Two weight norm inequalities for fractional integrals and commutators

David V. Cruz-Uribe, SFO

Trinity College
6th International Course of Mathematical Analysis in Andalucía, 8/9/2014-12/9/2014

Dyadic operators Doooooooooo
 Sparse operators oooo
 One weight ine ooooooooo

- Dyadic operators
- Digression: One weight inequalities
- Testing conditions
- A_{p} bump conditions

Fractional integral operators

Lecture 1:

Dyadic operators and one weight inequalities

For $0<\alpha<n$,

$$
\begin{gathered}
I_{\alpha} f(x)=\int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y \\
{\left[b, I_{\alpha}\right] f(x)=b(x) I_{\alpha} f(x)-I_{\alpha}(b f)(x), \quad b \in B M O}
\end{gathered}
$$

Basic facts

Introduc ooc
 Applications

Dyadic operators
oooooooooo Sparse operators
oooo

- Sobolev embedding: $1 \leq p<n,\|f\|_{q} \leq C(n)\|\nabla f\|_{p}$ If $p=1$, use Maz'ya / Long-Nie technique
- (Fefferman-Phong) Schrödinger operator $L=-\Delta-v$ positive if

$$
\int_{\mathbb{R}^{n}}|u|^{2} v d x \leq C|\nabla u|^{2} d x, \quad u \in C_{c}^{\infty}
$$

- Regularity of weak solutions of elliptic PDEs

See Chiarenza and Franciosi (1992); DCU, Moen, Rodney (2014)

The new philosophy

Anything you can do,
I can do better (dyadically)!

With apologies to Irving Berlin ("Annie Get Your Gun", 1946)

Dyadic operators oocoooooo Sparse operators oooo
 Sparse sets

A set $\mathcal{S} \subset \mathcal{D}$ is sparse if for every $Q \subset \mathcal{S}$,

$$
\left|\bigcup_{\substack{Q^{\prime} \in \mathcal{S} \\ Q^{\prime} \subset Q}} Q^{\prime}\right| \leq \frac{1}{2}|Q|
$$

Define

$$
E(Q)=Q \backslash \bigcup_{\substack{Q^{\prime} \in \mathcal{S} \\ Q^{\prime} \subset Q}} Q^{\prime}
$$

Then sets $E(Q)$ are pairwise disjoint and

$$
|Q| \leq 2|E(Q)| .
$$

For $k \in \mathbb{Z}$ and $a \geq 2^{n+1}$,

$$
\left\{x \in \mathbb{R}^{n}: M^{d} f(x)>a^{k}\right\}=\bigcup_{j} Q_{j}^{k}
$$

and $\left\{Q_{j}^{k}\right\}$ is sparse.

Cubes and dyadic cubes

proof (sketch for $N=3^{n}$)

Define dyadic grids

$$
\mathcal{D}^{t}=\left\{2^{j}\left([0,1)^{n}+m+t\right): j \in \mathbb{Z}, m \in \mathbb{Z}^{n}\right\}, \quad t \in\{0, \pm 1 / 3\}^{n}
$$

Lemma

There exist $N=N(n)$ dyadic grids $\mathcal{D}^{k}, 1 \leq k \leq N$, such that given any cube Q, there exists k and $P \in \mathcal{D}^{k}$ such that $Q \subset P$ and $\ell(P) \leq 6 \ell(Q)$.
$N=3^{n}$: Christ, Garnett and Jones (attrib.);
$N=2^{n}$, Hytönen and Pérez (2013);
$N=n+1$, Conde (2012)

Two dyadic operators

Notation: $\langle f\rangle_{Q}=f_{Q} f(y) d y,\langle f\rangle_{Q, \sigma}=\frac{1}{\sigma(Q)} \int_{Q} f(y) \sigma(y) d y$
Dyadic fractional integral

$$
I_{\alpha}^{\mathcal{D}} f(x)=\sum_{Q \in \mathcal{D}}|Q|^{\frac{\alpha}{n}}\langle f\rangle_{Q} \chi_{Q}(x)
$$

Dyadic fractional maximal operator

$$
M_{\alpha}^{\mathcal{D}} f(x)=\sup _{Q \in \mathcal{D}}|Q|^{\frac{\alpha}{n}}\langle f\rangle_{Q} \chi_{Q}(x)
$$

Theorem
There exists $N=N(n)$ dyadic grids \mathcal{D}^{k} such that for any non-negative function f,

$$
\begin{gathered}
c(n, \alpha) I_{\alpha}^{D^{k}} f(x) \leq I_{\alpha} f(x) \leq C(n, \alpha) \sup _{k} I_{\alpha}^{\mathcal{D}^{k}} f(x) \\
M_{\alpha}^{\mathcal{D}^{k}} f(x) \leq M_{\alpha} f(x) \leq C(n, \alpha) \sup _{k} M_{\alpha}^{D^{\star}} f(x)
\end{gathered}
$$

Proof (sketch for I_{α})

Introduction 000 Dyadic operators 000000000

$$
\begin{aligned}
I_{\alpha} f(x) & \lesssim \sum_{j \in \mathbb{Z}} 2^{j(\alpha-n)} \int_{Q\left(x, 2^{j}\right) \backslash Q\left(x, 2^{j-1}\right)} f(y) d y \\
& \lesssim \sum_{j \in \mathbb{Z}} \sum_{k=1}^{N} \sum_{\substack{Q \in \mathcal{D}^{k} \\
\ell(Q) \approx 2^{j}}}|Q|^{\frac{\alpha}{n}} f_{Q} f(y) d y \chi_{Q}(x) \\
& \lesssim \sum_{k=1}^{N} I_{\alpha}^{\mathcal{D}^{k}} f(x)
\end{aligned}
$$

Theorem
There exists $N=N(n)$ dyadic grids \mathcal{D}^{k} such that for any non-negative function f and $b \in B M O$,

$$
\left|\left[b, I_{\alpha}\right] f(x)\right| \leq \sum_{k=1}^{N} \sum_{Q \in \mathcal{D}^{k}}|Q|^{\frac{\alpha}{n}} f_{Q}|b(y)-b(x)| f(y) d y \chi_{Q}(x)
$$

Implicit in DCU-Moen (2012)

Dyadic operator 0000000000
 Sparse operators $\bullet \circ 00$
 One weight ine ooooooooo
 Sparse operators

Given \mathcal{D} and a sparse subset \mathcal{S}, define
Sparse dyadic fractional integral

$$
\left.\right|_{\alpha} ^{\mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}}|Q|^{\frac{\alpha}{\alpha}}\langle f\rangle_{Q} \chi_{Q}(x)
$$

Sparse linearization of dyadic maximal operator

$$
L_{\alpha}^{\mathcal{S}} f(x)=\sum_{Q \in \mathcal{S}}|Q|^{\frac{\alpha}{n}}\langle f\rangle_{Q} \chi_{E(Q)}(x)
$$

Sparse operators $0 \bullet 00$
 One weight inequalitie 0000000000
 Passing to sparse operators

Theorem

Given \mathcal{D} and a non-negative function $f \in L_{c}^{\infty}$, there exist sparse sets $\mathcal{S} \subset \mathcal{D}$ such that

$$
\begin{aligned}
I_{\alpha}^{\mathcal{D}} f(x) & \leq C(n, \alpha) I_{\alpha}^{\mathcal{S}} f(x) \\
M_{\alpha}^{\mathcal{D}} f(x) & \leq C(n, \alpha) L_{\alpha}^{\mathcal{S}} f(x) .
\end{aligned}
$$

For $I_{\alpha}^{\mathcal{D}}$ implicit in Pérez (1994);
For $M_{\alpha}^{\mathcal{D}}$ implicit in Sawyer (1982)

Proof (sketch for I_{α})

$$
\begin{gathered}
\mathcal{Q}_{k}=\left\{Q \in \mathcal{D}:\langle f\rangle_{Q} \approx a^{k}\right\}, \quad a \geq 2^{n+1} \\
\mathcal{S}_{k}=\left\{P \in \mathcal{D} \text { maximal : }\langle f\rangle_{P}>a^{k}\right\}
\end{gathered}
$$

$\mathcal{S}=\bigcup \mathcal{S}_{k}$ is sparse.

$$
\begin{aligned}
I_{\alpha}^{\mathcal{D}} f(x) & =\sum_{Q \in \mathcal{D}}|Q|^{\frac{\alpha}{n}}\langle f\rangle_{Q} \chi_{Q}(x) \\
& \leq \sum_{k} a^{k+1} \sum_{P \in \mathcal{S}_{k}} \sum_{Q \in \mathcal{Q}_{k}}|Q|^{\frac{\alpha}{n}} \chi_{Q}(x) \\
& \leq C(n, \alpha) \sum_{k} a^{k+P} \sum_{P \in \mathcal{S}_{k}}|P|^{\frac{\alpha}{n}} \chi_{P}(x) \\
& \leq C(n, \alpha) I_{\alpha}^{\mathcal{S}} f(x)
\end{aligned}
$$

Hereafter, to prove any inequality for I_{α} or M_{α} it suffices to prove it for the corresponding sparse operator.

Morally, this is also true for $\left[b, l_{\alpha}\right]$.

Introduction 000	Dyadic operators 0000000000	Sparse operators 0000	One weight inequalities 000000000
norm inequalities			

$$
\begin{aligned}
& \text { Theorem (Muckenhoupt, Wheeden (1974)) } \\
& \text { For } 1<p<\frac{n}{\alpha}, \frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n} \text {, if } w \in A_{p, q} \text {, then } \\
& \left(\int_{\mathbb{R}^{n}}\left|M_{\alpha} f(x) w(x)\right|^{q} d x\right)^{1 / q} \leq C\left(\int_{\mathbb{R}^{n}}|f(x) w(x)|^{p} d x\right)^{1 / p} \\
& \left(\int_{\mathbb{R}^{n}}\left|I_{\alpha} f(x) w(x)\right|^{q} d x\right)^{1 / q} \leq C\left(\int_{\mathbb{R}^{n}}|f(x) w(x)|^{p} d x\right)^{1 / p}
\end{aligned}
$$

Lemma

If $w \in A_{p, q}$, then $w^{q}, w^{-p^{\prime}} \in A_{\infty}$.
For $1<p<\frac{n}{\alpha}, \frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n}$, we say $w \in A_{p, q}$ if
$[w]_{A_{\rho, q}}=\sup _{Q}\left(f_{Q} w(x)^{q} d x\right)^{1 / q}\left(f_{Q} w(x)^{-p^{\prime}} d x\right)^{1 / p^{\prime}}<\infty$.

Proof for M_{α}

Fix \mathcal{D} and $\mathcal{S} \subset \mathcal{D}$ sparse. Let $\sigma=w^{-p^{\prime}} \in A_{\infty}$

$$
\begin{aligned}
\|\left(L_{\alpha}^{\mathcal{S}} f\right) & w \|_{q}^{q}=\sum_{Q \in \mathcal{S}}\left(|Q|^{\frac{\alpha}{n}}\langle f\rangle_{Q}\right)^{q} w^{q}\left(E_{Q}\right) \\
& \leq \sum_{Q \in \mathcal{S}}\left(\sigma(Q)^{\frac{\alpha}{n}}\left\langle f \sigma^{-1}\right\rangle_{Q, \sigma}\right)^{q}|Q|^{a^{\frac{\alpha}{n}-q} \sigma(Q)^{q-q} \frac{\alpha}{n}} w^{q}(Q) \\
& \lesssim \sum_{Q \in \mathcal{S}}\left(\sigma(Q)^{\frac{\alpha}{n}}\left\langle f \sigma^{-1}\right\rangle_{Q, \sigma}\right)^{q} \underbrace{|Q|^{-\frac{q}{\rho^{\prime}}-1} \sigma(Q)^{\frac{q}{\rho^{p}}} w^{q}(Q)}_{\left[\left.w\right|^{q}\right.} \sigma\left(E_{Q}\right) \\
& \lesssim \int_{\mathbb{R}^{n}} M_{\alpha, \sigma}^{D}\left(f \sigma^{-1}\right)^{q} d \sigma \\
& \lesssim\|f w\|_{p}^{q} .
\end{aligned}
$$

2nd proof: Sharp function estimate

Lemma

If $u \in A_{\infty}$, then for $0<q<\infty$,

$$
\int_{\mathbb{R}^{n}}|f(x)|^{q} u d x \leq C \int_{\mathbb{R}^{n}}\left|M^{\mathcal{D}, \#} f(x)\right|^{q} u d x
$$

Journé (1983) via good- λ inequality;
Lerner (2004), DCU-Martell-Pérez (2007) via atomic decomposition and extrapolation.

Lemma

If $u \in A_{\infty}$, then for $0<q<\infty$,

$$
\left.\int_{\mathbb{R}^{n}}| |_{\alpha}^{\mathcal{S}} f(x)\right|^{q} u d x \leq C \int_{\mathbb{R}^{n}}\left|L_{\alpha}^{\mathcal{S}} f(x)\right|^{q} u d x
$$

Muckenhoupt-Wheeden (1974): I_{α} and M_{α} via good- λ inequality.

Lemma
 For $f \in L_{c}^{\infty}$,
 $$
M^{\mathcal{D}, \#}\left(\mathcal{D}_{\alpha}^{\mathcal{D}} f\right)(x) \leq C(n, \alpha) M_{\alpha}^{\mathcal{D}} f(x) .
$$

Adams (1975) for $M^{\#}, I_{\alpha}$ and M_{α}

Introduction oon	Dyadic operators 0000000000	Sparse operators 0000	One weight inequalities ooococooo
Pointwise estimate			

Proof of Lemma (sketch)
Fix $P \in \mathcal{D}$ and $x \in P$.

$$
\begin{aligned}
I_{\alpha}^{\mathcal{D}} f(x) & =\sum_{Q \subseteq P}|Q|^{\frac{\alpha}{n}}\langle f\rangle_{Q} ; \chi_{Q}(x)+\sum_{P \subseteq Q}|Q|^{\frac{\alpha}{n}}\langle f\rangle_{Q} \chi_{Q}(x) \\
& \leq I_{\alpha}^{\mathcal{D}}\left(f_{\chi P}\right)(x)+c_{P} .
\end{aligned}
$$

Therefore, by Kolmogorov's inequality,

$$
\begin{aligned}
f_{P}\left|I_{\alpha}^{\mathcal{D}} f(x)-c_{P}\right| & d x \leq f_{P} I_{\alpha}^{\mathcal{D}}\left(f_{\chi}\right)(x) d x \\
& \leq C(n, \alpha)|P|^{\frac{\alpha}{n}} f_{P} f d y \leq C(n, \alpha) M_{\alpha}^{\mathcal{D}} f(x) .
\end{aligned}
$$

Theorem

For $1<p<\frac{n}{\alpha}, \frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n}$, if $w \in A_{p, q}$ and $b \in B M O$, then

$$
\left(\int_{\mathbb{R}^{n}}\left|\left[I_{\alpha}, b\right] f w\right|^{q} d x\right)^{1 / q} \leq C\|b\|_{B M O}\left(\int_{\mathbb{R}^{n}}|f w|^{p} d x\right)^{1 / p}
$$

DCU-Moen (2012), using Cauchy integral formula argument of Chung-Pereyra-Pérez (2012).

