Two weight norm inequalities for fractional integrals and commutators

David V. Cruz-Uribe, SFO

Trinity College
6th International Course of Mathematical Analysis in Andalucía, 8/9/2014-12/9/2014

Two weight $A_{p q}$, $\bullet 0000$	Bump conditions 000000	Conjoined bump conditions 000000	Separated bumps 000000000000
,	$A_{p, q}$ condition		

Two weight $A_{p q, ~}$ 00000	Bump conditions 000000	Conjoined bump conditions 000000	Separated bumps 000000000000
Characterization of the weak tyoe for M_{α}			

$$
\begin{aligned}
& \text { Theorem } \\
& \text { Given } 1<p \leq q<\infty \text { and } 0<\alpha<n \text {, then }(u, \sigma) \in A_{p, q}^{\alpha} \text { if } \\
& \text { and only if } \\
& \qquad M_{\alpha}(\cdot \sigma): L^{p}(\sigma) \rightarrow L^{q, \infty}(u) .
\end{aligned}
$$

Implicit in Muckenhoupt-Wheeden (1974)

If $\frac{1}{p}-\frac{1}{q}=\frac{\alpha}{n}$, and $u=w^{q}, \sigma=w^{-p^{\prime}}$, this becomes the one-weight $A_{p, q}$ condition.

Lecture 3: A_{p} bump conditions

$A_{p, q}$ Condition not sufficient

Example (DCU-Moen 2013)
Given $1<p \leq q<\infty$ and $0<\alpha<n$, there exists a pair of weights (u, σ) that satisfy the two weight $A_{\rho, q}^{\alpha}$ condition but there exists $f \in L^{p}(\sigma)$ such that $M_{\alpha}(f \sigma) \notin L^{q}(u)$.

Folklore: may have been known earlier.

Factored weights

Lemma

If $1<p \leq q<\infty$ and $0<\alpha<n$, and given $w_{1}, w_{2} \in L_{\text {loc }}^{1}$, then there exists $\gamma>0$ such that if

$$
u=w_{1}\left(M_{\gamma} w_{2}\right)^{-\frac{q}{p^{\prime}}}, \quad \sigma=w_{2}\left(M_{\gamma} w_{1}\right)^{-\frac{p^{\prime}}{q}},
$$

then $(u, \sigma) \in A_{p, q}^{\alpha}$.

Factored weights systematically developed in DCU-Martell-Pérez (2011).

Two weight $A_{p q,}$ ooooo	Bump conditions $\bullet 00000$						Conjoined bump conditions 000000	Separated bumps 00000000000
Bump conditions								

- Generalize $A_{p, q}$ condition
- Universal sufficient conditions
- Easier to check than testing conditions
- Geometric condition on weights themselves
- Works well with CZ cubes

Introduced by Neugebauer (1983);
Systematically developed by Pérez (1994+)

Rewrite $A_{p, q}^{\alpha}$ condition:

$$
\sup _{Q}|Q|^{\frac{\alpha}{n}+\frac{1}{q}-\frac{1}{p}}\left\|u^{\frac{1}{q}}\right\|_{q, Q}\left\|\sigma^{\frac{1}{\rho^{\prime}}}\right\|_{p^{\prime}, Q}<\infty
$$

Key idea: replace localized $L^{q}, L^{p^{\prime}}$ norms with larger norms in the scale of Orlicz spaces.

A Young function $B:[0, \infty) \rightarrow[0, \infty)$ is continuous, convex, increasing, $B(0)=0$, and $B(t) / t \rightarrow \infty$ as $t \rightarrow \infty$

Associate Young function \bar{B}

$$
B^{-1}(t) \bar{B}^{-1}(t) \approx t
$$

Key example: log-bumps

$$
B(t)=t^{p} \log (e+t)^{p-1+\delta}, \quad \bar{B}(t) \approx \frac{t^{p^{\prime}}}{\log (e+t)^{1+\left(p^{\prime}-1\right) \delta}}
$$

$\underset{\substack{\text { Bunp conditic } \\ \text { Ooocoso }}}{ }$
 Conjoined 000000
 Separated bumps 000000000000
 Orlicz maximal operators

Given Young function B, define

$$
M_{B} f(x)=\sup _{Q}\|f\|_{B, Q} \chi_{Q}(x) .
$$

Theorem (Pérez 1995)

Given a Young function $B, M_{B}: L^{p} \rightarrow L^{p}$, if and only if $B \in B_{p}$:

$$
\int_{1}^{\infty} \frac{B(t)}{t^{p}} \frac{d t}{t}<\infty .
$$

For necessity, see Liu-Luque (2014)

The size of bumps

If $B \in B_{p}$, then $\quad B(t) \lesssim t^{p} \quad \bar{B}(t) \gtrsim t^{p^{\prime}}$.
N.B. $B(t)=t^{p}$ not in B_{p}

Bumps for M_{α} and I_{α}

```
Theorem (Pérez (1994))
Given \(1<p \leq q<\infty\) and weights \((u, \sigma)\), if \(\bar{B} \in B_{p}\) and
    \(\sup _{Q}|Q|^{\frac{\alpha}{n}+\frac{1}{q}-\frac{1}{\rho}}\left\|u^{\frac{1}{q}}\right\|_{q, Q}\left\|\sigma^{\frac{1}{\rho^{\prime}}}\right\|_{B, Q}<\infty\),
Then \(M_{\alpha}(\cdot \sigma): L^{p}(\sigma) \rightarrow L^{q}(u)\).
If \(\bar{A} \in B_{q^{\prime}}, \bar{B} \in B_{p}\) and
    \(\sup _{Q}|Q|^{\frac{\alpha}{n}+\frac{1}{q}-\frac{1}{\rho}}\left\|u^{\frac{1}{q}}\right\|_{A, Q}\left\|\sigma^{\frac{1}{\rho^{\prime}}}\right\|_{B, Q}<\infty\),
Then \(I_{\alpha}(\cdot \sigma): L^{p}(\sigma) \rightarrow L^{q}(u)\).
```


- Use sparse dyadic operator
- Apply duality
- Hölder's inequality to separate functions and weights
- Bump condition and Orlicz maximal operators to evaluate sum

Two weight $A_{p q,}$ ooooo	Bump conditions 000000	Conjoined bump conditions $00 \bullet 000$	Separated bumps 00000000000
Proof for $I_{\alpha}, ~$	$0=\varnothing$		

$$
\begin{align*}
& \int_{\mathbb{R}^{n}} I_{\alpha}^{\mathcal{S}}(f \sigma) g u d x \\
&=\sum_{Q \in \mathcal{S}}|Q|^{\frac{\alpha}{n}}\langle f \sigma\rangle_{Q}\langle g u\rangle_{Q}|Q| \\
& \lesssim \sum_{Q \in \mathcal{S}}|Q|^{\frac{\alpha}{n}}\left\|f \sigma^{\frac{1}{\rho}}\right\|_{\bar{B}, Q}\left\|\sigma^{\frac{1}{\rho^{\rho}}}\right\|_{B, Q}\left\|g u^{\frac{1}{\rho^{\rho}}}\right\|_{\bar{A}, Q}\left\|u^{\frac{1}{\rho}}\right\|_{A, Q}|Q| \\
& \lesssim \sum_{Q \in \mathcal{S}}\left\|f \sigma^{\frac{1}{\rho}}\right\|_{\bar{B}, Q}\left\|g u^{\frac{1}{\rho^{\prime}}}\right\|_{\bar{A}, Q}|E(Q)| \\
& \lesssim \sum_{Q \in \mathcal{S}} \int_{E(Q)} M_{\bar{B}}\left(f \sigma^{\frac{1}{\rho}}\right) M_{\bar{A}}\left(g u^{\frac{1}{\rho^{\prime}}}\right) d x \\
& \lesssim\left\|M_{\bar{B}}\left(f \sigma^{\frac{1}{\rho}}\right)\right\|_{p}\left\|M_{\bar{A}}\left(g u^{\frac{1}{\rho^{\prime}}}\right)\right\|_{\rho^{\prime}} \\
& \lesssim\|f\|_{L^{\prime}(\sigma)}\|g\|_{L^{\rho^{\prime}}(u)}
\end{align*}
$$

Conjoined bumps for commutators

Sketch of proof I

Prove for dyadic operator

$$
J_{\alpha, b}(f \sigma)(x)=\sum_{Q \in \mathcal{D}}|Q|^{\frac{\alpha}{n}} f_{Q}|b(x)-b(y)| f(y) \sigma(y) d y \chi_{Q}(x)
$$

Use duality and split sum

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} J_{\alpha, b}(f \sigma) g u d x \\
& \quad \leq \sum_{Q \in \mathcal{D}}|Q|^{\frac{\alpha}{n}} f_{Q}\left|b-\langle b\rangle_{Q}\right| f \sigma d y\langle g u\rangle_{Q}|Q| \\
& \quad+\sum_{Q \in \mathcal{D}}|Q|^{\frac{\alpha}{n}} f_{Q}\left|b-\langle b\rangle_{Q}\right| g u d x\langle f \sigma\rangle_{Q}|Q|
\end{aligned}
$$

Two weight $A_{p q,}$ 00000	Bump conditions 000000	Conjoined bump conditions 000000	Separated bumps $\bullet 00000000000$
Weak type inequalities			

What are the correct bump conditions for weak type inequalities?

How are these related to bump conditions for strong type inequalities?

Use generalized Hölder's inequality and bump condition to continue as for I_{α}.

Muckenhoupt-Wheeden conjectures

Given $1<p \leq q<\infty, 0<\alpha<n$ and (u, σ), if

$$
\begin{aligned}
M_{\alpha}(\cdot \sigma): L^{p}(\sigma) \rightarrow L^{q}(u), & (M) \\
M_{\alpha}(\cdot u): L^{q^{\prime}}(u) \rightarrow L^{\rho^{\prime}}(\sigma), & \left(M^{*}\right)
\end{aligned}
$$

then $I_{\alpha}(\cdot \sigma): L^{p}(\sigma) \rightarrow L^{q}(u)$.
If $\left(M^{*}\right)$ holds, then

$$
I_{\alpha}(\cdot \sigma): L^{p}(\sigma) \rightarrow L^{q, \infty}(u) .
$$

Two weight $A_{\text {pq, }}$ oo000	Bump conditions 0000000	Conjoined bump conditions 000000
Proof (easy!)		Separated bumps 000000000000

Recall off-diagonal testing conditions:

$$
\begin{align*}
\left(\int_{Q} I_{\alpha, Q}^{\mathcal{D},+}\left(\sigma \chi_{Q}\right)^{q} u d x\right)^{\frac{1}{q}} & \leq M_{1}\left(\int_{Q} \sigma d x\right)^{\frac{1}{p}} \tag{+}\\
\left(\int_{Q} I_{\alpha, Q}^{\mathcal{D},+}\left(u \chi_{Q}\right)^{)^{\prime}} \sigma d x\right)^{\frac{1}{p}} & \leq M_{2}\left(\int_{Q} u d x\right)^{1 / q^{\prime}} \tag{+}
\end{align*}
$$

where

$$
l_{\alpha, Q}^{\mathcal{D},+} f(x)=\sum_{\substack{Q^{\prime} \in \mathcal{D} \\ Q \leftrightarrows Q^{\prime}}}\left|Q^{\prime}\right|^{\frac{\alpha}{n}}\langle f\rangle_{Q^{\prime}} \chi_{Q^{\prime}}(x) .
$$

	${ }_{\text {Bump }}^{\text {Bump conditions }}$	Conioned bump conditions	${ }_{\substack{\text { Separaled } \\ \text { oococo }}}$
Restating the condition			
Summing the geometric series:			
$I_{\alpha, Q}^{D,+}\left(\sigma \chi_{Q}\right)(x)=\sum_{\substack{\alpha^{\prime} \in \mathcal{D} \\ Q \subseteq Q^{\prime}}}\left\|Q^{\prime}\right\|^{\frac{\alpha}{n}}\left\langle\sigma \chi_{Q}\right\rangle_{Q^{\prime}} \chi_{Q^{\prime}}(x)$			
$\leq\|Q\|^{1-\frac{\alpha}{n}} \sum_{\substack{Q^{\prime} \in \mathcal{D} \\ Q \subseteq Q^{\prime}}}\left\|Q^{\prime}\right\|^{\frac{\alpha}{n}-1} M_{\alpha}^{\mathcal{D}}\left(\sigma \chi_{Q}\right)(x) \leq C M_{\alpha}^{\mathcal{D}}\left(\sigma \chi_{Q}\right)(x)$			

Condition (T_{+}) becomes

$$
\left(\int_{Q} M_{\alpha}^{\mathcal{D}}\left(\sigma \chi_{Q}\right)^{q} u d x\right)^{\frac{1}{q}} \leq M_{1}\left(\int_{Q} \sigma d x\right)^{\frac{1}{p}} \quad(M T)
$$

Separated bump condition

Testing conditions implied by:

$$
\begin{array}{ll}
\sup _{Q}|Q|^{\frac{\alpha}{n}+\frac{1}{q}-\frac{1}{p}}\left\|u^{\frac{1}{q}}\right\|_{A, Q}\left\|\sigma^{\frac{1}{\rho^{\prime}}}\right\|_{p^{\prime}, Q}<\infty, & \bar{A} \in B_{q^{\prime}} \quad(B L) \\
\sup _{Q}|Q|^{\frac{\alpha}{n}+\frac{1}{q}-\frac{1}{p}}\left\|u^{\frac{1}{q}}\right\|_{q, Q}\left\|\sigma^{\frac{1}{\rho^{\prime}}}\right\|_{B, Q}<\infty, \quad \bar{B} \in B_{p} \quad(B R)
\end{array}
$$

This suggests that two bump conditions are sufficient for strong type inequalities
and the dual bump condition (BL) should be sufficient for weak type inequalities.

- Are the MW conjectures true: do (M) and (M^{*}) imply $I_{\alpha}(\cdot \sigma): L^{p}(\sigma) \rightarrow^{p}(u) ?$

Conjecture: no.

- Do the separated bump conditions (BL) and (BR) imply strong and weak type inequalities?

Conjecture: it depends on the size of the bump.

A weaker condition

Example (Anderson-DCU-Moen (2013))

Given $1<p \leq q<\infty$ and $0<\alpha<$, there exists (u, σ) and Young functions A, B with $\bar{A} \in B_{q^{\prime}}, \bar{B} \in B_{p}$, such that (u, σ) satisfy the separated bump conditions but not the conjoined bump condition.

Example for $p=q=2, \alpha=0$, but easily modified.

Two weight $A_{p q,}$ ooooo	Bump conditions 000000	Conjinined bump conditions 000000	Separated bumps $00000000 \bullet 000$
Best known result			

Theorem (DCU-Martell-Pérez (2011))

Given $1<p<\infty, 0<\alpha<n$ and (u, σ), if (ML) and (MR) hold with

```
\[
A(t)=t^{p} \log (e+t)^{2 p-1+\delta}, B(t)=t^{p^{\prime}} \log (e+t)^{2 p^{\prime}-1+\delta}
\]
then \(I_{\alpha}(\cdot \sigma): L^{p}(\sigma) \rightarrow{ }^{p}(u)\).
If \((M L)\) holds, then \(I_{\alpha}(\cdot \sigma): L^{p}(\sigma) \rightarrow^{p, \infty}(u)\)
    \(A(t)=t^{p} \log (e+t)^{2 p-1+\delta}, B(t)=t^{p^{\prime}} \log (e+t)^{2 p^{\prime}-1+\delta}\),
```

(ML) holds, then $I_{a}(\sigma): L \rho(\sigma) \rightarrow P \infty(u)$.

Three final questions

- Can you prove this result using testing conditions and the corona decomposition?
- Can you prove this result for log bumps:

$$
A(t)=t^{p} \log (e+t)^{p-1+\delta}, B(t)=t^{p^{\prime}} \log (e+t)^{p^{\prime}-1+\delta} ?
$$

- can you prove weak $(1,1)$ inequality with $B(t)=t \log (e+t)^{\epsilon}$?

Very recent work by Lacey (2014) and Treil and Volberg (2014) suggests even weaker conditions are possible, but not general B_{p} bumps.

End of Lecture 3
Thank you very much! Muchas gracias!

