate at which components in the set C − x are sampled to
create a neighboring solution y ∈ N(x). By simple algebra,

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p2

(∑
w∈C

w(c)− f(x)

)
= f(x) +

λ

d
(f̄ − f(x)),

where λ = α+ β, and f̄ = β/(α+ β)
∑
c∈C w(c) [16].

4.2 Proof of Elementariness

Let us start presenting two lemmas.

Lemma 1. Given the n! possible Hamiltonian Paths over n vertices, all edges
appear the same number of times in the n! solutions and this number is 2(n−1)!.

Proof. Each edge (u, v) of the graph can be placed in positions 1, 2, . . . , n − 1
of the permutation. This means a total of n − 1 positions where (u, v) can be
placed. For each position it can appear as u followed by v or v followed by u.



Once it is fixed in one position the rest of the positions of the permutation must
be filled with the remaining n− 2 elements. This can be done in (n− 2)! ways.
Thus, each edge (u, v) of the graph appears in 2 · (n − 1) · (n − 2)! = 2(n − 1)!
permutations. ut

Lemma 2. The average fitness value of the Hamiltonian Path Optimization
Problem over the entire solution space is: f̄ = 2/n

∑
c∈C w(c).

Proof. There are n(n−1)/2 edges in the cost matrix, and there are n−1 edges in
any particular solution. Since all edges uniformly appear in the set of all possible
solutions, Lemma 1 implies:

f̄ =
2(n− 1)!

∑
c∈C w(c)

n!
= 2/n

∑
c∈C

w(c).

ut

The next theorem presents the main result of this section: it proves that HPO
is an elementary landscape for the reduced reversals neighborhood.

Theorem 1. For the Hamiltonian Path Optimization Problem,

Avg(f(y))
y∈NRR(x)

= f(x) +
n

n(n− 1)/2− 1
(f̄ − f(x)),

and it is an elementary landscape for the reduced reversals neighborhood.

Proof. First, we need to show that all of the n−1 edges that contributes to f(x)
are uniformly broken by the reverse operator when all of the neighbors of f(x)
are generated. The segments to be reversed range in length from 2 to n − 1. If
the length of the segment is i, then the number of possible segments of length i
is n− (i− 1). Let us consider reversals of length i and n− i+ 1 together, where
1 < i ≤ n/2. The reversal of length i will break the first and last i − 1 edges
in the permutation only once, but it will break all interior edges twice. However
the reversal of length n− i+ 1 will only break the first and last i− 1 edges, and
it will break these edges only once. Thus, grouping these together, all edges are
broken twice for each value of i.

When n is even, the reversals of length n/2 and n/2+1 are grouped together
and the pairing is complete. Thus, for i = 2 to n/2 all edges are broken twice,
and thus every edge is broken 2(n/2− 1) = (n− 2) times and α = n− 2.

When n is odd, reversals of length (n+ 1)/2 are a special case. For i = 2 to
(n−1)/2 all edges are broken twice, so all edges have been broken 2((n−1)/2−
1) = (n − 3) times, but this does not count the reversal of length (n + 1)/2.
When the reversal of length (n+ 1)/2 is applied (and is not paired with another
reversal) each edge is broken exactly once. Thus all edges are now broken (n−2)
times and α = n− 2.

Next we show that all weights in the cost matrix in the set C−x are uniformly
sampled by the reverse operator. Consider the vertex vi in the permutation.
Holding i fixed for the moment, consider all cuts that are made at location i



and all feasible locations j < i. When all possible values of j are considered,
this causes all of the vertices in the permutation left of vertex vi to come into a
position adjacent to vi except for vi−1 which is already adjacent. Next consider a
cut at location i+1 (i is still fixed) and all feasible locations m > i+1. When all
of the possible of value of m are considered all of the vertices in the permutation
to the right of vertex vi are moved into a position adjacent to vi except vi+1.
Thus, in these cases vi does not move, but every edge not in the solution x
that is incident on vertex i is sampled once. Since this is true for all vertices, it
follows that every edge not in the current solution is sampled twice (β = 2): once
for each of the vertices in which it is incident. Therefore, summing over all the
neighbors: d ·Avg(f(y))y∈N(x) = d · f(x)− (n− 2)f(x) + 2

(∑
c∈C w(c)− f(x)

)
.

Computing the average over the neighborhood and taking into account the
result of Lemma 2:

Avg(f(y))
y∈N(x)

= f(x)− n− 2

n(n− 1)/2− 1
f(x) +

2

n(n− 1)/2− 1

(∑
c∈C

w(c)− f(x)

)
= f(x) +

n

n(n− 1)/2− 1
(f̄ − f(x)).

ut

5 Landscape Structure for Swaps

Given a permutation π, we can build a new permutation π′ by swapping two
positions i and j in the permutation. The new permutation is defined as:

π′(k) =

π(k) if k 6= i and k 6= j,
π(i) if k = j,
π(j) if k = i.

(5)

Figure 1(b) illustrates the concept of swap. The swap neighborhood NS(π) of
a permutation π contains all the permutations that can be formed by applying
swaps to π. Each swap can be identified by the pair (i, j) of positions to swap. The
cardinality of the swap neighborhood is |NS(π)| = n(n− 1)/2. Unless otherwise
stated, we will refer always to the swap neighborhood in this section.

We will analyze the landscape composed of the set of permutations of n
elements, the swap neighborhood and the objective function (2). The approach
used for this analysis will be different than the one in the previous section.
Instead of using the component model we will base our results in the analysis of
the QAP landscape done in [6]. The reasons for not using the component model
will be discussed at the end of the section.

5.1 Previous Results for QAP

According to Chicano et al. [6], the ELD of the QAP for the swap neighborhood
is composed of three components. The objective function analyzed in [6] is more
general than (3), it corresponds to the Lawler version of QAP [9]:



f(π) =

n∑
i,j,p,q=1

ψi,j,p,qδ
p
π(i)δ

q
π(j), (6)

where δ is the Kronecker delta. The correspondence with (3) is ψi,j,p,q = ri,jwp,q.
The elementary landscape decomposition of the Lawler QAP is given next.

Theorem 2 (from [6]). The landscape composed of the permutations of n ele-
ments, the swap neighborhood and the objective function (6) can be decomposed
as the sum of at most three elementary landscapes with eigenvalues λ1 = n,
λ2 = 2n and λ3 = 2(n− 1). The definition of these elementary components are:

fn(π) =
1

n(n− 2)

n∑
i,j=1
i6=j

n∑
p,q=1
p 6=q

ψi,j,p,q φ
n
(i,j),(p,q)(π) +

n∑
i,p=1

ψi,i,p,p δ
p
π(i), (7)

f2n(π) =
1

2n

n∑
i,j=1
i6=j

n∑
p,q=1
p 6=q

ψi,j,p,q φ
2n
(i,j),(p,q)(π), (8)

f2(n−1)(π) =
1

2(n− 2)

n∑
i,j=1
i6=j

n∑
p,q=1
p6=q

ψi,j,p,q φ
2(n−1)
(i,j),(p,q)(π), (9)

where the φ functions are defined using as base the φα,β,γ,ε,ζ(i,j),(p,q) function as φn(i,j),(p,q) =

φn−1,3−n,0,2−n,1−n(i,j),(p,q) , φ2n(i,j),(p,q) = φn−1,3−n,0,2,1(i,j),(p,q) and φ
2(n−1)
(i,j),(p,q) = φn−3,n−3,0,0,1(i,j),(p,q) .

The φα,β,γ,ε,ζ(i,j),(p,q) function is defined as:

φα,β,γ,ε,ζ(i,j),(p,q)(π) =


α if π(i) = p ∧ π(j) = q,
β if π(i) = q ∧ π(j) = p,
γ if π(i) = p⊕ π(j) = q,
ε if π(i) = q ⊕ π(j) = p,
ζ if π(i) /∈ {p, q} ∧ π(j) /∈ {p, q},

(10)

where ⊕ denotes the exclusive OR. The function f can be written in a compact
form as: f = fn + f2n + f2(n−1).

In the next subsection we analyze this decomposition, providing some prop-
erties that are useful to find the elementary landscape decomposition of the HPO
under the swap neighborhood.

5.2 Elementary Landscape Decomposition of the HPO

The functions φn(i,j),(p,q), φ
2n
(i,j),(p,q), and φ

2(n−1)
(i,j),(p,q) defined above have some prop-

erties that make f2n and f2(n−1) vanish when the matrices r and w fulfill some
concrete conditions. The next proposition summarizes these properties:



Proposition 1. The functions φn(i,j),(p,q), φ
2n
(i,j),(p,q), and φ

2(n−1)
(i,j),(p,q) defined in

Theorem 2 hold the next equalities:

φλ(i,j),(p,q) = φλ(j,i),(q,p) for λ = n, 2n, 2(n− 1), (11)

φ2n(i,j),(p,q) + φ2n(j,i),(p,q) = 2, (12)

φ
2(n−1)
(i,j),(p,q) = φ

2(n−1)
(j,i),(p,q). (13)

Proof. The first equation (11) follows from the fact that exchanging i and j at
the same time as p and q in any of the branch conditions of the function (10)
leaves the condition unchanged, thus the function is the same.

In order to prove Eqs. (12) and (13) we can observe that exchanging i and
j in (10) is equivalent to swapping the values of α and β (first and second
branches) and those of γ and ε (third and fourth branches). The fifth branch is
left unchanged. Thus, Eq. (13) is a direct consequence of this swap of branch
values and (12) can be proven as follows:

φ2n(i,j),(p,q)(π) + φ2n(j,i),(p,q)(π)

=


n− 1
3− n

0
2
1

+


3− n
n− 1

2
0
1

=


2 if π(i) = p ∧ π(j) = q,
2 if π(i) = q ∧ π(j) = p,
2 if π(i) = p⊕ π(j) = q,
2 if π(i) = q ⊕ π(j) = p,
2 if π(i) /∈ {p, q} ∧ π(j) /∈ {p, q}.

ut

Let us now analyze the consequences of these properties for the elementary
landscape decomposition of a QAP instance.

Theorem 3. Let us consider the elementary landscape decomposition of (6) for
the swap neighborhood given in Theorem 2. Then we have:

– If any of the matrices r or w is symmetric then f2n is constant.
– If any of the matrices r or w is antisymmetric then f2(n−1) is zero.

Proof. We will prove the theorem assuming that r has the required property
(symmetric or antisymmetric) and then we will prove that the corresponding
elementary components are still constant or zero if we exchange r and w.

Let us assume that matrix r is symmetric (ri,j = rj,i), then we can write:

f2n =
1

2n

n∑
i,j=1
i<j

n∑
p,q=1
p 6=q

ri,jwp,q

(
φ2n(i,j),(p,q) + φ2n(j,i),(p,q)

)
by (12)

=
1

2n

n∑
i,j=1
i<j

n∑
p,q=1
p 6=q

2ri,jwp,q =
1

n

 n∑
i,j=1
i<j

ri,j


 n∑

p,q=1
p 6=q

wp,q

 , (14)



which is a constant value that only depends on the instance, not the solution.
Let us now assume that r is antisymmetric (ri,j = −rj,i), then we can write:

f2(n−1) =
1

2(n− 2)

n∑
i,j=1
i<j

n∑
p,q=1
p 6=q

ri,jwp,q

(
φ
2(n−1)
(i,j),(p,q) − φ

2(n−1)
(j,i),(p,q)

)
= 0.

Let us call g(π) to the fitness function we obtain by exchanging matrices r and
w in the definition of the fitness function (6) and let us call f(π) to the original
fitness function. The relationship between these two functions is as follows:

g(π) =

n∑
i,j=1

n∑
p,q=1

wi,jrp,qδ
p
π(i)δ

q
π(j) renaming indices (p↔ i and q ↔ j)

=

n∑
p,q=1

n∑
i,j=1

wp,qri,jδ
i
π(p)δ

j
π(q) =

n∑
i,j=1

n∑
p,q=1

ri,jwp,qδ
p
π−1(i)δ

q
π−1(j) = f(π−1).

The elementary landscape decomposition of g(π) = gn(π)+g2n(π)+g2(n−1)(π)
can thus be written based on the elementary landscape decomposition of f(π)
as: gλ(π) = fλ(π−1) for λ = n, 2n, 2(n−1). If the w matrix of the original fitness
function f is symmetric or antisymmetric then the r matrix of the g function
will have the same property, and, as we have proven above, g2n = constant or
g2(n−1) = 0, respectively. But this means that also f2n = constant or f2(n−1) = 0,
respectively. ut

Since the addition of constant values does not affect the number of elemen-
tary components of a landscape, when one of the components is constant in the
previous theorem, this component vanishes from the elementary landscape de-
composition. In other words, the number of elementary components is reduced
whenever any of the conditions in the previous theorem holds. For example, an
instance of QAP having a symmetric w will have at most two elementary compo-
nents, instead of three. The conditions can co-occur in the same instance. If an
instance of QAP has one of the matrices symmetric and the other one antisym-
metric it will be an elementary landscape, since f2n and f2(n−1) are constants.
For HPO we have the next result.

Corollary 1. The Hamiltonian Path Optimization Problem with symmetric cost
matrix is the sum of at most two elementary components in the swap neighbor-
hood. One possible expression for these two components is:

fn =
1

n(n− 2)

n−1∑
i=1

∑
p,q=1
p 6=q

wp,qφ
n
(i,i+1),(p,q) +

n− 1

n

n∑
p,q=1
p<q

wp,q, (15)

f2(n−1) =
1

2(n− 2)

n−1∑
i=1

∑
p,q=1
p 6=q

wp,qφ
2(n−1)
(i,i+1),(p,q), (16)



where fn, and f2(n−1) are elementary with eigenvalues n and 2(n − 1), respec-
tively, and the objective function of HPO f can be written as: f = fn + f2(n−1).

Proof. Since the matrix w is symmetric in the HPO, according to Theorem 3
the f2n component is constant and its value is: f2n = n−1

n

∑
p,q=1
p<q

wp,q, where

we use (14) and take into account that the r matrix contains n− 1 ones in the
upper triangle. We sum this constant to the fn component (without changing
its elementariness) and we have the claimed result after some algebraic simplifi-
cations in the equations. ut

The landscape of HPO with the swap neighborhood is the sum of two ele-
mentary landscapes. This is the main reason why the component model is not
useful for this analysis. The component model can only be used to prove that a
landscape is elementary but it is not able to describe landscapes that are sums
of more than one elementary component. Furthermore, it is not able to prove
the elementariness of some elementary landscapes. This happens, in particular,
in elementary landscapes with irrational eigenvalues.

Another mathematical tool to provide the elementary landscape decompo-
sition of optimization problems is the spectral theory of quasi-Abelian Cayley
graphs. When the solution set is an Abelian group this theory provides an easy
and elegant elementary landscape decomposition of any objective function. This
happens for example, in the case of the q-ary hypercube [12]. When the solution
set is not an Abelian group, as in the case of the permutations, the math in-
volved is more complex but still give elegant answers if the set of generators that
define the neighborhood is the union of conjugacy classes of the group [11]. The
generators of the swap neighborhood (2-cycles) form a conjugacy class, so the
spectral theory could be applied in this case; but the generators of the reversal
(and reduced reversal) neighborhood are not the union of conjugacy classes, what
makes the component model to be, as far as we know, the best methodology to
prove the elementariness of the landscape.

6 Conclusions and Future Work

In this work we have proven that the Hamiltonian Path Optimization Problem is
elementary under the reversals neighborhood and is the sum of two elementary
components in the case of the swaps neighborhood. We have also provided the
expressions for the elementary components in the latter case.

In the two neighborhoods considered in the paper the number of moves is
Θ(n2). For problems that are extremely large, e.g., with billions of vertices, it
may not be reasonable to look at all possible moves. On the other hand, some
form of heuristic might be used to decide if there exists a smaller subset of
locations where the permutation might be reasonably be broken, while other
edges are not broken. In this way, a problem with billions of vertices might be
mapped onto a problem with only hundreds of thousands vertices. This leads to
the so-called Partial Neighborhoods [17]. An interesting question to analyze is
the landscape structure for these partial neighborhoods.



At the beginning of Section 3, we noted that every Hamiltonian Path Op-
timization Problem over n vertices can be converted into a Traveling Salesman
Problems over n + 1 vertices. In practice, this means that existing TSP solvers
can be use to solve the Hamiltonian Path Optimization Problem. One inter-
esting question is whether the elementary landscapes which exist for the TSP
can be mapped onto the elementary landscapes which we have defined for the
Hamiltonian Path Optimization Problem.
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