A Novel Multiobjective Formulation of the
Robust Software Project Scheduling Problem

Francisco Chicano’, Alejandro Cervantes?,
Francisco Luna!, and Gustavo Recio®*

! University of Malaga, Spain
{chicano,flv}@lcc.uma.es,
2 University Carlos IIT of Madrid, Spain
{acervant,grecio}@inf.uc3m.es

Abstract. The Software Project Scheduling (SPS) problem refers to
the distribution of tasks during a software project lifetime. Software de-
velopment involves managing human resources and a total budget in an
optimal way for a successful project which, in turn, demonstrates the
importance of the SPS problem for software companies. This paper pro-
poses a novel formulation for the SPS problem which takes into account
actual issues such as the productivity of the employees at performing dif-
ferent tasks. The formulation also provides project managers with robust
solutions arising from an analysis of the inaccuracies in task-cost estima-
tions. An experimental study is presented which compares the resulting
project plans and analyses the performance of four different well-know
evolutionary algorithms over two sets of realistic instances representing
the problem. Statistical parameters are also provided in order to help
the project manager in the decision process.

Keywords: Software Project Scheduling, Robustness, Multi-objective
Optimisation, Evolutionary Algorithms

1 Introduction

As software projects become larger, the need to control people and processes, and
to efficiently allocate resources turn out to be increasingly important. Managing
such projects usually involves scheduling, planning, and monitoring tasks. This
paper focuses on minimising both, the project cost and its make-span, during the
assignment of employees to particular tasks in the context of a software project.
The problem studied here is known in the literature as the Software Project
Scheduling (SPS) problem [2].

In general, the solution of a multi-objective problem, such as SPS, consists of
a set of non-dominated solutions known as the Pareto optimal set, which is often
called Pareto border or Pareto front when plotted in the objective space [3].

* This work has been partially funded by the Spanish Ministry of Science and Inno-
vation and FEDER under contract TIN2008-06491-C04. It has also been partially
funded by the Andalusian Government under contract PO7-TIC-03044.

Solutions within this set are optimal in the sense that there are not solutions
which are better with regards to one of the objectives without achieving a worse
value in at least another one. Particularly, in the context of the SPS problem, it
is not possible to reduce the project cost without increasing its make-span (or
vice versa). Previous works in the literature have addressed the SPS problem
using single-objective and multi-objective formulation with meta-heuristics [2].
The contribution of this research differs from previous works in three ways. First,
a new formulation of the problem is presented which involves more realistic as-
sumptions than the previous ones [2], e.g. the need of taking into account several
constraints was removed simplifying then the optimisation process. Second, the
concept of robustness of a solution was introduced into the formulation of the
problem in order to deal with inaccuracies in task-cost estimations. Third, the ex-
perimental study carried out here consists on applying four multi-objective evo-
lutionary algorithms to the problem using three different robustness approaches
over two different instances derived from a realistic software project. The result-
ing solutions were analysed using correlation measures between solution features
and objective function values.

This paper is organised as follows. The new formulation of the SPS problem
and the way robustness is considered are described in Section 2. The experi-
mentation carried out with the corresponding analysis of results is detailed in
Section 3. Finally, Section 4 deals with discussion of the main findings and con-
tributions of this research.

2 The SPS Problem

Consider the set of people potentially involved in a software project F, where
each person is denoted as e; € E, with ¢ varying from 1 to |E| (the number
of employees), and e? being the salary of an employee. The set of tasks to be
performed in the project and each individual task are referred to as T and
tj € T respectively (with j varying between 1 and |T'|). The cost in person-hour
of task ¢; is denoted with ¢7. The tasks must be performed according to a Task
Precedence Graph (TPG) that indicates which tasks must be completed before a
new task is started. The TPG is an acyclic directed graph G(T, A) which nodes
represent the tasks and an arc (¢;,t;) € A exists if task ¢; must be completed,
with no other intervening tasks, before task ¢; can start. Each instance of the
problem includes a productivity matrix P of size |E| x |T| in which element
P; ; €]0,1] is a positive real value which describes the productivity of employee
e; in task t;. This productivity value is related to the time required by the
employee to finalise the task. If employee e; is working alone in task ¢; then
t5 /P; ; hours are required to complete the task.

A solution to this problem x = (d,r,q) consists of a real valued vector of
employee dedication d € RIZ!, an integer valued vector of task delays r € INI7|
and an integer valued matrix of priorities ¢ € INIZIXITI Each component d;
of the dedication vector refers to the percentage of a full working day that
employee e; spends in tasks related to the project. Thus, d; = 0.5 means that
half working day is spent in the project by employee e;. If working alone in task
t; with productivity P; ; =1 then the task takes 2¢; hours for completion. The

component r; within the vector of task delays refers to the number of hours that
task ¢; is delayed with respect to the earliest possible starting time, e.g. if task
t; can start at time h, then, applying task delays it will start at time A + r;.
Task delays where introduced in the formulation as under certain circumstances
they are needed in order to represent optimal solutions in terms of make-span.
Without considering delays, the model can only generate solutions with as many
tasks as possible processed in parallel, i.e. tasks are started as soon as the TPG
allows it. If some of those paralleled tasks are in the critical path (that is, their
make-span highly influences the total make-span), a better total make-span can
be achieved if the critical tasks are completed as soon as possible. The use
of task delays allow the model to represent such solutions: non-critical tasks
can start later than allowed by the TPG, so they have less parallelisation than
critical tasks. Critical tasks get as much dedication as possible minimising their
contribution to the total make-span. The priority matrix q specifies which task is
performed by each employee. In the case in which an employee is simultaneously
working in several tasks, the matrix also specifies the distribution of employee
time between parallel tasks. An employee e; works in task ¢; when g; ; > 0 and
P; ; > 0. If employee e; is working at a given time 7 in tasks t;,, t;,, ..., t;,
then the amount of time dedicated to task ¢, is given by qivjm’/(Zi;:l Qi)

Optimising the cost and the make-span of the proposed scheduling of the
software project is the aim behind this research. Therefore, the evaluation of
cost and make-span becomes highly important. Consider a discrete time where
the time variable is represented by 7. The working hours in the software company
in which the project is begin developed are represented as finite values of the
time variable 7 = 0,1,2,... (being 7 = 0 the starting time of the project).

Since the employee dedication to a task is time dependent (due to simul-
taneous tasks), computing the make-span of the project involves an auxiliary
time-dependent real valued vector of manpower for each task. Such vector will
be denoted as m, where 7; refers to the manpower of the team at performing
task ¢;, e.g. if m;(7) = 2 then at time 7 = 7 the remaining cost of task ¢; is
reduced in 2 persons-hour. The set of finalised and active tasks at time 7 based
on the values of 7(7’) for 7/ < 7 are defined as

S my(r) = ts} 7 W

T'=0

active(t) = {t; € T|Vt;, (t;,t;) € A: t; € done(r —r;)} — done(r), (2)

where A stands for the arc set of the TPG. Notice that the computation of both,
the active(r) and done(7) sets only depends on the values of w(7') for 7 < 7.
In particular, done(0) and active(0) do not depend on =, as done(0) =) and
active(0) is the set of initial tasks: active(0) = {t; € T|}t; € T, (ti,t;) € A}.

The vector 7(7) can be computed for each time step 7 = 0,1,... in an
iterative manner as follows:

done(t) = {tj eT

diPiidii py e active(T)
(1) = { ei€E:qi,;>0 2y cactive(r) Tk ’ (3)

0 otherwise.

The project make-span is: makespan(x) = min{r € IN|done(r) = T}, that is,
the make-span refers to the amount of time required to complete all the tasks in
the project. A well defined make-span involves that all tasks must be performed
by at least one employee with non-zero productivity in the corresponding task.
This is the only constraint imposed to the solutions.

The cost is computed by multiplying the salary per hour of each employee,
the dedication of the employee and the number of hours dedicated to tasks in
the project. Then the salaries for all employees are sum together to compute the
total cost of the project, that is:

cost(x) = Z e; - d; - |{T € N|3t; € active(r) : q; ;- P;j > 0}]. (4)
e €l

Considering the expressions for the makespan and the cost, the SPS problem
can be modelled as a bi-objective optimisation problem with objective function
f(z) = (cost(x), makespan(x)).

2.1 Adding Robustness to the Solutions

In a real scenario, task costs are usually estimations made on the basis of previous
experiences and they are not accurate. Indeed, a review of studies in estimation
accuracy points out that software projects overspend on average 30-40% more
effort than estimated [10]. Taking into account these uncertainties in the problem
statement allows search algorithms to propose not only good solutions accord-
ing to the main objectives (cost and make-span), but also to provide robust
solutions whose cost and make-span are not sensitive to changes in the the cost
of individual tasks due to inaccuracies of the initial estimations. These distur-
bances in task costs can be modelled by using a multivariate random variable
T¢={ty,....t{p} following a probability distribution C. Given a solution z, the
project cost and make-span are now defined by a bivariate random variable S
that can be computed as S(x) = (makespan(z), cost(x)) = f(x, T¢) where T¢
was explicitly introduced in the notation to clarify that the solution evaluation
depends on the varying estimated cost of the tasks (represented here with its
random variable).

The average and the standard deviation of each component of S(x) are used
as a measure of the quality and the robustness of each objective for a given
solution, respectively. These values are computed by sampling over a number
of H simulations of 7¢. The bi-objective formulation of the problem is, thus,
transformed into a four-objective one:

f(x) = (makespanqyg(z), makespansq(x), costang(x), costsq(x)), (5)

where sub-indices in the original objective functions were used to denote the
average and the standard deviation of the sampling performed to compute the
robustness. As before, these four objectives are expected to be minimised.
Three different robustness scenarios are being considered. The first one, de-
noted as NR, assumes perfect knowledge on the task cost. The second one as-
sumes that only one task has been miss-estimated (noted as OTR). The third

one assumes that all tasks could have been miss-estimated (noted as STR). The
probability distribution used to generate the perturbation in the cost of a task
in the two last scenarios is such as that each ¢§ is multiplied by a value uniformly
drawn from the interval [0.5, 2.0]. That is, each task can be carried out from half
to double of its original estimated cost.

2.2 Comparison against other Scheduling Problems

An analogy can be established between the shop scheduling [6] and SPS prob-
lems. The tasks would be the same in both problems, employees in SPS would
be analogous to machines in shop scheduling problems, the productivity P; ; of
employee e; in task t; when considering SPS would be related to the length of
task j in machine 4 for shop scheduling problems. However, in shop scheduling
only one machine can perform a task, while in SPS problems tasks are performed
by working teams of employees. In addition, the decision variables in SPS deter-
mine the dedication of an employee to a software project whereas in the case of
shop scheduling the “dedication” or efficiency of a machine cannot be modified.

Another problem related to SPS is the Resource-Constrained Project Schedul-
ing (RCPS) [12]. In RCPS there are several kinds of resources while SPS involves
only one: the human resource. Each activity in RCPS requires different amounts
of each resource while SPS does not imposes a minimum or maximum number
of employees in a working team developing a task.

Two important works that also use modelling of software project scheduling
were presented in Gutjahr et al. [7] and Chang et al. [1]. The former includes
a model of learning capabilities of employees and a portfolio selection. In the
second, a solution accounts for the time variation of the assignment of employees
to tasks. The drawback of complex formulations, like the previous ones, is the
large number of parameters that the project manager must configure to provide
a complete instance of the problem, which in turn increases the chances of miss-
estimating such parameters. Hence, the improved accuracy obtained using a more
realistic formulation of the problem turns out to be limited by a larger inaccuracy
of the problem instance parameters. Then, a new formulation which is a trade-
off between realistic (but complex) and simple (and unrealistic) formulations is
proposed in this work.

3 Experimental Study

Four meta-heuristics have been used to carry out the experimental study: NSGA-
IT [5], SPEA2 [14], PAES [9], and MOCell [11]. They all use evolutionary com-
putation which is by far the most popular meta-heuristic technique for solving
MOPs due to their ability in finding a set of trade-off solutions in one single run
[3,4]. Binary tournament selection, two-point crossover and a random mutation
that randomly chooses a value within the range defined for each variable were
used in NSGA-II, SPEA2 and MOCell. On the other hand, the PAES execution
sequence consisted of a single individual population which is iteratively modified
by using only random mutation (no crossover operator was used), pareto front
solutions in this case are obtained by using an external archive where all non-
dominated solutions are stored. Population sizes of 100 individuals were used for

NSGA-II, SPEA2, and MOCell, whereas the pareto front size was limited to 100
solutions in the four approaches. Crossover and mutation rates were p. = 0.9
and p,, = 1/L respectively, where L refers to the length of the tentative solution.
Aiming at performing a fair comparison between different algorithms, the stop-
ping criterion for them all consisted in computing 1000000 function evaluations.
Finally, the size of the Monte Carlo sampling used to evaluate the solutions of
the robust SPS versions was set to a neighbourhood of H = 100.

Two quality indicators have been used to measure the performance of the
multi-objective algorithms: the hyper-volume (HV) [15] and the attainment sur-
faces [8]. The HV is considered as one of the more suitable indicators by the
EMO community since it provides a measure that takes into account both the
convergence and diversity of the obtained approximation set. The empirical at-
tainment surfaces have been defined to be a kind of “average” Pareto front of a
randomised multi-objective algorithm. For each pair of algorithm vs test prob-
lem instance, 100 independent runs were carried out. The HV indicator and the
attainment surfaces were then computed. In the case of HV computations, a
multiple comparison test was carried out in order to check if the differences were
statistically significant or not. All the statistical tests were performed with a
confidence level of 95%.

Two realistic instances that are variations of a project scheduling which is
available at the online repository of the MS Project tool will be solved in this
research. The same TPG (see Fig. 1), tasks cost and number of employees as in
the original instance will be used and the values for the employees salary and
the productivity matrix will also be provided. Table 1 summarises the above
information.

Fig. 1. Task Precedence Graph for the two instances of the SPS problem being solved.

Both instances, denoted with ms1 and ms2, differ in the definition of their
productivity matrix. In ms1 all the values in the productivity matrix are 0 or 1
and are based on the original assignment of employees to tasks in the sample
project (denoted as “base solution”). On the other hand, instance ms2 contains a
more flexible resource productivity table, with larger overlap between resources’
abilities, and also fractional (not 1.0) productivity in tasks.

3.1 Performance of the Algorithms
A comparison of the performance of the four multi-objective algorithms within
the three robustness scenarios is carried out in this Section. The performances

Table 1. Productivity matrices P; ;, task cost tj and employee salary e;.
Emp. Task (t;)
e e; 12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
1 50 ms11 0O001100O0OO0OO0OO0O0O0OO0OOOOO®OOOOOOOSOOTU OO
1 m21 O OO110O0O0O0OO0OO0O0 O0OO0O0O0OO0OO0OO0OO0OO0O0O0 0 O0 0 0 0
o 40 ms101 111111111111 1 00O0O0O0O0O0O0O0T1TO0 0 1 1
2 ms20 1 1 1111111 1 1 1 1 1 0 0O O0 O0OO0 0O O0 0 .50 0 1 1
ea 10 m10O0OOOOO?1111 001 O0O0OO0OO0OT1TO0T1O0TUO0O0T1O0T1TO0 00
3 ms20 O O 0OOOO.3.3.3 00 .500O0O0.50.5 000 .50 .50 0 0
s 15 m10OOOOOO?11T1 1 1 1 1 0O0O0O0OOT1TO0T1O0O0O0O0OT1T 1 10
4 ms20 0O OOOOOT111.5.5.50 0 0 0O .80 .8 0 0 .8.8.8.8.8 0
m101111100O0O0OT1110O0110O0O0O0OT1 10 O0O0O0T1TO0
es 20 ms20 .5.5.5.5.5000 0 1 11 0 01 1 00 0 O 1 1 1 1 1 1 1 0
er 30 ms10O1 1111111111 1 1 1 0 O0O0O0OO0OO0 O0OO0 0O 1T 0 0 1 0
6 m20 1 1 1111111 1 1 1 1 1 0 0 0 0 0 0 0 0 0 .8 0 0 .80
e 30 m101 111111111111 1 00O0O0O0OO0O0O0O0T1T 1110
7 ms2 0 .7 .7.7.7.7.7.7.7.7.7.7.7.7.7 00 0O0OO0OOOTOT11 11 10
S o o a © 5 o 0 o kY S o 9o o
c 0 o O O N OO O © 2 TN o @ =l S L L W ¥ N © v
t% ©O W O ~N~N®M® NN~~~ ¥ 0 N © ~ ~ © ~ © M M MmN B N N W Rl

1

have been evaluated using the HV indicator which values are summarised in Ta-
ble 2. The best performances are highlighted in a dark grey background whereas
second to best are shown in light grey. We also mark with * the results hav-
ing statistically significant differences with the best result. Several conclusions
can be drawn from these values. Both NSGA-IT and MOCell obtained the best
(largest) values for the two instances (as well as many of the second to best
values). NSGA-IT resulted in the best performance when tackling the robust
versions of the instances (in 3 out of the 4 scenarios the approximated Pareto
front with best HV indicator was returned). On the other hand, MOCell seems
to be specially well suited for the non-robust setting, yielding the higher HV
indicator for the two instances. PAES seems to be clearly the worst algorithm
with respect to this indicator, specially for the robust versions. The uncertainty
in the objective functions could be the main reason behind this fact. Regarding
the runtime, all the algorithms require between 2.5 and 5 minutes in the NR
scenario, while they require around 5 hours in the OTR and STR scenarios.

Table 2. Median and IQR of the HV value for the two instances.

NSGAII SPEA2 PAES

Rob. ms1

MOCell |[NSGAII SPEA2 PAES

ms2

MOCell

NR 0.9433 100 0-9435 000 0-518¢ 065 10:94%0.000
OTR [018295 7! 0.807; (50 0.3287 (20 0.8160.032
STR 0.7460.028 0.6887 55 0.345% oo 0.7420 025

0'904;0.000 0'905;:0.001 0'543;0.031 O'QOS:EO.UOO
0773870025 0.73010.018 0-287% 920 0.695% ¢ 43
0.76410.025 0.717% 030 0-3877% . 032 [0IT690.022

3.2 Analysis of solutions

This section focuses on analysing the solutions obtained using the multi-objective
algorithms. Figure 2 (left) shows the result of an NSGA-II execution over both
instances using the NR approach. The base solution for instance ms1 is close
to a minimum-make-span solution, as all available employees are committed to
tasks for which they have non-zero productivities. None the less, the algorithm
is able to improve this minimum make-span. The Pareto front includes solutions
with smaller cost which were obtained by reducing the dedication of the most
expensive resources when developing their tasks. In instance ms2 improvements
in both, cost and make-span, using NSGA-II with respect to the base solution
were also observed.

Sample solutions NSGA-Il
3000 T T T T T T T T T T 25000 T T
Instance ms1 +
Instance ms2

2800 | Base Solution ms 1
Base Solution ms2

2600 &, 1 20000

2200 N 9 15000 |
'

*
2000 ,

Makespan
Makespan

1800 - 10000

0 |] —

ner ™ o, | 5000 —
1200 T, o [
o,
1000 . . . e K . .
95000 100000 105000 110000 115000 120000 125000 130000 135000 140000 145000 150000
Cost

0 L L L L L L L L L
115000 120000 125000 130000 135000 140000 145000 150000 155000 160000 165000
Cost

Fig. 2. Pareto front sample and base solution for the two instances (left). 50%-
attainment surface for ms1 in the STR robust approach (right). The position of the
boxes is determined by the average value and the size by the standard deviation.

Fig. 2 (right) shows the 50%-attainment surface of NSGA-II for ms1 within
the STR scenario. A four objective problem requires 4D data to be represented
in order to visually inspect the resulting Pareto fronts. In order to show both the
quality (average) and the robustness (standard deviation) in the cost and make-
span of a project scheduling problem, the approach taken consists on displaying
boxes such that the position of the center of a box is defined by the two average
values (costqvg(x) and makespangyq(z)), whereas the width and the height are
proportional to costsq(z) and makespansq(x). It is worth mentioning that when
the average values of cost and make-span are reduced (bottom left corner of the
plot), the standard deviation is increased (larger boxes). It was also observed
that high-cost solutions show a low make-span and are quite robust in make-
span, whereas low-cost solutions are not robust in make-span or cost. This can
be explained by the larger need of average parallelism required by low make-
spam solutions, thus, task deviations are distributed among several employees
working in the same task.

Consider now the features of the solutions x in the approximated Pareto
front. In particular, a detail analysis must be done accounting for the number of
employees performing each task ¢; (denoted as t$(x)) and the average number
of tasks that each employee e; performs in parallel (denoted as e¥(z)).

Only results from MOCell over the ms2 instance will be analysed due to
space constraints. All solutions of the approximated Pareto front obtained in
different independent runs of MOCell are being considered. The e} (x) and t5(z)
values have been computed for each employee and each task in all the solutions
and the Spearman rank correlation coefficients [13] between all the e} (z), t§(x),
makespan(x) and cost(z) have been calculated. The correlation coefficients are
shown in Fig. 3. An arrow pointing up means positive correlation whereas an
arrow pointing down means negative correlation. The absolute value of the cor-
relation is shown in grey scale (the darker the higher).

Regarding the current values of €] () and t§(x) in all the solutions of all the
independent runs of MOCell, e?(x) ranges between 1.00 and 1.61 with average
values around 1.04. On the other hand, t%(x) ranges between 1 and 6 with
average values around 1.56. This means that it is not common to have large
working teams or a large number of parallel tasks per employee, therefore the

Aa
Al
Iy
AV|sa
Sy

makleT

Fig. 3. Correlations between cost, duration, the number of average parallel tasks per-
formed by the employees and the number of employees per task for the NR approach
(left) and the STR approach (right) using MOCell. Solutions for ms2 in the approxi-
mated Pareto front of all the independent runs.

communication overhead or the reduction of productivity due to parallel tasks
is not high.

Focusing on the correlation between the make-span and the number of paral-
lel tasks performed by the employees, a negative correlation with the exception
of eg (and es using the STR approach) can be observed. A negative correlation
means that in order to reduce the make-span of the project, the employees will
have to work in several tasks simultaneously. This seems to agree with common
sense. Then, why does a positive correlation between make-span and employee
e3 appear? This employee is the only one able to do some tasks in the critical
path of the project. Therefore, such critical tasks are assigned to this employee
by the algorithm in order to reduce the execution time of the tasks. The above
also explains the negative correlation between the size of the working teams
t(z) and ef(z). It is expected that in order to reduce the make-span the size
of working teams must be increased, which also implies an increase in the num-
ber of parallel tasks each employee has to develop. This explains the positive
correlation between ef () and t§(x) for the remaining employees.

Considering now the correlations between the make-span and the number of
employees in each task, it is noticed, with no surprise, that reducing the make-
span implies that more employees have to work on the tasks. However, some
blank cells can be observed for which no correlation is detected. This happens in
the tasks of the project for which only one employee has the required skills (non-
zero productivity), like task ¢1. This is just an illustration on how the analysis
of solutions can provide some interesting information for the project manager.

4 Conclusions and Future Work

A new formulation of the Software Project Scheduling problem taking into ac-
count the productivity of the employees in developing different tasks of a software
project and considering the inaccuracies of task cost estimations was presented.
Experimental studies were carried out in order to analyse the performance of

four multi-objective algorithms on real-like instances for this problem. Solutions
were analysed to illustrate the way project managers can use this tool to improve
their decision making. Results show that MOCell is the best algorithm in solving
this formulation of the problem, improving even the original solutions proposed
by a project manager to the instances used in the experimental section. The
analysis of the solutions reveals that the algorithms have been able to identify
the tasks in the critical path and the most important employees for the project.

This work can be extended in several ways. An empirical study using real
projects and their corresponding scheduling can be done with the help of data
provided by software companies. Second, different robustness approaches can be
used to take into account the inaccuracies in the productivity values. Third, new
operators or search methods can be developed to improve the solutions or the
required computational effort.

References

1. Chang, C.K., yi Jiang, H., Di, Y., Zhu, D., Ge, Y.: Time-line based model for soft-
ware project scheduling with genetic algorithms. Information and Software Tech-
nology 50(11), 1142 — 1154 (2008)

2. Chicano, F., Luna, F., Nebro, A.J., Alba, E.: Using multi-objective metaheuristics
to solve the software project scheduling problem. In: Proceedings of GECCO. pp.
1915-1922 (2011)

3. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems. Springer, New York, 2nd edn. (2007)

4. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley
& Sons (2001)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on Ev. Comp. 6(2), 182-197 (2002)

6. Garey, M.R., Johson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company (1979)

7. Gutjahr, W., Katzensteiner, S., Reiter, P., Stummer, C., Denk, M.: Competence-
driven project portfolio selection, scheduling and staff assignment. Central Euro-
pean Journal of Operations Research 16(3), 281-306 (September 2008)

8. Knowles, J.: A summary-attainment-surface plotting method for visualizing the
performance of stochastic multiobjective optimizers. In: ISDA. pp. 552 — 557 (2005)

9. Knowles, J., Corne, D.: Approximating the nondominated front using the pareto
archived evolution strategy. Evolutionary Computation 8(2), 149 — 172 (2000)

10. Molgkken, K., Jgrgensen, M.: A review of surveys on software effort estimation.
In: 2003 Int- Symp. on Empirical Software Engineering. pp. 223 — 231 (2003)

11. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: A cellular genetic
algorithm for multiobjective optimization. In: NICSO 2006. pp. 25-36 (2006)

12. Palpant, M., Artigues, C., Michelon, P.: LSSPER: Solving the resource-constrained
project scheduling problem with large neighbourhood search. Annals of Operations
Research 131, 237257 (2004)

13. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall/CRC; 4 edition (2007)

14. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evo-
lutionary algorithms. In: EUROGEN 2001. pp. 95-100 (2002)

15. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE TEC 3(4), 257-271 (1999)

