Two weight norm inequalities for fractional integrals and commutators

David V. Cruz-Uribe, SFO

Trinity College

6th International Course of Mathematical Analysis in Andalucía, 8/9/2014–12/9/2014

Lecture 2:

Two weight inequalities and testing conditions

Two weight inequalitie

Testing conditions

Fractional maximal operator

Return to I_{α}

Commutator

Two weight inequalitie

esting condition

ractional maximal oper

Return to I

Commutator

Two weight norm inequalities

We are interested in conditions on a pair of weights (u, v) such that for 1 ,

Strong
$$(p,q)$$
 $I_{\alpha}: L^{p}(v) \rightarrow L^{q}(u)$

$$\left(\int_{\mathbb{R}^n} |I_{\alpha} f|^q u \, dx\right)^{1/q} \leq C \left(\int_{\mathbb{R}^n} |f|^p v \, dx\right)^{1/p}$$

Weak
$$(p,q)$$
 $I_{\alpha}: L^{p}(v) \rightarrow L^{q,\infty}(u)$

$$\sup_{t>0} t \ u(\{x \in \mathbb{R}^n : |I_{\alpha}f(x)| > t\})^{1/q} \le C \left(\int_{\mathbb{R}^n} |f|^p v \ dx \right)^{1/p}$$

Also similar inequalities for M_{α} and $[b, I_{\alpha}]$

Restating norm inequalities

Let $\sigma = v^{1-p'}$. Then we can restate these inequalities as

Strong
$$(p,q)$$
 $I_{\alpha}(\cdot\sigma):L^p(\sigma)\to L^q(u)$

Weak
$$(p,q)$$
 $I_{\alpha}(\cdot\sigma):L^{p}(\sigma)\to L^{q,\infty}(u)$

Duality

This formulation has more natural duality:

$$I_{\alpha}: L^{p}(v) \rightarrow L^{p}(u) \quad \Leftrightarrow \quad I_{\alpha}: L^{p'}(u^{1-p'}) \rightarrow L^{p'}(v^{1-p'})$$

$$I_{\alpha}(\cdot \sigma): L^{p}(\sigma) \to L^{p}(u) \quad \Leftrightarrow \quad I_{\alpha}(\cdot u): L^{p'}(u) \to L^{p'}(\sigma)$$

Sawyer testing conditions

- Show operator is bounded if and only if bounded on family of (simple) test functions
- Necessary and sufficient
- Closely related to Tb theorems

Nazarov, Treil, Volberg

I_{α} : Two necessary conditions

Consider the family of test functions $\{\chi_Q\}$:

$$\left(\int_{Q} I_{\alpha}(\sigma \chi_{Q})^{q} u \, dx\right)^{1/q} \leq M_{1} \left(\int_{Q} \sigma \, dx\right)^{1/p} \tag{T}$$

and the dual inequality

$$\left(\int_{Q} I_{\alpha}(u\chi_{Q})^{p'}\sigma\,dx\right)^{1/p'} \leq M_{2}\left(\int_{Q} u\,dx\right)^{1/q'} \qquad (T^{*})$$

Theorem (Sawyer (1984,1988), LSUT (2009))

Given $1 and a pair of weights <math>(u, \sigma)$, the testing conditions (T) and (T^*) are necessary and sufficient for the strong type inequality:

$$||I_{\alpha}(\cdot\sigma)||_{L^{p}(\sigma)\to L^{q}(u)}\approx M_{1}+M_{2}.$$

Furthermore, the dual condition (T^*) is necessary and sufficient for the weak type inequality:

$$||I_{\alpha}(\cdot\sigma)||_{L^{p}(\sigma)\to L^{q,\infty}(u)}\approx M_{2}.$$

Relating weak and strong type

Corollary

$$\|I_{\alpha}(\cdot\sigma)\|_{L^{p}(\sigma)\to L^{q}(u)}$$

$$\approx \|I_{\alpha}(\cdot\sigma)\|_{L^{p}(\sigma)\to L^{q,\infty}(u)} + \|I_{\alpha}(\cdot\sigma)\|_{L^{q'}(u)\to L^{p',\infty}(\sigma)}$$

Theorem (Sawyer (1982))

A model result

Given $1 and a pair of weights <math>(u, \sigma)$, a necessary and sufficient condition for

$$M_{\alpha}(\cdot\sigma):L^{p}(\sigma)\to L^{q}(u)$$

is that for every cube Q,

$$\left(\int_{Q} M_{\alpha}(\sigma \chi_{Q})^{q} u \, dx\right)^{1/q} \leq K \left(\int_{Q} \sigma \, dx\right)^{1/p} \qquad (MT)$$

Two weight inequalities lesting conditions ooo ooo ooo Fractional maximal operator ooo ooo ooo ooo lest in proof

• Reduce to dyadic case and prove for $L_{\alpha}^{\mathcal{S}}$, for $\mathcal{S}\subset\mathcal{D}$ sparse.

- Restrict L_{α}^{S} to cubes in some $Q_{0} \in \mathcal{D}$.
- Form a corona decomposition: intuitively, a weighted Calderón-Zygmund decomposition.
- Rearrange the sum using the corona decomposition and apply the testing condition.

Idea for proof from Hytönen (2012) and LSUT (2012). See also Kairema (2012).

Two weight inequalities Testing conditions Fractional maximal operator The corona decomposition

Given a function f, a weight σ , define $\mathcal{F} \subset \mathcal{S}$ inductively:

- $\mathcal{F}_0 = \{Q_0\}$
- Given $F \in \mathcal{F}_k$, let $\eta_{\mathcal{F}}(F)$ be maximal cubes $Q \in \mathcal{S}$ such that $Q \subset F$ and $\langle f \rangle_{\sigma,Q} > 2 \langle f \rangle_{\sigma,F}$.
- $F_{k+1} = \bigcup_{F \in \mathcal{F}_k} \eta_{\mathcal{F}}(F), \quad \mathcal{F} = \bigcup_k \mathcal{F}_k.$
- Given $Q \in \mathcal{S}$, let $\pi_{\mathcal{F}}(Q)$ be the smallest cube in \mathcal{F} such that $Q \subset \pi_{\mathcal{F}}(Q)$

$$\pi_{\mathcal{F}}(Q)$$
 = "padres" $\eta_{\mathcal{F}}(F)$ = "hijos"

σ -Sparseness

Given $F \in \mathcal{F}$:

$$\sum_{F' \in \eta_{\mathcal{F}}(F)} \sigma(F') \leq \sum_{F' \in \eta_{\mathcal{F}}(F)} \frac{(f\sigma)(F')}{2\langle f \rangle_{\sigma,F}} \leq \frac{(f\sigma)(F)}{2\langle f \rangle_{\sigma,F}} = \frac{1}{2} \sigma(F).$$

Therefore, if,

$$E_{\mathcal{F}}(F) = F \setminus \bigcup_{F' \in \eta_{\mathcal{F}}(F')} F',$$

$$\sigma(\mathcal{E}_{\mathcal{F}}(F)) \geq \frac{1}{2}\sigma(F).$$

The sum to estimate (p = q)

By duality, we need to show that for every $g \in L^{p'}(u)$

$$\begin{split} \|L_{\alpha}^{\mathcal{S}}(f\sigma)\|_{L^{p}(u)} &= \int_{\mathbb{R}^{n}} L_{\alpha}^{\mathcal{S}}(f\sigma) \, gu \, dx \\ &= \sum_{Q \in \mathcal{S}} |Q|^{\frac{\alpha}{n}} \langle f\sigma \rangle_{Q} \int_{E(Q)} gu \, dx \leq \|f\|_{L^{p}(\sigma)} \|g\|_{L^{p'}(u)}. \end{split}$$

Here assume sum is over $Q \subset Q_0$

Two weight inequalities

Testing conditions

Fractional maximal operator

Return to I_{α}

Commutator

The good function

$\sum_{\substack{Q \in \mathcal{S} \\ Q \subset Q_0}} |Q|^{\frac{\alpha}{n}} \langle f \sigma \rangle_Q \int_{E(Q)} gu \, dx = \sum_{F \in \mathcal{F}} \sum_{\substack{Q \in \mathcal{S} \\ \pi_{\mathcal{F}}(Q) = F}} |Q|^{\frac{\alpha}{n}} \langle f \sigma \rangle_Q \int_{E(Q)} gu \, dx$

If $\pi_{\mathcal{F}}(Q) = F$, and $F' \in \eta_{\mathcal{F}}(F)$, then $F' \subsetneq Q$.

$$\int_{E(Q)} gu \, dx = \int_{E(Q) \cap E_{\mathcal{F}}(F)} gu \, dx + \sum_{F' \in \eta_{\mathcal{F}}(F)} \int_{E(Q) \cap F'} gu \, dx$$
$$= \int_{E(Q) \cap E_{\mathcal{F}}(F)} gu \, dx = \int_{E(Q)} g_{F}u \, dx.$$

Two weight inequalities Testing conditions $occite{N}$ Fractional maximal operator $occite{N}$ Return to f_{a} Commutators $occite{N}$ Applying the testing condition

$$\begin{split} \sum_{F \in \mathcal{F}} \sum_{\substack{Q \in \mathcal{S} \\ \pi_{\mathcal{F}}(Q) = F}} |Q|^{\frac{\alpha}{n}} \langle f \rangle_{\sigma,Q} \langle \sigma \rangle_{Q} \int_{E(Q)} g_{F} u \, dx \\ & \leq \sum_{F \in \mathcal{F}} 2 \langle f \rangle_{\sigma,F} \sum_{\substack{Q \in \mathcal{S} \\ \pi_{\mathcal{F}}(Q) = F}} |Q|^{\frac{\alpha}{n}} \langle \sigma \rangle_{Q} \int_{E(Q)} g_{F} u \, dx \\ & \leq \sum_{F \in \mathcal{F}} 2 \langle f \rangle_{\sigma,F} \int_{F} L_{\alpha}^{\mathcal{S}}(\sigma \chi_{F}) \, g_{F} u \, dx \\ & \leq \sum_{F \in \mathcal{F}} 2 \langle f \rangle_{\sigma,F} \|M_{\alpha}^{\mathcal{D}}(\sigma \chi_{F}) \chi_{F}\|_{L^{p}(u)} \|g_{F}\|_{L^{p'}(u)} \\ & \lesssim \sum_{F \in \mathcal{F}} \langle f \rangle_{\sigma,F} \, \sigma(F)^{1/p} \, \|g_{F}\|_{L^{p'}(u)}. \end{split}$$

The final estimate

$$\begin{split} \sum_{F \in \mathcal{F}} \langle f \rangle_{\sigma,F} \, \sigma(F)^{1/p} \, \|g_F\|_{L^{p'}(u)} \\ & \leq \left(\sum_{F \in \mathcal{F}} \langle f \rangle_{\sigma,F}^p \, \sigma(F) \right)^{1/p} \left(\sum_{F \in \mathcal{F}} \|g_F\|_{L^{p'}(u)}^{p'} \right)^{1/p'} \\ & \lesssim \left(\sum_{F \in \mathcal{F}} \int_{E_{\mathcal{F}}(F)} M_{\sigma}^{\mathcal{D}}(f)^p \sigma \, dx \right)^{1/p} \left(\sum_{F \in \mathcal{F}} \int_{E_{\mathcal{F}}(F)} g^{p'} u \, dx \right)^{1/p'} \\ & \leq \left(\int_{\mathbb{R}^n} M_{\sigma}^{\mathcal{D}}(f)^p \sigma \, dx \right)^{1/p} \left(\int_{\mathbb{R}^n} g^{p'} u \, dx \right)^{1/p'} \\ & \lesssim \|f\|_{L^p(\sigma)} \|g\|_{L^{p'}(u)} \end{split}$$

Proof fails for I_{α}

 $\text{Recall:}\quad I_{\alpha}^{\mathcal{S}}(f\sigma)(x) = \sum_{Q \in \mathcal{S}} |Q|^{\frac{\alpha}{p}} \langle f\sigma \rangle_{Q} \chi_{Q}(x).$

Then for $Q \subset F$

$$\begin{split} \int_{Q} gu \, dx &= \int_{Q \cap E_{\mathcal{F}}(F)} gu \, dx + \sum_{F' \in \eta_{\mathcal{F}}(F)} \int_{Q \cap F'} gu \, dx \\ &= \int_{Q} \left(g \chi_{E_{\mathcal{F}}(F)} + \sum_{F' \in \eta_{\mathcal{F}}(F)} \langle g \rangle_{u,F'} \right) u \, dx = \int_{Q} g_{F} u \, dx, \end{split}$$

and we cannot bound $\sum_{F \in \mathcal{F}} \|g_F\|_{L^{p'}(u)}$.

Two weight inequalities

Testing conditions

Fractional maximal operator

Return to I_c

Commutator

Testing condition

Fractional maximal opera

Return to

Commutators

Parallel corona decomposition

- Form second corona decomposition \mathcal{G} of g with respect to u.
- Divide sum into two pieces:

$$\sum_{Q \in \mathcal{S}} = \sum_{\substack{F \in \mathcal{F} \\ G \in \mathcal{G}}} \sum_{\substack{\pi_{\mathcal{F}}(Q) = F \\ \pi_{\mathcal{G}}(Q) = G}} = \sum_{F \in \mathcal{F}} \sum_{\substack{G \in \mathcal{G} \\ G \subset F}} \sum_{\substack{\pi_{\mathcal{F}}(Q) = F \\ G \subset F}} + \sum_{\substack{G \in \mathcal{G} \\ \pi_{\mathcal{G}}(Q) = G}} \sum_{\substack{F \in \mathcal{F} \\ F \subsetneq G}} \sum_{\substack{\pi_{\mathcal{F}}(Q) = F \\ F \subsetneq G}} \sum_{\substack{\pi_{\mathcal{F}}(Q) = F \\ \pi_{\mathcal{G}}(Q) = G}}$$

- Estimate first sum as before; use \mathcal{G} to estimate $g_{\mathcal{F}}$.
- Estimate second sum exchanging roles of (f, σ) and (g, u) and use dual testing condition.

Off-diagonal testing

Theorem (LSUT (2009))

If $1 , the strong and weak type inequalities for <math>I_{\alpha}^{\mathcal{D}}$ are characterized by

$$\left(\int_{Q} I_{\alpha,Q}^{\mathcal{D},+}(\sigma \chi_{Q})^{q} u \, dx\right)^{1/q} \leq M_{1} \left(\int_{Q} \sigma \, dx\right)^{1/p} \qquad (T_{+})$$

$$\left(\int_{Q} I_{\alpha,Q}^{\mathcal{D},+}(u\chi_{Q})^{p'}\sigma\,dx\right)^{1/p'} \leq M_{2}\left(\int_{Q} u\,dx\right)^{1/q'} \qquad (T_{+}^{*})$$

where

$$I_{\alpha,Q}^{\mathcal{D},+}f(x)=\sum_{\substack{Q'\in\mathcal{D}\\Q\subseteq\Omega'}}|Q'|^{\frac{\alpha}{n}}\langle f\rangle_{Q'}\;\chi_{Q'}(x).$$

Two weight inequaliti

Testing condition

Fractional maximal operato

Return to I_a

Two weight inequalities Testii

Fractional ma

Return to I

Commutator OOO

Two conjectures

Conjecture

The two testing conditions

$$\left(\int_{Q} [b, I_{\alpha}] (\sigma \chi_{Q})^{q} u \, dx\right)^{1/q} \leq M_{1} \left(\int_{Q} \sigma \, dx\right)^{1/p} \qquad (CT)$$

$$\left(\int_{Q} [b, I_{\alpha}] (u\chi_{Q})^{p'} \sigma \, dx\right)^{1/p'} \leq M_{2} \left(\int_{Q} u \, dx\right)^{1/q'} \qquad (CT^{*})$$

are necessary and sufficient for $[b, I_{\alpha}] : L^{p}(\sigma) \to L^{q}(u)$.

 (CT^*) is necessary and sufficient for $L^p(\sigma) \to L^{q,\infty}(u)$.

Two weight inequalities

Testing condition

Fractional maximal operato

Return to I

Commutators 00•

End of Lecture 2
Questions?

Technical obstacles

- Necessity by duality.
- Pass to dyadic operator: how to prove equivalence?
- How to modify parallel corona decomposition to "pull out" $\langle f \rangle_{Q,\sigma}$?

