Tuning Proton Conductivity in A Multifunctional Calcium Phosphonate Hybrid Framework

<u>A. Cabeza</u>^{*a*}, M. Bazaga-García^{*a*}, R.M.P. Colodrero^{*a*}, M. Papadaki^{*b*}, P. Olivera-Pastor^{*a*}, E.R. Losilla^{*a*}, L. León-Reina^{*a*}, D. Choquesillo-Lazarte^{*c*}, P. Garczarek^{*d*}, J. Zoń^{*d*}, M.A.G. Aranda,^{*a.e*} and K.D. Demadis^{*b*} ^{*a*}University of Malaga, Spain. ^{*b*}University of Crete, Greece. ^{*c*}Laboratorio de Estudios Cristalográficos, IACT-CSIC, Spain; ^{*d*}Wroclaw University of Technology, Poland; ^{*e*}CELLS-ALBA synchrotron, Spain; *e-mail: aurelio@uma.es*

Multi-chelating phosphonate ligands are organic linkers alternative to polycarboxylates and other ligands providing synthetic access to a number of thermally- and chemically-stable MOFs [1]. Metal phosphonates are amenable for accessing suitable and highly conducting materials both by tuning structural features and post-synthesis treatment [2,3]. For instance, proton conductivity values in the order of 10^{-2} S cm⁻¹ have been reported for several phosphonate-based compounds [4].

We report hereby the synthesis, structural characterization and proton conductivity of an open framework hybrid, Ca₂[(HO₃PC₆H₃COOH)₂]₂[(HO₃PC₆H₃(COO)₂H)(H₂O)₂]5H $_{2}O$, that combines Ca²⁺ ions and the rigid polyfunctional ligand 5-(dihydroxyphosphoryl)isophthalic acid. This compound was obtained by slow crystallization at ambient conditions at pH ~3. Its complex pillared layered structure, solved by single crystal X-ray analysis, contains hydrophilic 1D channels filled with both water and acidic phosphonate and carboxylate groups creating a hydrogen-bonded network. Partial removal of the lattice water at 75 °C causes a monoclinic structural distortion but still retaining the initial conductivity properties (5.7.10⁻⁴ S·cm⁻¹). Exposure of the sample to ammonia vapor from a concentrated aqueous solution led to major structural changes resulting in a new layered material containing seven NH3 and sixteen H2O molecules per formula. This solid exhibits enhanced conductivity, reaching 6.6·10⁻³ S·cm⁻¹, as measured at 98 % RH and T = 24 °C. Activation energies were between 0.23 and 0.40 eV, typical of a Grothuss mechanism of proton conduction

[1] Metal phosphonate chemistry: From synthesis to applications; Clearfield, A.; Demadis, K.D., Ed.; The Royal Society of Chemistry: London, 2012. [2] G.K.H. Shimizu, J.M. Taylor, S. Kim, Science 2013, 341, 354 [3] R.M.P. Colodrero, A. Cabeza, P. Olivera-Pastor, A. Infantes-Molina, E. Barouda, K. D. Demadis, and M. A. G. Aranda, *Chem. Eur. J.* 2009, 15, 6612. [4] R.M.P. Colodrero, P. Olivera-Pastor, E.R. Losilla, M.A.G. Aranda, L. Leon Reina, M. Papadaki, A.C. McKinlay, R.E. Morris, K.D. Demadis, A. Cabeza, *Dalton Trans.* 2012, 41, 4045.

Keywords: MOF, inorganic-organic hybrids, proton conductivity, functional materials, phosphonate.