The two weight problem for the Bergman projection and Sarason Conjecture (Joint work with A. Aleman and S. Pott)

Maria Carmen Reguera

University of Birmingham, UK

September 8, 2014

• Let
$$\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$$

- Let $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$
- Let $\mathbb{T}:=\{z\in\mathbb{C}\ :\ |z|=1\}.$

- Let $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$
- Let $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}.$
- $\bullet \ \mathsf{Let} \ \mathcal{H} := \{z \in \mathbb{C} \ : \ \mathsf{Re} z > 0\}.$

- Let $\mathbb{D}:=\{z\in\mathbb{C}:\;|z|<1\}.$
- Let $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}.$
- Let $\mathcal{H}:=\{z\in\mathbb{C}:\ \mathsf{Re}z>0\}.$
- dA normalized area measure in \mathbb{D} .

- Let $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}.$
- Let $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}.$
- Let $\mathcal{H}:=\{z\in\mathbb{C}:\ \mathsf{Re}z>0\}.$
- dA normalized area measure in \mathbb{D} .
- $L^p(\mathbb{D}) := \{ f : \mathbb{C} \mapsto \mathbb{C} : \int_{\mathbb{D}} |f|^p dA < \infty \}.$

- Let $\mathbb{D}:=\{z\in\mathbb{C}:\;|z|<1\}.$
- Let $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}.$
- Let $\mathcal{H} := \{z \in \mathbb{C} : \operatorname{Re} z > 0\}.$
- dA normalized area measure in \mathbb{D} .
- $L^p(\mathbb{D}) := \{ f : \mathbb{C} \mapsto \mathbb{C} : \int_{\mathbb{D}} |f|^p dA < \infty \}.$
- The Bergman space $L^p_a(\mathbb{D}) := \{ f \in L^p(\mathbb{D}) : f \text{ is analytic} \}.$

The Bergman projection

Let P_B be the orthogonal projection from $L^2(\mathbb{D})$ to $L^2_a(\mathbb{D})$. The operator is known as the Bergman Projection and it can be written as

$$P_B(f)(z) = \int_{\mathbb{D}} \frac{f(\xi)}{(1-z\bar{\xi})^2} dA(\xi),$$

The Bergman projection

Let P_B be the orthogonal projection from $L^2(\mathbb{D})$ to $L^2_a(\mathbb{D})$. The operator is known as the Bergman Projection and it can be written as

$$P_B(f)(z) = \int_{\mathbb{D}} \frac{f(\xi)}{(1-z\bar{\xi})^2} dA(\xi),$$

$\mathsf{Theorem}$

 $P_B: L^p(\mathbb{D}) \to L^p_a(\mathbb{D})$ bounded for 1 .

The Bergman projection

Let P_B be the orthogonal projection from $L^2(\mathbb{D})$ to $L^2_a(\mathbb{D})$. The operator is known as the Bergman Projection and it can be written as

$$P_B(f)(z) = \int_{\mathbb{D}} \frac{f(\xi)}{(1-z\bar{\xi})^2} dA(\xi),$$

$\mathsf{Theorem}$

 $P_B: L^p(\mathbb{D}) \to L^p_a(\mathbb{D})$ bounded for 1 .

The maximal Bergman projection

We define P_B^+ , the so called maximal Bergman Projection , as

$$P_B^+ f(z) = \int_{\mathbb{D}} \frac{f(\xi)}{|1 - z\overline{\xi}|^2} dA(\xi).$$

The maximal Bergman projection

We define P_B^+ , the so called maximal Bergman Projection , as

$$P_B^+ f(z) = \int_{\mathbb{D}} \frac{f(\xi)}{|1 - z\overline{\xi}|^2} dA(\xi).$$

$\mathsf{Theorem}$

 $P_{B}^{+}: L^{p}(\mathbb{D}) \rightarrow L^{p}(\mathbb{D})$ bounded for 1 ,

The main question

Question

Given w and v two function weights (positive, locally integrable functions), find necessary and sufficient conditions for the boundedness of the Bergman projection P in the corresponding weighted spaces, i.e.,

$$P: L^2(v, \mathbb{D}) \mapsto L^2(w, \mathbb{D}).$$

The main question

Question

Given w and v two function weights (positive, locally integrable functions), find necessary and sufficient conditions for the boundedness of the Bergman projection P in the corresponding weighted spaces, i.e.,

$$P: L^2(v, \mathbb{D}) \mapsto L^2(w, \mathbb{D}).$$

An equivalent formulation:

$$P(\sigma \cdot) : L^2(\sigma, \mathbb{D}) \mapsto L^2(w, \mathbb{D}),$$

where $\sigma = v^{-1}$.

Toeplitz Operators on $L^2_a(\mathbb{D})$

Definition

Let $f \in L^{\infty}(\mathbb{D})$, we define the Toeplitz operator with symbol f as

$$T_f(h) = P_B(fh), \quad h \in L^2_a(\mathbb{D})$$

Toeplitz Operators on $L^2_a(\mathbb{D})$

Definition

Let $f \in L^{\infty}(\mathbb{D})$, we define the Toeplitz operator with symbol f as

$$T_f(h) = P_B(fh), \quad h \in L^2_a(\mathbb{D})$$

Remark:

• $T_g^* = T_{\bar{g}}$ and $T_f(h) = fh$ when f is analytic.

Toeplitz Operators on $L^2_a(\mathbb{D})$

Definition

Let $f \in L^{\infty}(\mathbb{D})$, we define the Toeplitz operator with symbol f as

$$T_f(h) = P_B(fh), \quad h \in L_a^2(\mathbb{D})$$

Remark:

- ① $T_g^* = T_{\bar{g}}$ and $T_f(h) = fh$ when f is analytic.
- 2 Toeplitz operators with analytic symbols are known to be bounded if and only if the symbol is bounded.

Sarason Conjecture on the Bergman space

Let $f, g \in L^2_a(\mathbb{D})$

Conjecture (Sarason)

$$T_f T_g^* : L_a^2(\mathbb{D}) \mapsto L_a^2(\mathbb{D}) \iff \sup_{z \in \mathbb{D}} B(|f|^2)(z)B(|g|^2)(z) < \infty$$

where

$$B(h)(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{h(\xi)}{|1 - \bar{\xi}z|^4} dA(\xi)$$

is the so called Berezin transform.

Sarason Conjecture on the Bergman space

Let $f, g \in L^2_a(\mathbb{D})$

Conjecture (Sarason)

$$T_f T_g^* : L_a^2(\mathbb{D}) \mapsto L_a^2(\mathbb{D}) \iff \sup_{z \in \mathbb{D}} B(|f|^2)(z)B(|g|^2)(z) < \infty$$

where

$$B(h)(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{h(\xi)}{|1 - \bar{\xi}z|^4} dA(\xi)$$

is the so called Berezin transform.

The corresponding conjecture for H^2 is similar, one simply replaces the Berezin transforms by Poisson integrals.

The Berezin condition

The Berezin condition $\sup_{z\in\mathbb{D}} B(|f|^2)(z)B(|g|^2)(z)<\infty$ is inspired by the Békollé-Bonami condition

$$\sup_{I\subset\mathbb{T}}\frac{w(Q_I)}{|Q_I|}\left(\frac{w^{1-p'}(Q_I)}{|Q_I|}\right)^{p-1}<\infty,$$

where Q_I is the Carleson box associated to I, $Q_I := \{ re^{i\theta} : 1 - |I| < r < 1, e^{i\theta} \in I \}.$

Motivation: Sarason Conjecture on the Bergman space The two weight problem for the Bergman projection The Sarason case Some open questions

What was known

 Necessity of the Berezin condition was proved by Stroethoff and Zheng.

What was known

- Necessity of the Berezin condition was proved by Stroethoff and Zheng.
- ② A "bumped Berezin condition" is sufficient (Stroethoff-Zheng and Michalska-Nowak-Sobolewski).

What was known

- Necessity of the Berezin condition was proved by Stroethoff and Zheng.
- ② A "bumped Berezin condition" is sufficient (Stroethoff-Zheng and Michalska-Nowak-Sobolewski).
- **1** In the H^2 case, the Poisson condition is necessary (Treil). But unfortunately not sufficient (Nazarov).

An observation by Cruz-Uribe

An observation by Cruz-Uribe

Let
$$h \in L^2_a(\mathbb{D})$$
, $T_f T_g^*(h) = fP_B(\bar{g}h)$.

Generalized Sarason Conjecture

Conjecture (Two weight Conjecture for the Bergman Projection)

Let w, σ be two weights in \mathbb{D} then

$$\sup_{z\in\mathbb{D}}B(w)(z)B(\sigma)(z)<\infty,\tag{1}$$

if and only if

$$P_B(\sigma \cdot) : L^2(\mathbb{D}, \sigma) \to L^2(\mathbb{D}, w).$$
 (2)

A counterexample

Proposition

Let $w = (1 - |z|^2)^2$ and σ be a weight, then the weights w and σ satisfies the Berezin condition if and only if

$$\int_{Q_I} \sigma dA \lesssim \frac{1}{\log \frac{2}{|I|}} \quad \textit{for all arcs } I \subset \mathbb{T}.$$

A counterexample

Proposition

Let $w = (1 - |z|^2)^2$ and σ be a weight, then the weights w and σ satisfies the Berezin condition if and only if

$$\int_{Q_I} \sigma dA \lesssim \frac{1}{\log \frac{2}{|I|}} \quad \textit{for all arcs } I \subset \mathbb{T}.$$

On the other hand,

Proposition

If $w(z) = (1 - |z|^2)^2$, $z \in \mathbb{D}$, and σ a weight then $P_B(\sigma \cdot) : L^2(\mathbb{D}, \sigma) \to L^2(\mathbb{D}, w)$ if and only if σdA is a Carleson measure for the Dirichlet space.

Stegenga's counterexample fits in this framework.

Two weight Conjecture for the Bergman Projection

Conjecture (Two weight Conjecture for the Bergman Projection)

Let w, σ be two weights in \mathbb{D} , then the following are equivalent:

2

$$||P_B(\sigma 1_{Q_I})||_{L^2(w,\mathbb{D})} \le C_0 ||1_{Q_I}||_{L^2(\sigma,\mathbb{D})},$$

and

$$||P_B^*(w1_{Q_I})||_{L^2(\sigma,\mathbb{D})} \le C_0||1_{Q_I}||_{L^2(w,\mathbb{D})},$$

for all intervals $I \in \mathbb{T}$ and with constant C_0 uniform on I.

A counterexample to Sarason Conjecture

Lemma

Let $f \in L^2_a$, and let g be a Lipschitz analytic function in $\mathbb D$ with $|g(z)| \ge c(1-|z|)$, for some constant c>0 and all $z \in \mathbb D$. (i) If $fg \in H^\infty$ and

$$\int_{Q_I} |f|^2 dA \lesssim \frac{1}{\log \frac{2}{|I|}} \quad \text{for all arcs } I \subset \mathbb{T},$$

then the Berezin condition holds.

(ii) If $T_f T_g^*$ is bounded then $|f|^2 dA$ is a Carleson measure for the Dirichlet space.

A counterexample to Sarason Conjecture

Lemma

Let $f \in L^2_a$, and let g be a Lipschitz analytic function in $\mathbb D$ with $|g(z)| \ge c(1-|z|)$, for some constant c>0 and all $z \in \mathbb D$. (i) If $fg \in H^\infty$ and

$$\int_{Q_I} |f|^2 dA \lesssim \frac{1}{\log \frac{2}{|I|}} \quad \text{for all arcs } I \subset \mathbb{T},$$

then the Berezin condition holds.

(ii) If $T_f T_g^*$ is bounded then $|f|^2 dA$ is a Carleson measure for the Dirichlet space.

The counterexample is based on Stegenga's example, the key to finding such a g is in Dyn'kin's work.

The two weight problem for P_B : the Sarason case

Theorem (Aleman, Pott, R.)

Let $f, g \in L^2_a(\mathbb{D})$ and consider the weights $\sigma = |g|^2$ and $w = |f|^2$. Then the following are equivalent

2

$$||P_B^+(\sigma 1_{Q_I})||_{L^2(w,\mathbb{D})} \le C_0 ||1_{Q_I}||_{L^2(\sigma,\mathbb{D})},$$

and

$$||P_B^+(w1_{Q_I})||_{L^2(\sigma,\mathbb{D})} \le C_0||1_{Q_I}||_{L^2(w,\mathbb{D})},$$

for all intervals $I \in \mathbb{T}$ and with constant C_0 uniform on I.

Proof strategy

- Prove a two weight estimate for P_B^+
 - Find a dyadic model for P_B^+
 - Use the two weight result for dyadic positive operators (Nazarov-Treil-Volber, Lacey-Sawyer-Uriarte-Tuero)
- 2 Prove the equivalence of boundedness of P_B and P_B^+

Theorem (Aleman, Pott, R.)

Let $f, g \in L^2_a(\mathbb{D})$ and consider the weights $\sigma = |g|^2$ and $w = |f|^2$. Then the following are equivalent

- $\bullet P_B(\sigma \cdot): L^2(\sigma, \mathbb{D}) \mapsto L^2(w, \mathbb{D}),$
- $P_{R}^{+}(\sigma \cdot): L^{2}(\sigma, \mathbb{D}) \mapsto L^{2}(w, \mathbb{D})$

Open questions

• Characterize the weights w and σ for which $P_B(\sigma \cdot) : L^2(\sigma, \mathbb{D}) \mapsto L^2(w, \mathbb{D})$.

Open questions

- **①** Characterize the weights w and σ for which $P_B(\sigma \cdot) : L^2(\sigma, \mathbb{D}) \mapsto L^2(w, \mathbb{D})$.
- ② Are there other applications to the two weight problem for the Bergman projection other than Sarason conjecture?

Motivation: Sarason Conjecture on the Bergman space The two weight problem for the Bergman projection The Sarason case Some open questions

The end

MUCHAS GRACIAS! THANK YOU!