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Lecture 3:
Ap bump conditions
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Two weight Ap,q condition

Given 1 < p  q < 1 and 0 < ↵ < n, (u, �) 2 A↵
p,q if

sup
Q

|Q|
↵
n +

1
q �

1
p

✓
�
Z

Q
u dx

◆ 1
q
✓
�
Z

Q
� dx

◆ 1
p0

< 1.

If 1
p � 1

q = ↵
n , and u = wq, � = w�p0 , this becomes the

one-weight Ap,q condition.

Two weight Apq, Bump conditions Conjoined bump conditions Separated bumps

Characterization of the weak type for M↵

Theorem
Given 1 < p  q < 1 and 0 < ↵ < n, then (u, �) 2 A↵

p,q if
and only if

M↵(·�) : Lp(�) ! Lq,1(u).

Implicit in Muckenhoupt-Wheeden (1974)
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Ap,q Condition not sufficient

Example (DCU-Moen 2013)
Given 1 < p  q < 1 and 0 < ↵ < n, there exists a pair
of weights (u, �) that satisfy the two weight A↵

p,q condition
but there exists f 2 Lp(�) such that M↵(f�) 62 Lq(u).

Folklore: may have been known earlier.
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Factored weights

Lemma
If 1 < p  q < 1 and 0 < ↵ < n, and given w1, w2 2 L1

loc,
then there exists � > 0 such that if

u = w1(M�w2)
� q

p0 , � = w2(M�w1)
� p0

q ,

then (u, �) 2 A↵
p,q.

Factored weights systematically developed in
DCU-Martell-Pérez (2011).
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Sketch of counter-example

Define

E =
[

j�0

[j , j + (j + 1)��), w1 = �E ,

Then M�w1 ⇡ 1

Let f = w2 = �[0,1]; then for x � 2,

M�w2(x) ⇡ |x |��1, M↵(f�)(x) ⇡ |x |↵�1.
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Bump conditions

Generalize Ap,q condition

Universal sufficient conditions

Easier to check than testing conditions

Geometric condition on weights themselves

Works well with CZ cubes

Introduced by Neugebauer (1983);
Systematically developed by Pérez (1994+)
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Bumping the Ap condition

Rewrite A↵
p,q condition:

sup
Q

|Q|
↵
n +

1
q �

1
p ku

1
q kq,Qk�

1
p0 kp0,Q < 1

Key idea: replace localized Lq, Lp0 norms with larger
norms in the scale of Orlicz spaces.
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Bump functions

A Young function B : [0,1) ! [0,1) is continuous,
convex, increasing, B(0) = 0, and B(t)/t ! 1 as t ! 1.

Associate Young function B̄

B�1(t)B̄�1(t) ⇡ t

Key example: log-bumps

B(t) = tp log(e + t)p�1+�, B̄(t) ⇡ tp0

log(e + t)1+(p0�1)�
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Orlicz norms

Luxemburg norm: given a Young function B

kfkB,Q = inf
⇢
� > 0 : �

Z

Q
B
✓
|f (x)|
�

◆
dx  1

�
.

Hölder’s inequality:

|hfgiQ|  �
Z

Q
|f (x)g(x)| dx  2kfkB,QkgkB̄,Q.
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Orlicz maximal operators

Given Young function B, define

MBf (x) = sup
Q

kfkB,Q �Q(x).

Theorem (Pérez 1995)
Given a Young function B, MB : Lp ! Lp, if and only if
B 2 Bp: Z 1

1

B(t)
tp

dt
t

< 1.

For necessity, see Liu-Luque (2014).



Two weight Apq, Bump conditions Conjoined bump conditions Separated bumps

The size of bumps

If B 2 Bp, then B(t) . tp B̄(t) & tp0
.

N.B. B(t) = tp not in Bp
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Bumps for M↵ and I↵

Theorem (Pérez (1994))

Given 1 < p  q < 1 and weights (u, �), if B̄ 2 Bp and

sup
Q

|Q|
↵
n +

1
q �

1
p ku

1
q kq,Qk�

1
p0 kB,Q < 1,

Then M↵(·�) : Lp(�) ! Lq(u).

If Ā 2 Bq0 , B̄ 2 Bp and

sup
Q

|Q|
↵
n +

1
q �

1
p ku

1
q kA,Qk�

1
p0 kB,Q < 1,

Then I↵(·�) : Lp(�) ! Lq(u).
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Proof for I↵, p = q

Use sparse dyadic operator

Apply duality

Hölder’s inequality to separate functions and weights

Bump condition and Orlicz maximal operators to
evaluate sum
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Proof for I↵, p = q
Z

Rn
IS↵ (f�) gu dx

=
X

Q2S

|Q|↵n hf�iQhguiQ|Q|

.
X

Q2S

|Q|↵n kf�
1
p kB̄,Qk�

1
p0 kB,Qkgu

1
p0 kĀ,Qku

1
p kA,Q|Q|

.
X

Q2S

kf�
1
p kB̄,Qkgu

1
p0 kĀ,Q|E(Q)|

.
X

Q2S

Z

E(Q)

MB̄(f�
1
p )MĀ(gu

1
p0 ) dx

. kMB̄(f�
1
p )kpkMĀ(gu

1
p0 )kp0

. kfkLp0 (�)kgkLp0 (u)
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Conjoined bumps for commutators

Theorem (DCU-Moen 2012)
Given b 2 BMO and 1 < p  q < 1, if (u, �) satisfies

sup
Q

|Q|
↵
n +

1
q �

1
p ku

1
q kA,Qk�

1
p0 kB,Q < 1,

where

A(t) = tq log(e + t)2q�1+�, B(t) = tp0 log(e + t)2p0�1+�,

then
[b, I↵](·�) : Lp(�) ! Lq(u).
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Sketch of proof I
Prove for dyadic operator

J↵,b(f�)(x) =
X

Q2D

|Q|↵n �
Z

Q
|b(x)� b(y)|f (y)�(y) dy �Q(x)

Use duality and split sum

Z

Rn
J↵,b(f�)gu dx


X

Q2D

|Q|↵n �
Z

Q
|b � hbiQ|f� dyhguiQ|Q|

+
X

Q2D

|Q|↵n �
Z

Q
|b � hbiQ|gu dxhf�iQ|Q|
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Sketch of proof II

By symmetry, estimate first sum. Restrict to cubes
contained in Q0.

Use corona decomposition of |b � hbiQ|f� wrt dx :

X

F2F

�
Z

F
|b � hbiF |f� dy

X

Q⇢F

|Q|↵n
Z

Q
gu dx


X

F2F

|F |↵n kbkexp L,Fkf�kL log L,F

Z

F
gu dx

. kbkBMO

X

F2F

|F |↵n kf�kL log L,F�
Z

F
gu dx |E(F )|

Use generalized Hölder’s inequality and bump condition
to continue as for I↵.
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Weak type inequalities

What are the correct bump conditions for weak type
inequalities?

How are these related to bump conditions for strong type
inequalities?
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Muckenhoupt-Wheeden conjectures

Given 1 < p  q < 1, 0 < ↵ < n and (u, �),

if

M↵(·�) : Lp(�) ! Lq(u), (M)

M↵(·u) : Lq0
(u) ! Lp0

(�), (M⇤)

then I↵(·�) : Lp(�) ! Lq(u).

If (M⇤) holds, then

I↵(·�) : Lp(�) ! Lq,1(u).
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Off-diagonal results

Theorem (DCU-Moen 2013)
Given 1 < p < q < 1, 0 < ↵ < n and (u, �), if (M) and
(M⇤) hold, then

I↵(·�) : Lp(�) ! Lq(u).

If (M⇤) holds, then

I↵(·�) : Lp(�) ! Lq,1(u).
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Proof (easy!)

Recall off-diagonal testing conditions:

✓Z

Q
ID,+
↵,Q (��Q)

qu dx
◆ 1

q

 M1

✓Z

Q
� dx

◆ 1
p

(T+)

✓Z

Q
ID,+
↵,Q (u�Q)

p0
� dx

◆ 1
p0

 M2

✓Z

Q
u dx

◆1/q0

(T ⇤
+)

where
ID,+
↵,Q f (x) =

X

Q02D
Q(Q0

|Q0|↵n hf iQ0 �Q0(x).
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Restating the condition

Summing the geometric series:

ID,+
↵,Q (��Q)(x) =

X

Q02D
Q(Q0

|Q0|↵n h��QiQ0 �Q0(x)

 |Q|1�↵
n

X

Q02D
Q(Q0

|Q0|↵n �1MD
↵ (��Q)(x)  CMD

↵ (��Q)(x)

Condition (T+) becomes

✓Z

Q
MD

↵ (��Q)
qu dx

◆ 1
q

 M1

✓Z

Q
� dx

◆ 1
p

(MT )
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Separated bump condition

Testing conditions implied by:

sup
Q

|Q|
↵
n +

1
q �

1
p ku

1
q kA,Qk�

1
p0 kp0,Q < 1, Ā 2 Bq0 (BL)

sup
Q

|Q|
↵
n +

1
q �

1
p ku

1
q kq,Qk�

1
p0 kB,Q < 1, B̄ 2 Bp (BR)

This suggests that two bump conditions are sufficient for
strong type inequalities
and the dual bump condition (BL) should be sufficient for
weak type inequalities.
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A weaker condition

Example (Anderson-DCU-Moen (2013))
Given 1 < p  q < 1 and 0 < ↵ <, there exists (u, �) and
Young functions A, B with Ā 2 Bq0 , B̄ 2 Bp, such that
(u, �) satisfy the separated bump conditions but not the
conjoined bump condition.

Example for p = q = 2, ↵ = 0, but easily modified.
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Two questions when p = q

Are the MW conjectures true: do (M) and (M⇤) imply
I↵(·�) : Lp(�) ! p(u)?

Conjecture: no.

Do the separated bump conditions (BL) and (BR)
imply strong and weak type inequalities?

Conjecture: it depends on the size of the bump.
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Best known result

Theorem (DCU-Martell-Pérez (2011))
Given 1 < p < 1, 0 < ↵ < n and (u, �), if (ML) and (MR)
hold with

A(t) = tp log(e + t)2p�1+�, B(t) = tp0 log(e + t)2p0�1+�,

then I↵(·�) : Lp(�) ! p(u).

If (ML) holds, then I↵(·�) : Lp(�) ! p,1(u).
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Idea of proof

Theorem follows from two weight extrapolation and weak
type inequality:

u({x 2 Rn : |I↵f (x)| > t})  C
t

Z

Rn
|f (x)|MB,↵u(x) dx ,

where

MB,↵u(x) = sup
Q

|Q|↵n kukB,Q �Q(x), B(t) = t log(e+t)1+✏.
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Three final questions

Can you prove this result using testing conditions and
the corona decomposition?

Can you prove this result for log bumps:

A(t) = tp log(e + t)p�1+�, B(t) = tp0 log(e + t)p0�1+�?

can you prove weak (1, 1) inequality with
B(t) = t log(e + t)✏?

Very recent work by Lacey (2014) and Treil and Volberg
(2014) suggests even weaker conditions are possible, but
not general Bp bumps.
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End of Lecture 3
Thank you very much! Muchas gracias!


