# Two weight norm inequalities for fractional integrals and commutators

David V. Cruz-Uribe, SFO

Trinity College

6th International Course of Mathematical Analysis in Andalucía, 8/9/2014–12/9/2014 Lecture 3:  $A_{\rho}$  bump conditions

٢

# Two weight $A_{pq}$ .Bump conditions<br/>cococcConjoined bump conditions<br/>cococcSeparated bumps<br/>cococcTwo weight $A_{p,q}$ condition

Given 
$$1 and  $0 < \alpha < n$ ,  $(u, \sigma) \in A^{\alpha}_{p,q}$  if  

$$\sup_{Q} |Q|^{\frac{\alpha}{n} + \frac{1}{q} - \frac{1}{p}} \left( \oint_{Q} u \, dx \right)^{\frac{1}{q}} \left( \oint_{Q} \sigma \, dx \right)^{\frac{1}{p'}} < \infty.$$$$

If  $\frac{1}{p} - \frac{1}{q} = \frac{\alpha}{n}$ , and  $u = w^q$ ,  $\sigma = w^{-p'}$ , this becomes the one-weight  $A_{p,q}$  condition.

| Two weight <i>A<sub>pq</sub></i> ,<br>○●○○○ | Bump conditions | Conjoined bump conditions | Separated bumps |
|---------------------------------------------|-----------------|---------------------------|-----------------|
| Character                                   | rization of th  | ne weak type for          | r $M_{lpha}$    |

| Theorem                                                                 |
|-------------------------------------------------------------------------|
| Given $1  and 0 < \alpha < n, then (u, \sigma) \in A^{\alpha}_{p,q} if$ |
| and only if                                                             |
| $M_{\alpha}(\cdot \sigma): L^{p}(\sigma)  ightarrow L^{q,\infty}(u).$   |

Implicit in Muckenhoupt-Wheeden (1974)





s Separated

# $A_{p,q}$ Condition not sufficient

Bump conditions

## Example (DCU-Moen 2013)

Given  $1 and <math>0 < \alpha < n$ , there exists a pair of weights  $(u, \sigma)$  that satisfy the two weight  $A^{\alpha}_{p,q}$  condition but there exists  $f \in L^{p}(\sigma)$  such that  $M_{\alpha}(f\sigma) \notin L^{q}(u)$ .

Folklore: may have been known earlier.

# Two weight App, Bump conditions Conjoined bump conditions Si cocoo cocoo cocoo cocoo cocoo Factored weights cocoo cocoo cocoo cocoo

### Lemma

If  $1 and <math>0 < \alpha < n$ , and given  $w_1$ ,  $w_2 \in L^1_{loc}$ , then there exists  $\gamma > 0$  such that if

$$u = w_1(M_\gamma w_2)^{-rac{q}{p'}}, \quad \sigma = w_2(M_\gamma w_1)^{-rac{p'}{q}},$$

then  $(u, \sigma) \in A^{\alpha}_{p,q}$ .

Factored weights systematically developed in DCU-Martell-Pérez (2011).

# Two weight App, occord Bump conditions occord Conjoined bump conditions occord Separat occord Sketch of counter-example

## Define

$$E = \bigcup_{j \ge 0} [j, j + (j+1)^{-\gamma}), \qquad w_1 = \chi_E$$

Then  $M_{\gamma} w_1 \approx 1$ 

Let 
$$f = w_2 = \chi_{[0,1]}$$
; then for  $x \ge 2$ ,

$$M_{\gamma}w_2(x) \approx |x|^{\gamma-1}, \qquad M_{\alpha}(f\sigma)(x) \approx |x|^{\alpha-1}.$$

 Two weight Apq,
 Bump conditions
 Conjoined bump conditions
 Separated bumps

 00000
 000000
 000000
 000000

- Generalize  $A_{p,q}$  condition
- Universal sufficient conditions
- Easier to check than testing conditions
- Geometric condition on weights themselves
- Works well with CZ cubes

Introduced by Neugebauer (1983); Systematically developed by Pérez (1994+)





Rewrite  $A_{p,q}^{\alpha}$  condition:

$$\sup_{Q} |Q|^{\frac{\alpha}{p}+\frac{1}{q}-\frac{1}{p}} \|u^{\frac{1}{q}}\|_{q,Q} \|\sigma^{\frac{1}{p'}}\|_{p',Q} < \infty$$

Key idea: replace localized  $L^q$ ,  $L^{p'}$  norms with larger norms in the scale of Orlicz spaces.

A Young function  $B : [0, \infty) \to [0, \infty)$  is continuous, convex, increasing, B(0) = 0, and  $B(t)/t \to \infty$  as  $t \to \infty$ .

Associate Young function  $\bar{B}$ 

$$B^{-1}(t)ar{B}^{-1}(t)pprox t$$

Key example: log-bumps

$$B(t) = t^{
ho} \log(e+t)^{
ho-1+\delta}, \qquad ar{B}(t) pprox rac{t^{
ho'}}{\log(e+t)^{1+(
ho'-1)\delta}}$$

 Two weight Apq,
 Bump conditions
 Conjoined bump conditions
 Separated bumps

 Orlicz norms
 Orlicz norms
 Orlicz norms
 Orlicz norms

Luxemburg norm: given a Young function B

$$\|f\|_{B,Q} = \inf\left\{\lambda > 0: \int_{Q} B\left(\frac{|f(x)|}{\lambda}\right) dx \leq 1\right\}$$

Hölder's inequality:

$$|\langle fg
angle_{\mathcal{Q}}|\leq \int_{\mathcal{Q}}|f(x)g(x)|\,dx\leq 2\|f\|_{B,\mathcal{Q}}\|g\|_{ar{B},\mathcal{Q}}$$

 Two weight Apq.
 Bump conditions
 Conjoined bump conditions
 Separated bumps

 Ornicz maximal operators

Given Young function *B*, define

$$M_B f(x) = \sup_Q \|f\|_{B,Q} \chi_Q(x).$$

Theorem (Pérez 1995)Given a Young function B, 
$$M_B : L^p \to L^p$$
, if and only if $B \in B_p$ : $\int_1^\infty \frac{B(t)}{t^p} \frac{dt}{t} < \infty.$ 

For necessity, see Liu-Luque (2014).



Conjoined bump condition

## The size of bumps

If  $B \in B_p$ , then  $B(t) \lesssim t^p$   $\overline{B}(t) \gtrsim t^{p'}$ .

Bump conditions

N.B.  $B(t) = t^p$  not in  $B_p$ 



## Theorem (Pérez (1994)) Given $1 and weights <math>(u, \sigma)$ , if $\overline{B} \in B_p$ and

$$\sup_{Q}|Q|^{\frac{\alpha}{n}+\frac{1}{q}-\frac{1}{p}}\|u^{\frac{1}{q}}\|_{q,Q}\|\sigma^{\frac{1}{p'}}\|_{B,Q}<\infty,$$

Then  $M_{\alpha}(\cdot \sigma) : L^{p}(\sigma) \to L^{q}(u)$ .

If 
$$ar{A} \in B_{q'}, \, ar{B} \in B_p$$
 and

 $\sup_{Q} |Q|^{\frac{\alpha}{n}+\frac{1}{q}-\frac{1}{p}} \|u^{\frac{1}{q}}\|_{\mathcal{A},Q} \|\sigma^{\frac{1}{p'}}\|_{\mathcal{B},Q} < \infty,$ 

Then  $I_{\alpha}(\cdot \sigma) : L^{p}(\sigma) \to L^{q}(u)$ .

| Two weight A <sub>pq</sub> ,<br>00000 | Bump conditions                               | Conjoined bump conditions<br>o●oooo | Separated bumps |
|---------------------------------------|-----------------------------------------------|-------------------------------------|-----------------|
| Proof for I                           | $r_{\alpha}, \boldsymbol{p} = \boldsymbol{q}$ |                                     |                 |

- Use sparse dyadic operator
- Apply duality
- Hölder's inequality to separate functions and weights
- Bump condition and Orlicz maximal operators to evaluate sum

$$\begin{array}{l|l} \hline \mbox{two weight } A_{pq,} & \mbox{two definitions} & \mbox{concorr} \end{array} \end{array} \\ \hline \mbox{Processed} \end{tabular} \begin{array}{l} \mbox{Processed} \end{tabular} \end{tabular} p & \mbox{concorr} \end{tabular} \\ \hline \mbox{Processed} \end{tabular} \end{tabular} \begin{array}{l} \mbox{Separated bumps} & \mbox{concorr} \end{tabular} \\ \hline \mbox{Processed} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \hline \mbox{Processed} \end{tabular} \begin{array}{l} \mbox{Separated bumps} & \mbox{concorr} \end{tabular} \\ \hline \mbox{Separated bumps} \end{tabular} \end{tabular$$

Conjoined bump conditions

# Conjoined bumps for commutators

Bump conditions

Theorem (DCU-Moen 2012) Given  $b \in BMO$  and  $1 , if <math>(u, \sigma)$  satisfies  $\sup_{Q} |Q|^{\frac{\alpha}{n}+\frac{1}{q}-\frac{1}{p}} \|u^{\frac{1}{q}}\|_{\mathcal{A},Q} \|\sigma^{\frac{1}{p'}}\|_{\mathcal{B},Q} < \infty,$ where  $A(t) = t^q \log(e+t)^{2q-1+\delta}, \ B(t) = t^{p'} \log(e+t)^{2p'-1+\delta},$ then  $[b, I_{\alpha}](\cdot \sigma) : L^{p}(\sigma) \to L^{q}(u).$ 

### Bump conditions Conjoined bump conditions Sketch of proof I

Prove for dyadic operator

$$J_{\alpha,b}(f\sigma)(x) = \sum_{Q\in\mathcal{D}} |Q|^{\frac{\alpha}{n}} f_Q |b(x) - b(y)| f(y)\sigma(y) \, dy \, \chi_Q(x)$$

Use duality and split sum

$$\int_{\mathbb{R}^{n}} J_{\alpha,b}(f\sigma) gu \, dx$$

$$\leq \sum_{Q \in \mathcal{D}} |Q|^{\frac{\alpha}{n}} \int_{Q} |b - \langle b \rangle_{Q} |f\sigma \, dy \langle gu \rangle_{Q} |Q|$$

$$+ \sum_{Q \in \mathcal{D}} |Q|^{\frac{\alpha}{n}} \int_{Q} |b - \langle b \rangle_{Q} |gu \, dx \langle f\sigma \rangle_{Q} |Q|$$

## Conjoined bump conditions Bump conditi Sketch of proof II

By symmetry, estimate first sum. Restrict to cubes contained in  $Q_0$ .

Use corona decomposition of  $|b - \langle b \rangle_Q | f \sigma$  wrt dx:

$$\sum_{F \in \mathcal{F}} \oint_{F} |b - \langle b \rangle_{F} |f\sigma \, dy \sum_{Q \in F} |Q|^{\frac{\alpha}{n}} \int_{Q} gu \, dx$$
$$\leq \sum_{F \in \mathcal{F}} |F|^{\frac{\alpha}{n}} \|b\|_{\exp L,F} \|f\sigma\|_{L\log L,F} \int_{F} gu \, dx$$
$$\lesssim \|b\|_{BMO} \sum_{F \in \mathcal{F}} |F|^{\frac{\alpha}{n}} \|f\sigma\|_{L\log L,F} \oint_{F} gu \, dx |E(F)|$$

Use generalized Hölder's inequality and bump condition to continue as for  $I_{\alpha}$ .



What are the correct bump conditions for weak type inequalities?

How are these related to bump conditions for strong type inequalities?





# Two weight App,<br/>coccoBump conditions<br/>coccoConjoined bump conditions<br/>coccoMuckenhoupt-Wheeden conjectures

Given  $1 , <math>0 < \alpha < n$  and  $(u, \sigma)$ ,

if

$$M_{\alpha}(\cdot\sigma): L^{p}(\sigma) \to L^{q}(u), \qquad (M)$$
$$M_{\alpha}(\cdot u): L^{q'}(u) \to L^{p'}(\sigma), \qquad (M^{*})$$

Separated bumps

then  $I_{\alpha}(\cdot \sigma) : L^{p}(\sigma) \to L^{q}(u)$ .

If  $(M^*)$  holds, then

$$I_{\alpha}(\cdot \sigma): L^{p}(\sigma) \to L^{q,\infty}(u).$$

| Theorem (DCU-Moen 2013)                                                                                         |
|-----------------------------------------------------------------------------------------------------------------|
| Given 1 < $p$ < $q$ < $\infty$ , 0 < $\alpha$ < $n$ and $(u, \sigma)$ , if (M) and (M <sup>*</sup> ) hold, then |
| $I_{\alpha}(\cdot\sigma):L^{p}(\sigma) ightarrow L^{q}(u).$                                                     |

If  $(M^*)$  holds, then

$$I_{\alpha}(\cdot\sigma): L^{p}(\sigma) \to L^{q,\infty}(u)$$

| Two weight <i>A<sub>pq</sub></i> ,<br>০০০০০ | Bump conditions | Conjoined bump conditions | Separated bumps |
|---------------------------------------------|-----------------|---------------------------|-----------------|
| Proof (easy                                 | /!)             |                           |                 |

Recall off-diagonal testing conditions:

$$\left(\int_{Q} I_{\alpha,Q}^{\mathcal{D},+}(\sigma\chi_{Q})^{q} u \, dx\right)^{\frac{1}{q}} \leq M_{1} \left(\int_{Q} \sigma \, dx\right)^{\frac{1}{p}} \qquad (T_{+})$$
$$\left(\int_{Q} I_{\alpha,Q}^{\mathcal{D},+}(u\chi_{Q})^{p'} \sigma \, dx\right)^{\frac{1}{p'}} \leq M_{2} \left(\int_{Q} u \, dx\right)^{1/q'} \qquad (T_{+}^{*})$$

where

$$J^{\mathcal{D},+}_{\alpha,Q}f(x) = \sum_{\substack{Q'\in\mathcal{D}\ Q\subsetneq Q'}} |Q'|^{\frac{lpha}{n}} \langle f 
angle_{Q'} \ \chi_{Q'}(x).$$

| Two weight A <sub>pq</sub> ,<br>ooooo | Bump conditions | Conjoined bump conditions | Separated bumps |
|---------------------------------------|-----------------|---------------------------|-----------------|
| Restating t                           | he condition    |                           |                 |

Summing the geometric series:

$$\begin{split} I^{\mathcal{D},+}_{\alpha,\mathcal{Q}}(\sigma\chi_{\mathcal{Q}})(x) &= \sum_{\substack{\mathcal{Q}'\in\mathcal{D}\\\mathcal{Q}\subsetneq\mathcal{Q}'}} |\mathcal{Q}'|^{\frac{\alpha}{n}} \langle \sigma\chi_{\mathcal{Q}} \rangle_{\mathcal{Q}'} \, \chi_{\mathcal{Q}'}(x) \\ &\leq |\mathcal{Q}|^{1-\frac{\alpha}{n}} \sum_{\substack{\mathcal{Q}'\in\mathcal{D}\\\mathcal{Q}\subsetneq\mathcal{Q}'}} |\mathcal{Q}'|^{\frac{\alpha}{n}-1} M^{\mathcal{D}}_{\alpha}(\sigma\chi_{\mathcal{Q}})(x) \leq C M^{\mathcal{D}}_{\alpha}(\sigma\chi_{\mathcal{Q}})(x) \end{split}$$

Condition  $(T_+)$  becomes

$$\left(\int_{Q} M_{\alpha}^{\mathcal{D}}(\sigma\chi_{Q})^{q} u \, dx\right)^{\frac{1}{q}} \leq M_{1} \left(\int_{Q} \sigma \, dx\right)^{\frac{1}{p}} \quad (MT)$$



### Conjoined bump condition

Separated bumps

# Separated bump condition

Bump conditions

Testing conditions implied by:

$$\begin{split} \sup_{Q} |Q|^{\frac{\alpha}{n} + \frac{1}{q} - \frac{1}{p}} \|u^{\frac{1}{q}}\|_{A,Q} \|\sigma^{\frac{1}{p'}}\|_{p',Q} < \infty, \quad \bar{A} \in B_{q'} \quad (BL) \\ \sup_{Q} |Q|^{\frac{\alpha}{n} + \frac{1}{q} - \frac{1}{p}} \|u^{\frac{1}{q}}\|_{q,Q} \|\sigma^{\frac{1}{p'}}\|_{B,Q} < \infty, \quad \bar{B} \in B_{p} \quad (BR) \end{split}$$

This suggests that two bump conditions are sufficient for strong type inequalities

and the dual bump condition (BL) should be sufficient for weak type inequalities.

| Two weight A <sub>pq</sub> ,<br>00000 | Bump conditions | Conjoined bump conditions | Separated bumps<br>○○○○○○●○○○○ |
|---------------------------------------|-----------------|---------------------------|--------------------------------|
| Two ques                              | tions when      | p = q                     |                                |

• Are the MW conjectures true: do (*M*) and (*M*<sup>\*</sup>) imply  $I_{\alpha}(\cdot\sigma): L^{p}(\sigma) \to {}^{p}(u)?$ 

Conjecture: no.

• Do the separated bump conditions (*BL*) and (*BR*) imply strong and weak type inequalities?

Conjecture: it depends on the size of the bump.

| Two weight A <sub>pq</sub> , | Bump conditions | Conjoined bump conditions | Separated bumps |
|------------------------------|-----------------|---------------------------|-----------------|
| A weaker of                  | condition       |                           |                 |

## Example (Anderson-DCU-Moen (2013))

Given  $1 and <math>0 < \alpha <$ , there exists  $(u, \sigma)$  and Young functions A, B with  $\bar{A} \in B_{a'}$ ,  $\bar{B} \in B_{p}$ , such that  $(u, \sigma)$  satisfy the separated bump conditions but not the conjoined bump condition.

Example for p = q = 2,  $\alpha = 0$ , but easily modified.



Bump conditio Best known result

| Theorem (DCU-Martell-Pérez (2011))                                                                |
|---------------------------------------------------------------------------------------------------|
| Given 1 < $p < \infty$ , 0 < $\alpha$ < n and ( $u, \sigma$ ), if ( $ML$ ) and ( $MR$ ) hold with |
| $A(t) = t^{\rho} \log(e+t)^{2\rho-1+\delta}, \ B(t) = t^{\rho'} \log(e+t)^{2\rho'-1+\delta},$     |
| then $I_{lpha}(\cdot\sigma):L^p(\sigma) ightarrow {}^p(u).$                                       |
| If (ML) holds, then $I_{\alpha}(\cdot \sigma) : L^{p}(\sigma) \to {}^{p,\infty}(u)$ .             |

### wo weight Apg,

Bump conditions

Separated bumps

ANNE

# Idea of proof

Theorem follows from two weight extrapolation and weak type inequality:

$$u(\{x\in\mathbb{R}^n:|I_{lpha}f(x)|>t\})\leq rac{C}{t}\int_{\mathbb{R}^n}|f(x)|M_{B,lpha}u(x)\,dx,$$

where

$$M_{B,\alpha}u(x) = \sup_{Q} |Q|^{\frac{\alpha}{n}} ||u||_{B,Q} \chi_Q(x), \qquad B(t) = t \log(e+t)^{1+\epsilon}.$$

|  | Two weight A <sub>pq</sub> ,<br>00000 | Bump conditions | Conjoined bump conditions | Separated bumps |
|--|---------------------------------------|-----------------|---------------------------|-----------------|
|--|---------------------------------------|-----------------|---------------------------|-----------------|

End of Lecture 3 Thank you very much! Muchas gracias!

### Bump conditions Separated bumps wo weight A<sub>pq,</sub> Three final questions

- Can you prove this result using testing conditions and the corona decomposition?
- Can you prove this result for log bumps:

 $A(t) = t^{p} \log(e+t)^{p-1+\delta}, \ B(t) = t^{p'} \log(e+t)^{p'-1+\delta}?$ 

• can you prove weak (1, 1) inequality with  $B(t) = t \log(e+t)^{\epsilon}$ ?

Very recent work by Lacey (2014) and Treil and Volberg (2014) suggests even weaker conditions are possible, but not general  $B_p$  bumps.

