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Two weight norm inequalities Restating norm inequalities

We are interested in conditions on a pair of weights (u, v)
such that for 1 < p < g < =,

Strong (p.q) I, : LP(v) — Lu) Let o = v!=7". Then we can restate these inequalities as

( |/f|‘*udx>1/q<c< |f|pvdx>1/p strong (p,q) L(-0) : LP(o) — L(u)
RA RN

Weak (p,q) l : LP(v) = LY (u) Weak (p,q) l(-0): LP(0) = L9*(u)

1/p
supt u({x e R": |I,f(x)| > t})”q <C </ |f|pvdx>
Rﬂ

t>0
Also similar inequalities for M,, and [b, I,]
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Duality

This formulation has more natural duality:

Ih:LP(v) = LP(u) & I, LP(U'P) = LP(vI7F)

I(-0): LP(0) = LP(u) < L (u): LP(u) = LP(0)
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Sawyer testing conditions

@ Show operator is bounded if and only if bounded on
family of (simple) test functions

@ Necessary and sufficient

@ Closely related to Tb theorems

Nazarov, Treil, Volberg
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l,: Two necessary conditions

Consider the family of test functions {xq}:

(/O /a(aXQ)qux>1/qg M, </Qadx>1/p (7

and the dual inequality

</OI(X(UXQ)p,UdX>1/pl <M </Qudx>1/ql (T

The fundamental result

Theorem (Sawyer (1984,1988), LSUT (2009))

Given1 < p < g < oo and a pair of weights (u, o), the
testing conditions (T) and (T*) are necessary and
sufficient for the strong type inequality:

1o (-0l p() s 1a(u) = My + M.

Furthermore, the dual condition (T*) is necessary and
sufficient for the weak type inequality:

| (-0) || Lo (o) L350 (u) = M.
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Relating weak and strong type A model result

Theorem (Sawyer (1982))

Given1 < p < g < oo and a pair of weights (u, o), a
necessary and sufficient condition for

M,(-0) : LP(o) — LO(u)

1o (-0) | Lo(0) = Lo(u)
~ || la(-0) | p(oy—taow) + a0l o ()= 17 20 (o) is that for every cube Q,

M, (oxq)%u dx Uqu o dx v (MT)
(. ) = (o)

v
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Key steps in proof The corona decomposition

@ Reduce to dyadic case and prove for LS, for S ¢ D

sparse. Given a function f, a weight ¢, define F C S inductively:
@ Restrict LS to cubes in some @, € D. ® JFo = {Co}
@ Given F € Fy, let nz(F) be maximal cubes Q € S
@ Form a corona decomposition: intuitively, a weighted such that Q C F and (f),.q > 2(f), .
Calderén-Zygmund decomposition. @ Fiy1 = Uper nr(F),  F = Uk Fr:
_ N @ Given Q € S, let 7£(Q) be the smallest cube in F
@ Rearrange the sum using the corona decomposition such that Q C 7+(Q)

and apply the testing condition.
PPY 9 17(Q) = “padres”  nx(F) = “hijos”

Idea for proof from Hyténen (2012) and LSUT (2012).
See also Kairema (2012).
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o-Sparseness

Given F € F:

, fo)(F' fo)(F 1
> s Y GBI L0 o

Frenz(F) Frenz(F)

Therefore, if,

Ex(F)=F\ U F’,

Frenz(F')

Fractional maximal operator
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The good function

Fractional maximal operator
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The sum to estimate (p = q)

By duality, we need to show that for every g € L?' (u)

1L (fo) ) = / LS (fo) gu dx

=31l (o) / guax < [l 19l

Qes

Here assume sum is over Q C Qq

Fractional maximal operator
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Applying the testing condition

> 1Ql7(fo) / gudx=>Y_" > |Q"(fo)q gudx

QesS FeF QeS8 E(Q
QCQp mr(Q)=F

If 7(Q) = F,and F' € nx(F), then F' C Q.

gu dx _/ gudx + / gu dx
E(Q) E(QNEF(F) Freme(F) ! E(Q@NF

—/ gudx_/ gruax.
E(Q)NEx(F) E(Q)

> QI faalo)a EQgFudx

FEF Qes (@)
77 (Q)=F
<Y 2f,r 3 jal / grudx
FeF QES
7r(Q)=F
<22 U/:/L OXF gFUdX
FeF

<Y 2(F)o rMD (o xF) Xl o) 19 | o 0y
Fer

< D (Dora(F)PlIgrll )

Fer
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The final estimate

> (Bor o (F)P gl o)

Fer
1/p / 1/p’
< (ZU‘){:J_—O(F)) (Z HgFH’Z”(u))

FeF FeF

1/p 1/
< MP (fPo dx> ( / 9°u dx)
(,; Ex(F) ,; Ex(F)

1/p ) 1/
< ( ME (f)Pa dx> < g°u dx>
Rn RM

S M@ 191 )

Return to /o,
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Parallel corona decomposition

@ Form second corona decomposition G of g with
respect to u.

@ Divide sum into two pieces:

D=2 =X >t )

Qes Fefﬂ']:(o) F FeF Geg nx(Q)=F Geg FEF nx(Q)=F
Y g(Q)=G GCF mg(Q)=G FCGrg(Q)=G

@ Estimate first sum as before; use G to estimate gr.

@ Estimate second sum exchanging roles of (f, o) and
(g, u) and use dual testing condition.

Return to /o,
000

Proof fails for /,

Recall: [5(fo)(x) = |Q|%(fo)axa(x).
Qes

Thenfor Q C F

/gudx—/ gudx + / gu dx
Q QNEx(F) Frenn(F) Y QF

/(gXE;(F)-F Z uFr)UdX—/Qg,:udx,

Frenz(F)

and we cannot bound " [|g¢ |l e
FeFr

Return to /o,
ooe

Off-diagonal testing

Theorem (LSUT (2009))

If1 < p < q < o, the strong and weak type inequalities
for I are characterized by

1/9 1/p
(/ P2 (oxa) qudx> <m (/adx> (T)
Q

where
P30 =Y 1Q17(ha xa(x).

Q'eD
QcQ
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Two conjectures Technical obstacles

Conjecture
The two testing conditions

< /Q b, /a](aXQ)qux>1/q <M ( /Q adx>1/p (cT)

1/p' 1/d
(/Q[b’ l](uxa)? de) < M, </o de) (CT") @ How to modify parallel corona decomposition to “pull
out” (flg.?

@ Necessity by duality.

@ Pass to dyadic operator: how to prove equivalence?

are necessary and sufficient for [b, I,] : LP(o) — L9(u).

(CT*) is necessary and sufficient for LP(c) — L9*°(u).

Commutators
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End of Lecture 2

Questions?




