Group-Scanning for Supply Chain Management

Mike Burmester, Senior member, IEEE, and Jorge Munilla

Abstract—The integrity of shipments in the supply chain may have to be tracked remotely by carriers that are not necessarily trusted. We present an RFID framework architecture for applications when multiple scanned tags generate concurrently a proof of "simultaneous" presence that cannot be forged by untrusted carriers.

Index Terms—Distributed RFID systems, supply chain management, grouping-scanning proofs.

1 INTRODUCTION

Radio Frequency Identification (RFID) is a wireless technology widely deployed for inventory, retail and supply chain management. There are many advantages of RFID over barcode technology: e.g., RFID does not require line-of-sight alignment with readers for proper scanning and RFID tags can be interrogated at greater distances, faster and concurrently [1]. RFID tags and sensors can also be used to enable computers to observe/identify/understand for situational awareness without the limitations of a human in the loop. Furthermore, RFID technology extends the scope of the Internet of Things to capture intelligent processes and cyber-physical applications.

Although initial designs of RFID protocols focused on performance and efficiency, this technology has found use in many applications that require the implementation of security mechanisms. The recent ratification of the standard Gen2v2 highlights these security concerns [2]. Several RFID authentication protocols that address security have been proposed in the literature. Most use hash functions [4], [5], [6], and others use pseudorandom functions [7], [8]. The Flyweight authentication protocol [9] is one of a few which only requires a pseudorandom number generator.

For supply chain management, RFID tags have to be tracked remotely. Ownership Transfer Protocols may be used but there are cases when the owner does not want to cede control. For example, the owner may use the services provided by a carrier who, in turn, uses other carriers. In such cases it is desirable that the owner and carrier can periodically check the integrity of a shipment of tagged products. This requirement is known as group-scanning and involves the tags of a group generating a proof of simultaneous presence in the range of an RFID reader [10].

There are several practical scenarios where group scanning can substantially expand the capabilities of RFID-based systems. For example, some products may need to be shipped together in groups and one may want to monitor their progress through the supply chain—e.g., hardware components of a system or kits. Alternatively, safety regulations may require that drugs be shipped, or dispensed, together with information leaflets. Since public key cryptography is beyond the capability of most RFID tags, such proofs can only be checked by a verifier that shares private information with the group of tags (GoT).

Our main contribution in this paper is to:

a) Present a framework for group-scanning that addresses practical settings, in particular supply chain management.
b) Present a lightweight group-scanning proof that is generated concurrently by tags of a group without sharing any private information with the reader.

The organization of this paper is as follows. The literature is reviewed in Section 2. In Section 3 we discuss RFID deployments for supply chain management and present a high-level description of the security requirements and procedures for group scanning, and discuss the threat model. In Section 4 we propose two RFID protocols for group scanning: a non-anonymous group-scanning proof and a version that adds support for anonymity. In Section 5 we show how these can be integrated into RFID supply chain management systems.
2 BACKGROUND

2.1 Group-Scanning Proofs

Ari Juels introduced in 2004 the security context of a new RFID application—which he called a yoking-proof [11], that generates evidence of simultaneous presence of two tags in the range of an RFID reader. This first protocol was later found to be insecure [12], but the simultaneous scanning application triggered considerable interest in the research community. Yoking-proofs have been extended to group-scanning proofs in which multiple tags prove simultaneous presence in the range of an RFID reader.

Burmester et al. presented a group-scanning proof that uses randomized pseudonyms and updates secret keys after each session for forward-secrecy [13]. This is essentially a proof-of-concept and not appropriate for lightweight applications. Huang and Ku [14] presented a group-scanning proof for low-cost tags that uses a pseudorandom number generator to authenticate flows and a cyclic redundancy code to randomize strings. This has several weaknesses, some of which were addressed by Chien et al. [15] who, in turn, proposed a new group-scanning proof. Peris-Lopez et al. [16] found other security flaws in these protocols and proposed security guidelines. More recently, Liu et al. proposed a group-scanning proof for multiple readers and tags [10]. This proof requires the reader to be a contributing party that shares private keys with the tags of the group.

3 A GROUP-SCANNING ARCHITECTURE

3.1 Group-Scanning Deployments

A typical deployment of an RFID supply chain involves three types of legitimate entities.

a) A group of tags (GoT).

b) The owner of GoT, who keeps the digital rights of the tags; in particular the owner knows the private information stored by the tags.

c) The carrier, whose services are contracted by the owner. The carrier has physical possession of the GoT, can access it through his reader(s) and should be able to check its integrity, but does not have control over it.

3.2 Group-Scanning Capabilities

We assume the following regarding the environment that characterizes RFID group-scanning applications.

3.2.1 RFID Tag Capabilities

Passive UHF tags are the most common for supply chain applications. They have no power of their own, operate in the far assumption, and use backscatter communication. Such tags work at greater distances (than inductive tags) but the delivered power is low, and therefore lightweight cryptographic tools should be utilized. However, we shall assume that tags are able to perform basic symmetric-key cryptographic operations such as selecting pseudorandom numbers and evaluating a pseudorandom function.

Public key cryptography, tamper-resistant shielding and on-board clocks are beyond the capabilities of most tags. However, the activity time span of a tag during a single session can be limited using techniques such as measuring the discharge rate of capacitors [11].

3.2.2 RFID Reader and Verifier/Server Capabilities

Readers and verifiers/servers are able to perform complex cryptographic operations. Although in practice these may be implemented on the same device with two communication ports, in our model we shall regard them as independent. In particular, readers just manage the communication between tags, and interface between the verifier and the GoT.

3.2.3 RFID Communication Channels

Tags can only communicate with readers that are in wireless range (they backscatter the reader’s electromagnetic signal). Thus, direct communication between passive RFID tags is not possible. However readers can establish logical wireless channels that link the tags of a group.

To establish a channel, the tags must provide the reader with identifying origin information to define an association. After the tags get identified (not necessarily authenticated), they get linked with a wireless communication channel via the reader (in practice: origin and destination tag information is appended to all exchanged messages). We shall not discuss physical/link layer details such as the coupling design, the power-up and collision arbitration processes. For details on these issues the reader is referred to [2].

RFID wireless channels are particularly vulnerable because tags are restricted to lightweight cryptographic protection. By contrast, the communication channel between high level entities (readers and verifiers) is secure since fully-fledged cryptographic techniques can be used.

3.2.4 Integrity of Group-Scanning Proofs

A group-scanning proof provides evidence of temporal events that corroborate the “simultaneous” presence of a GoT. Let G be a non-compromised GoT and R an authorized reader. There are two basic integrity requirements regarding interrogation evidence and how it is compiled:

- (Completeness) If all tags of G are in range of R within the same time window then a group-scanning proof is generated.
- (Soundness) If when R interrogates the tags of G a group-scanning proof is generated then all tags of G were scanned by R.
Fig. 5. An anonymous group-scanning proof

PHASE 1
READER $\rightarrow \ast \ast \ast : r_{sys}$ (a random number)

PHASE 3
For each $1 \leq i \leq n$

tag_i: Set timer, execute Triangle protocol as root & passive child.

If successful (within timeout) as a root then become an
active child at the higher level.

tag_i: Set timer and execute Triangle protocol (as root)

If successful, then compute $mac = f(k; ID_{gp}[r_{sys}])$

$tag_i \rightarrow$ READER: mac; timeout

else timeout

READER: If mac is received from tag_i then compile
$MAC = (r_{sys}, mac)$

are equally likely. If A decides correctly then Exp_A outputs 1, otherwise it outputs 0.

For unlinkability we require that, \forall PPT T, \forall PPT R; \forall pair of interrogations int_1, int_2: $\not\exists$ a PPT A such that, $Pr[Exp_A = 1] > \frac{1}{2} + \text{negligible}.$

Session unlinkability [9] is a weak form of unlinkability for which we require additionally that either int_1 completed, or int_1, int_2 are separated by a completed interrogating the tag of int_1. This guarantees that an adversary cannot link sessions separated by a completed interrogation.

4.6 An Anonymous group-scanning proof

The Triangle protocol, as the Flyweight protocol on which it is based, provides session unlinkability. To capture this we modify the basic group-scanning proof by removing Phase 2 (in which the tags are linked via the reader) and have the reader broadcast all messages. Furthermore ID_{gp} is not included in the compiled group-scanning proof. Figure 5 describes the protocol.

The elimination of Phase 2 has, as explained in Section 4.2, a significant impact on the execution of the Triangle protocol, as the messages of tags must be broadcast by the reader. Broadcast messages are checked by all tags in range, triggering a reply only by the intended destination tag (the one that accepts RN as the correct number). The verifier matches the group by exhaustive search over all pairs (k, ID_{gp}) in its database, by using the mac and r_{sys}.

4.7 Proof of security

By using the argument in Section 4.4 we get integrity. Session unlinkability is inherited from the Flyweight protocol that (also) realizes this functionality in the UC framework [9]. □

5 Supply Chain Management

Our group-scanning proofs can be integrated into a high-level supply chain management system in which the owner shares with each GoT a group identifier and a private key (ID_{gp}, k) stored in a database DB, while the carrier does not share any private information with GoT. To check the integrity of tagged products with online batch connectivity, the owner generates a pseudorandom challenge $r_{sys} = r_o$ and queries the GoT via the carrier. The GoT then executes the group-scanning proof with r_o, and the carrier forwards the generated proof.

The owner can also provide the carrier with a specific key so that the integrity of a shipment of tagged products can be checked. For this application the owner selects a random number r_t, computes $k_t = f(k_r, r_t)$, and then sends to the carrier (ID_{gp}, r_t, k_t). The carrier generates a random number r_c and challenges the GoT with r_t, r_c. This information enables the authenticator tag to compute k_t, and thus, the GoT can execute the grouping proof with $k = k_t$ and $r_{sys} = r_c$.

The generated proof can be verified by the carrier.

References

