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Lecture 2:
Two weight inequalities and testing conditions
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Two weight norm inequalities

We are interested in conditions on a pair of weights (u, v)
such that for 1 < p  q < 1,

Strong (p, q) I↵ : L

p(v) ! L

q(u)

✓Z

Rn

|I↵f |qu dx

◆1/q

 C

✓Z

Rn

|f |pv dx

◆1/p

Weak (p, q) I↵ : L

p(v) ! L

q,1(u)

sup
t>0

t u({x 2 Rn : |I↵f (x)| > t})1/q  C

✓Z

Rn

|f |pv dx

◆1/p

Also similar inequalities for M↵ and [b, I↵]
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Restating norm inequalities

Let � = v

1�p

0 . Then we can restate these inequalities as

Strong (p, q) I↵(·�) : L

p(�) ! L

q(u)

Weak (p, q) I↵(·�) : L

p(�) ! L

q,1(u)
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Duality

This formulation has more natural duality:

I↵ : L

p(v) ! L

p(u) , I↵ : L

p

0
(u1�p

0
) ! L

p

0
(v1�p

0
)

I↵(·�) : L

p(�) ! L

p(u) , I↵(·u) : L

p

0
(u) ! L

p

0
(�)
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Sawyer testing conditions

Show operator is bounded if and only if bounded on
family of (simple) test functions

Necessary and sufficient

Closely related to Tb theorems

Nazarov, Treil, Volberg
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I↵: Two necessary conditions

Consider the family of test functions {�
Q

}:
✓Z

Q

I↵(��Q

)q

u dx

◆1/q

 M1

✓Z

Q

� dx

◆1/p

(T )

and the dual inequality
✓Z

Q

I↵(u�Q

)p

0
� dx

◆1/p

0

 M2

✓Z

Q

u dx

◆1/q

0

(T ⇤)
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The fundamental result

Theorem (Sawyer (1984,1988), LSUT (2009))
Given 1 < p  q < 1 and a pair of weights (u, �), the

testing conditions (T ) and (T ⇤) are necessary and

sufficient for the strong type inequality:

kI↵(·�)kL

p(�)!L

q(u) ⇡ M1 + M2.

Furthermore, the dual condition (T ⇤) is necessary and

sufficient for the weak type inequality:

kI↵(·�)kL

p(�)!L

q,1(u) ⇡ M2.
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Relating weak and strong type

Corollary

kI↵(·�)kL

p(�)!L

q(u)

⇡ kI↵(·�)kL

p(�)!L

q,1(u) + kI↵(·�)k
L

q

0 (u)!L

p

0,1(�)
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A model result

Theorem (Sawyer (1982))
Given 1 < p  q < 1 and a pair of weights (u, �), a

necessary and sufficient condition for

M↵(·�) : L

p(�) ! L

q(u)

is that for every cube Q,

✓Z

Q

M↵(��Q

)q

u dx

◆1/q

 K

✓Z

Q

� dx

◆1/p

(MT )
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Key steps in proof

Reduce to dyadic case and prove for L

S
↵, for S ⇢ D

sparse.

Restrict L

S
↵ to cubes in some Q0 2 D.

Form a corona decomposition: intuitively, a weighted
Calderón-Zygmund decomposition.

Rearrange the sum using the corona decomposition
and apply the testing condition.

Idea for proof from Hytönen (2012) and LSUT (2012).
See also Kairema (2012).
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The corona decomposition

Given a function f , a weight �, define F ⇢ S inductively:

F0 = {Q0}
Given F 2 F

k

, let ⌘F(F ) be maximal cubes Q 2 S
such that Q ⇢ F and hf i�,Q > 2hf i�,F .
F

k+1 =
S

F2F
k

⌘F(F ), F =
S

k

F
k

.
Given Q 2 S, let ⇡F(Q) be the smallest cube in F
such that Q ⇢ ⇡F(Q)

⇡F(Q) = “padres” ⌘F(F ) = “hijos”



Two weight inequalities Testing conditions Fractional maximal operator Return to I↵ Commutators

�-Sparseness

Given F 2 F :

X

F

02⌘F (F )

�(F 0) 
X

F

02⌘F (F )

(f�)(F 0)

2hf i�,F
 (f�)(F )

2hf i�,F
=

1
2
�(F ).

Therefore, if,

EF(F ) = F \
[

F

02⌘F (F 0)

F

0,

�(EF(F )) � 1
2
�(F ).
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The sum to estimate (p = q)

By duality, we need to show that for every g 2 L

p

0
(u)

kL

S
↵(f�)kL

p(u) =

Z

Rn

L

S
↵(f�) gu dx

=
X

Q2S

|Q|↵n hf�i
Q

Z

E(Q)

gu dx  kfk
L

p(�)kgk
L

p

0 (u).

Here assume sum is over Q ⇢ Q0

Two weight inequalities Testing conditions Fractional maximal operator Return to I↵ Commutators

The good function

X

Q2S
Q⇢Q0

|Q|↵n hf�i
Q

Z

E(Q)

gu dx =
X

F2F

X

Q2S
⇡F (Q)=F

|Q|↵n hf�i
Q

Z

E(Q)

gu dx

If ⇡F(Q) = F , and F

0 2 ⌘F(F ), then F

0 ( Q.

Z

E(Q)

gu dx =

Z

E(Q)\EF (F )

gu dx +
X

F

02⌘F (F )

Z

E(Q)\F

0
gu dx

=

Z

E(Q)\EF (F )

gu dx =

Z

E(Q)

g

F

u dx .
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Applying the testing condition

X

F2F

X

Q2S
⇡F (Q)=F

|Q|↵n hf i�,Qh�iQ

Z

E(Q)

g

F

u dx


X

F2F

2hf i�,F
X

Q2S
⇡F (Q)=F

|Q|↵n h�i
Q

Z

E(Q)

g

F

u dx


X

F2F

2hf i�,F
Z

F

L

S
↵(��F

) g

F

u dx


X

F2F

2hf i�,FkM

D
↵ (��F

)�
F

k
L

p(u)kg

F

k
L

p

0 (u)

.
X

F2F

hf i�,F �(F )1/p kg

F

k
L

p

0 (u).
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The final estimate

X

F2F

hf i�,F �(F )1/p kg

F

k
L

p

0 (u)


 
X

F2F

hf ip

�,F �(F )

!1/p

 
X

F2F

kg

F

kp

0

L

p

0 (u)

!1/p

0

.
 
X

F2F

Z

EF (F )

M

D
� (f )

p� dx

!1/p

 
X

F2F

Z

EF (F )

g

p

0
u dx

!1/p

0


✓Z

Rn

M

D
� (f )

p� dx

◆1/p

✓Z

Rn

g

p

0
u dx

◆1/p

0

. kfk
L

p(�)kgk
L

p

0 (u)
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Proof fails for I↵

Recall: I

S
↵ (f�)(x) =

X

Q2S

|Q|↵n hf�i
Q

�
Q

(x).

Then for Q ⇢ F

Z

Q

gu dx =

Z

Q\EF (F )

gu dx +
X

F

02⌘F (F )

Z

Q\F

0
gu dx

=

Z

Q

✓
g�

EF (F ) +
X

F

02⌘F (F )

hgi
u,F 0

◆
u dx =

Z

Q

g

F

u dx ,

and we cannot bound
X

F2F

kg

F

k
L

p

0 (u).
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Parallel corona decomposition

Form second corona decomposition G of g with
respect to u.
Divide sum into two pieces:
X

Q2S

=
X

F2F
G2G

X

⇡F (Q)=F

⇡G(Q)=G

=
X

F2F

X

G2G
G⇢F

X

⇡F (Q)=F

⇡G(Q)=G

+
X

G2G

X

F2F
F(G

X

⇡F (Q)=F

⇡G(Q)=G

Estimate first sum as before; use G to estimate g

F

.
Estimate second sum exchanging roles of (f , �) and
(g, u) and use dual testing condition.
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Off-diagonal testing

Theorem (LSUT (2009))
If 1 < p < q < 1, the strong and weak type inequalities

for I

D
↵ are characterized by

✓Z

Q

I

D,+
↵,Q (��

Q

)q

u dx

◆1/q

 M1

✓Z

Q

� dx

◆1/p

(T+)

✓Z

Q

I

D,+
↵,Q (u�

Q

)p

0
� dx

◆1/p

0

 M2

✓Z

Q

u dx

◆1/q

0

(T ⇤
+)

where

I

D,+
↵,Q f (x) =

X

Q

02D
Q(Q

0

|Q0|↵n hf i
Q

0 �
Q

0(x).
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Two conjectures

Conjecture
The two testing conditions

✓Z

Q

[b, I↵](��Q

)q

u dx

◆1/q

 M1

✓Z

Q

� dx

◆1/p

(CT )

✓Z

Q

[b, I↵](u�Q

)p

0
� dx

◆1/p

0

 M2

✓Z

Q

u dx

◆1/q

0

(CT

⇤)

are necessary and sufficient for [b, I↵] : L

p(�) ! L

q(u).

(CT

⇤) is necessary and sufficient for L

p(�) ! L

q,1(u).
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Technical obstacles

Necessity by duality.

Pass to dyadic operator: how to prove equivalence?

How to modify parallel corona decomposition to “pull
out” hf i

Q,�?
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End of Lecture 2
Questions?


