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Abstract

Uniform crossover is a popular operator used in genetic algorithms to
combine two tentative solutions of a problem represented as binary strings.
We use the Walsh decomposition of pseudo-Boolean functions and prop-
erties of Krawtchouk matrices to exactly compute the expected value for
the fitness of a child generated by uniform crossover from two parent solu-
tions. We prove that this expectation is a polynomial in ρ, the probability
of selecting the best-parent bit. We provide efficient algorithms to com-
pute this polynomial for ONEMAX and MAX-kSAT problems, but the
results also hold for domains such as NK-Landscapes.

1 Introduction

Uniform crossover is a well-known operator in the domain of Evolutionary Com-
putation [1]. This operator builds a new solution by randomly selecting each
“allele” from one of the parent solutions. The “allele” in the best parent is se-
lected with probability ρ, which is called the bias. A common value for this bias
is ρ = 0.5, where each parent has the same probability of providing its “allele”
to the offspring.

In this work we use a Walsh decomposition and provide a closed-form formula
for computing the expected value of the fitness of a child generated by uniform
crossover from two parent solutions x and y. We also study how the expected
value depends on ρ. From a theoretical point of view, the closed-form formula
could be useful to understand the behaviour of uniform crossover. From a
practical point of view, it could be used to compute an optimal value for the
bias. However, in this case, we need the expression to be easy to compute.

Our work is inspired and based on previous works that use Walsh decompo-
sition or landscape theory to compute summary statistics and expectations of
fitness probability distributions. In particular, Sutton, Whitley, Howe, Chicano
and Alba [7, 2] provided a closed-form formula for the expected value of the fit-
ness of a solution after applying the bit-flip mutation. The result presented here
is a similar result for the uniform crossover. Sutton et al. [6] also analysed the
fitness probability distribution around a solution for the MAX-3SAT problem.
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Most of our mathematical development is based on their work and also on their
analysis of the moments for pseudo-Boolean functions [9].

The remainder of the paper is organized as follows. In the next section the
mathematical tools required to understand the rest of the paper are presented.
In Section 3 we present our main contribution of this work: the expected fitness
value of the solution generated by uniform crossover. Section 4 provides closed-
form formulas for the expression of the expected fitness value in the case of the
ONEMAX and MAX-kSAT problems. In Section 5 we analyze some implica-
tions of the theoretical result and, finally, Section 6 presents the conclusions and
future work.

2 Background

In this section we present the concepts required to understand the rest of the
paper. In particular, we present some background on Walsh functions [11] and
the Walsh decomposition of pseudo-Boolean functions.

Definition 1. We define a pseudo-Boolean function f as a map between Bn,
the set of binary strings of length n and R, the set of real numbers.

Definition 2. The (non-normalized) Walsh function with parameter w ∈ Bn is
a pseudo-Boolean function defined over Bn as:

ψw(x) =

n∏
i=1

(−1)wixi = (−1)
∑n
i=1 wixi , (1)

where the subindex in wi and xi denotes one particular component of the binary
string.

We can observe that the Walsh functions map Bn to the set {−1, 1}. The
Walsh functions have some properties which are useful in our mathematical
development of Section 3. We present these properties in the following without
a proof. The interested reader can refer to [10] to see a proof of these properties.

Let us consider the set of all the pseudo-Boolean functions defined over Bn,
RBn . This set forms a vector space over R with the common function addition.
Each pseudo-Boolean function is, thus, a particular vector in a vector space
with 2n dimensions. Let us define the dot-product between two pseudo-Boolean
functions as:

〈f, g〉 =
∑
x∈Bn

f(x)g(x). (2)

In Bn there are 2n Walsh functions that form an orthogonal basis in the set
of pseudo-Boolean functions. Thus,

〈ψw, ψt〉 = 2nδtw, (3)

where δ denotes the Kronecker delta, which is 1 if w = t and 0 if w 6= t.
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Any arbitrary pseudo-Boolean function f can be expressed as a weighted
sum of Walsh functions. We can represent f in the Walsh basis in the following
way:

f(x) =
∑
w∈Bn

awψw(x) where aw =
1

2n
〈ψw, f〉 . (4)

The previous expression is called Walsh decomposition of f and the values aw
are called Walsh coefficients. In the following we will denote with i the binary
string with position i set to 1 and the rest set to 0. We omit the length of the
string n in the notation, but it will be clear from the context. For example, if
we consider binary strings in B4 we have 1 = 1000 and 3 = 0010. For a binary
string w ∈ Bn we denote with |w| the number of ones of w. We define the order
of a Walsh function ψw as the value |w|. Some properties of the Walsh functions
are given in the following proposition, which we present without proof.

Proposition 1. Let us consider the Walsh functions defined over Bn. The
following identities hold:

ψ0 = 1, (5)

ψw⊕t = ψwψt, (6)

ψw(x⊕ y) = ψw(x)ψw(y), (7)

ψw(x) = ψx(w), (8)

ψ2
w = 1, (9)∑

x∈Bn
ψw(x) = δ

|w|
0 =

{
1 if w = 0,
0 if w 6= 0,

(10)

ψi(x) = (−1)xi = 1− 2xi, (11)

where ⊕ denotes the component-wise sum (XOR) in Z2.

Given a set of binary strings W and a binary string u we denote with W ∧u
the set of binary strings that can be computed as the bitwise AND of a string
in W and u, that is, W ∧ u = {w ∧ u|w ∈ W}. For example, B4 ∧ 0101 =
{0000, 0001, 0100, 0101}.

When working with Walsh functions, it is normal to encounter integer val-
ues which are elements of the Krawtchouk matrices. Let K(n) denote the n-th
Krawtchouk matrix [3], which is an (n + 1) × (n + 1) integer matrix, whose
elements are defined by the following formula:

K(n)
r,j =

n∑
l=0

(−1)l
(
n− j
r − l

)(
j
l

)
, (12)

where 0 ≤ r, j ≤ n and we assume in the previous expression that

(
a
b

)
= 0

if b > a or b < 0.
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The elements of the Krawtchouk matrices can also be defined with the help
of the following generating function:

(1 + x)n−j(1− x)j =

n∑
r=0

xrK(n)
r,j . (13)

Proposition 2. We have the following identity between the elements of the
Krawtchouk matrices:

K(n)
n−r,j = (−1)jK(n)

r,j (14)

Proof. We use (12) to write:

K(n)
n−r,j =

n∑
l=0

(−1)l
(

n− j
n− r − l

)(
j
l

)

=

n∑
l=0

(−1)l
(

n− j
n− j − n+ r + l

)(
j

j − l

)

=

n∑
l=0

(−1)l
(

n− j
r − (j − l)

)(
j

j − l

)
. (15)

Now we can make a variable change and introduce h = j − l:

K(n)
n−r,j =

n∑
l=0

(−1)l
(

n− j
r − (j − l)

)(
j

j − l

)

=

j∑
h=j−n

(−1)j−h
(
n− j
r − h

)(
j
h

)

= (−1)j
j∑

h=j−n

(−1)h
(
n− j
r − h

)(
j
h

)
, (16)

where we restrict the lower limit of the sum from hlb = j−n to hlb = 0 and the
upper limit from hub = j to hub = n, since the new terms added and removed
are all 0. Finally:

K(n)
n−r,j = (−1)j

n∑
h=0

(−1)h
(
n− j
r − h

)(
j
h

)
= (−1)jK(n)

r,j .

From (13) we deduce that K(n)
0,r = 1. Observe that K(n)

0,r is the constant
coefficient in the polynomial. Krawtchouk matrices have an important role when
we sum an exponential number of Walsh functions. The following proposition
provides an important result in this line.
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Proposition 3. Let t ∈ Bn be a binary string and 0 ≤ r ≤ n. Then the
following two identities hold for the sum of Walsh functions:∑

w∈Bn∧t
|w|=r

ψw(x) = K(|t|)
r,|x∧t| (17)

∑
w∈Bn∧t

ψw(x) = 2|t|δ
|x∧t|
0 (18)

Proof. Let us develop the left hand side of (17):∑
w∈Bn∧t
|w|=r

ψw(x) =
∑

w∈Bn∧t
|w|=r

n∏
j=1
wj=1

ψj(x) by (1). (19)

Now we can identify the second member of the previous expression with the

coefficient of a polynomial. Let us consider the polynomial Q
(t)
x (z) defined as:

Q(t)
x (z) =

n∏
j=1
tj=1

(z + ψj(x)) =

|t|∑
l=0

zl

 ∑
w∈Bn∧t
|w|=|t|−l

n∏
j=1
wj=1

ψj(x)


=

|t|∑
l=0

qlz
l. (20)

From (20) we conclude that the summation in (19) is the coefficient of z|t|−r

in the polynomialQ
(t)
x (z), that is, q|t|−r. According to (11) and (20) we can write

Q
(t)
x (z) = (z+1)|x∧t|(z−1)|x∧t|. Obviously, |x∧t|+|x∧t| = |t|. According to (13),

the polynomials Q
(t)
x (z) are related to the Krawtchouk matrices by Q

(t)
x (z) =

(−1)|x∧t|
∑|t|
l=0K

(|t|)
l,|x∧t|z

l and we can write ql = (−1)|x∧t|K(|t|)
l,|x∧t|. Replacing l by

|t| − r and applying Proposition 2 we obtain (17).
The expression (18) can be obtained in the following way:

∑
w∈Bn∧t

ψw(x) =

|t|∑
r=0

∑
w∈Bn∧t
|w|=r

ψw(x) =

|t|∑
r=0

q|t|−r = Q(t)
x (1)

= 2|x∧t|δ
|x∧t|
0 , (21)

since the factor (z− 1)|x∧t| in the polynomial Q
(t)
x (z) is 1 only if |x∧ t| = 0 and

zero otherwise. Now we can replace |x ∧ t| by |t|, since if |x ∧ t| < |t|, then we
have |x ∧ t| > 0 and the previous expression is 0.

3 Analysis of Crossover

In evolutionary computation, a crossover operator is a procedure which takes
two tentative solutions to a problem x and y, called parents, and computes
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one or two solutions, called children, based on the features of x and y. Let
us denote with C(x, y) the random variable giving one child of the crossover
operator. What we want to compute is the expected fitness value of this child
of the crossover. That is, E{f(C(x, y))} for a crossover operator represented by
the probability distribution C(x, y). We focus on combinatorial optimization
problems using binary strings for the solution representation. We can write the
expectation as:

E{f(C(x, y))} =
∑
z∈Bn

f(z)Pr{C(x, y) = z},

and using the Walsh decomposition of f we can rewrite the previous expression
in

E{f(C(x, y))} =
∑
z∈Bn

(∑
w∈Bn

awψw(z)

)
Pr{C(x, y) = z}

=
∑
w∈Bn

aw

(∑
z∈Bn

ψw(z)Pr{C(x, y) = z}

)
= 2n

∑
w∈Bn

awbw(x, y), (22)

where bw(x, y) denotes the Walsh coefficient of the probability function Pr{C(x, y) =
z} with respect to z.

To calculate the desired expectation we will assume the use of the uniform
crossover operator. As we will see, the Walsh coefficients bw(x, y) for the uniform
crossover can be easily computed with the help of the Walsh functions. For
other crossover operators, like the one point or the two point crossover, it is not
yet clear if Walsh analysis can be used to obtain an efficient formula for the
expectation.

We will denote uniform crossover by UX. Let x, y ∈ Bn be the parent solu-
tions. For each position (bit) of the child binary string z, UX selects the bit in
x with probability ρ and the bit in y with probability 1− ρ, where ρ ∈ [0, 1] is
called the bias. In most cases the bias is ρ = 0.5. We will replace the notation
C(x, y) used to represent a generic random variable representing the child of a
crossover by a new notation including the parameter ρ of UX: Uρ(x, y).

In UX each position of the binary string is treated independently. Thus,
the probability distribution of Uρ(x, y) can be written as a product of simpler
probability distributions related to each bit. Let us denote with Bρ(xi, yi) the
random variable with range in B that represents the bit selected to be at position
i of the child if the parent bits at this position are xi and yi in UX with bias ρ.
The probability distribution of Bρ(xi, yi) is:

Pr{Bρ(xi, yi) = zi} =


0 if xi = yi and xi 6= zi,
1 if xi = yi = zi,
ρ if xi = zi and yi 6= zi,
1− ρ if yi = zi and xi 6= zi.

(23)
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The probability distribution of UX is:

Pr{Uρ(x, y) = z} =

n∏
i=1

Pr{Bρ(xi, yi) = zi}. (24)

The following lemma provides the Walsh decomposition of Pr{Uρ(x, y) = z}.
We decorate the Walsh coefficients with ρ to highlight the dependence of the
coefficient with ρ.

Lemma 1. Let x, y, w ∈ Bn and ρ ∈ [0, 1]. The following identity holds for the
Walsh coefficient bw,ρ(x, y) of the probability function Pr{Uρ(x, y) = z}

bw,ρ(x, y) =
1

2n
ψw(y)(1− 2ρ)|(x⊕y)∧w|. (25)

Proof. From (4) the Walsh coefficient bw,ρ(x, y) is:

bw,ρ(x, y) =
1

2n

∑
z∈Bn

ψw(z)Pr{Uρ(x, y) = z}

=
1

2n

∑
z∈Bn

ψw(z)

n∏
i=1

Pr{Bρ(xi, yi) = zi}

=
1

2n

∑
z∈Bn

(
n∏
i=1

(−1)wizi

)
n∏
i=1

Pr{Bρ(xi, yi) = zi}

=
1

2n

∑
z∈Bn

n∏
i=1

(−1)wiziPr{Bρ(xi, yi) = zi}

=
1

2n

n∏
i=1

∑
zi∈B

(−1)wiziPr{Bρ(xi, yi) = zi}. (26)

For the inner sum we can write∑
zi∈B

(−1)wiziPr{Bρ(xi, yi) = zi}

= Pr{Bρ(xi, yi) = 0}+ (−1)wiPr{Bρ(xi, yi) = 1}
= 1− 2δwi1 Pr{Bρ(xi, yi) = 1}, (27)

where we exploit the fact that we must get 0 or 1 in a bit after the crossover,
that is:

Pr{Bρ(xi, yi) = 0}+ Pr{Bρ(xi, yi) = 1} = 1.

Including this result in (26) we have

bw,ρ(x, y) =
1

2n

n∏
i=1

(1− 2δwi1 Pr{Bρ(xi, yi) = 1})

=
1

2n

n∏
i=1
wi=1

(1− 2Pr{Bρ(xi, yi) = 1}) . (28)

7



Using the definition of Pr{Bρ(xi, yi) = zi} in (23):

Pr{Bρ(xi, yi) = 1} =


0 if xi = yi = 0,
1 if xi = yi = 1,
ρ if xi = 1 and yi = 0,
1− ρ if xi = 0 and yi = 1.

(29)

And the factor inside (28) is

(1− 2Pr{Bρ(xi, yi) = 1}) = (−1)yi
(
1− 2ρ+ 2ρδyixi

)
. (30)

We can develop (28) in the following way:

bw,ρ(x, y) =
1

2n

n∏
i=1
wi=1

(−1)yi
(
1− 2ρ+ 2ρδyixi

)

=
1

2n

 n∏
i=1
wi=1

(−1)yi

 n∏
i=1
wi=1

(
1− 2ρ+ 2ρδyixi

)

=
1

2n
ψw(y)

n∏
i=1
wi=1

(
1− 2ρ+ 2ρδyixi

)
. (31)

The expression
(
1− 2ρ+ 2ρδyixi

)
takes only two values: 1 if yi = xi and 1−2ρ

when xi 6= yi. A factor 1−2ρ is included in the product for all the positions i in
which xi 6= yi and wi = 1. Then the product in (31) becomes (1− 2ρ)|(x⊕y)∧w|

and we obtain (25).

Now we are ready to present the main result of this work.

Theorem 1. Let f be a pseudo-Boolean function defined over Bn and aw with
w ∈ Bn its Walsh coefficients. The following identity holds for E{f(Uρ(x, y))}:

E{f(Uρ(x, y))} =

n∑
r=0

A(r)
x,y(1− 2ρ)r, (32)

where the coefficients A
(r)
x,y are defined in the following way:

A(r)
x,y =

∑
w∈Bn

|(x⊕y)∧w|=r

awψw(y). (33)
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Proof. According to (22) and (25) we can write

E{f(Uρ(x, y))} = 2n
∑
w∈Bn

awbw,ρ(x, y)

=
∑
w∈Bn

awψw(y)(1− 2ρ)|(x⊕y)∧w|

=

n∑
r=0

∑
w∈Bn

|(x⊕y)∧w|=r

awψw(y)(1− 2ρ)|(x⊕y)∧w|

=

n∑
r=0

(1− 2ρ)r
∑
w∈Bn

|(x⊕y)∧w|=r

awψw(y), (34)

and we get (32).

Note that the expression for the expected fitness after applying UX is a
polynomial in (1−2ρ). The degree of this polynomial depends on the Hamming
distance between the parent solutions, |x ⊕ y|, and the maximum order of the
Walsh decomposition, pmax. The degree of the polynomial will be the minimum
between these two numbers, since |(x ⊕ y) ∧ w| < |w| and |(x ⊕ y) ∧ w| <
|x ⊕ y|. This means that the maximum degree of the polynomial is rmax =
min(pmax, |x⊕ y|).

Proposition 4. Let A
(r)
x,y be the polynomial coefficients for f and B

(r)
x,y the

polynomial coefficients for g. Then, the polynomial coefficients for h = f + g

are C
(r)
x,y = A

(r)
x,y +B

(r)
x,y.

Proof. Let aw with w ∈ Bn be the Walsh coefficients of f and bw the Walsh
coefficients of g. Then, the Walsh coefficients of h = f + g are cw = aw + bw.
Therefore:

C(r)
x,y =

∑
w∈Bn

|(x⊕y)∧w|=r

cwψw(y) =
∑
w∈Bn

|(x⊕y)∧w|=r

(aw + bw)ψw(y)

=
∑
w∈Bn

|(x⊕y)∧w|=r

awψw(y) +
∑
w∈Bn

|(x⊕y)∧w|=r

bwψw(y)

= A(r)
x,y +B(r)

x,y.

When UX is used in the literature a common value for ρ is 1/2. In this
case, the expression for the expected fitness value is a simple coefficient, as the
following corollary proves.

Corollary 1. Let f be a pseudo-Boolean function defined over Bn and aw with
w ∈ Bn its Walsh coefficients. The expected value of the fitness function after
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applying UX to solutions x and y with bias ρ = 1/2 is:

E{f(U1/2(x, y))} = A(0)
x,y =

∑
w∈Bn

|(x+y)∧w|=0

awψw(y). (35)

Proof. If we set ρ = 1/2 in the polynomial (32) all the terms (1 − 2ρ)r with

r > 0 vanish and the expected fitness value is A
(0)
x,y.

4 Two Examples

The result of Theorem 1 allows one to compute the expected fitness after UX
is applied if we know the Walsh decomposition of the objective function f .
One can argue that the computation of the coefficients of the polynomial (32)
can be costly. However, we can restrict the cost to be polynomial when con-
sidering k-bounded pseudo-Boolean functions. This class of problems includes
MAX-kSAT and NK-Landscapes, as well as all linear pseudo-Boolean functions
such as ONEMAX. In order to illustrate that this computation can be efficient,

we provide expressions for the coefficients A
(r)
x,y in the case of two well-known

problems in combinatorial optimization: ONEMAX and MAX-kSAT.

4.1 ONEMAX

ONEMAX is a toy combinatorial optimization problem defined over binary
strings which is commonly studied due to its simplicity. The objective func-
tion for ONEMAX is defined as f(x) = |x|. Using properties of Walsh functions
given in (11) we obtain:

f(x) =

n∑
i=1

xi =

n∑
i=1

1− ψi(x)

2
=
n

2
− 1

2

n∑
i=1

ψi(x), (36)

and we deduce that the Walsh coefficients for ONEMAX are aw = n/2 if |w| = 0,
aw = −1/2 if |w| = 1 and aw = 0 if |w| > 1.

Since all the nonzero Walsh coefficients have order 0 or 1, only the coefficients

A
(0)
x,y and A

(1)
x,y can be nonzero, yielding a linear polynomial in ρ for the expected

value E{f(Uρ(x, y))}.

Lemma 2. Let x, y ∈ Bn be two binary strings, the polynomial coefficients A
(0)
x,y

and A
(1)
x,y for the ONEMAX problem are:

A(0)
x,y =

1

2
|x⊕ y|+ |x ∧ y|, A(1)

x,y = −1

2
|x⊕ y|+ |x ∧ y|. (37)
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Proof. The development of the A
(0)
x,y coefficient is:

A(0)
x,y =

∑
w∈Bn

|(x⊕y)∧w|=0

awψw(y) =
n

2
− 1

2

n∑
i=1
xi=yi

(1− 2yi)

=
n

2
− 1

2
(n− |x⊕ y|) +

n∑
i=1
xi=yi

yi

=
1

2
|x⊕ y|+

n∑
i=1
xi=yi

yi

=
1

2
|x⊕ y|+ |(x⊕ y) ∧ y|,

where x⊕ y denotes the complement of x ⊕ y (bitwise XNOR). The binary
string x⊕ y has 1 in the positions in which xi = yi. The development of the

A
(1)
x,y coefficient is:

A(1)
x,y =

∑
w∈Bn

|(x⊕y)∧w|=1

awψw(y) = −1

2

n∑
i=1
xi 6=yi

(1− 2yi)

= −1

2
|x⊕ y|+

n∑
i=1
xi 6=yi

yi

= −1

2
|x⊕ y|+ |(x⊕ y) ∧ y|,

which gives the expressions in (37) taking into account that (x⊕ y)∧ y = x∧ y
and (x⊕ y) ∧ y = x ∧ y.

Theorem 2. Let x, y ∈ Bn be two binary strings and ρ ∈ [0, 1]. In the ONE-
MAX problem an expression for E{f(Uρ(x, y))} is:

E{f(Uρ(x, y))} = |x ∧ y|+ ρ|x ∧ y|+ (1− ρ)|x ∧ y|, (38)

which allows one to efficiently evaluate E{f(Uρ(x, y))} using bitwise operations
and simple arithmetic.

Proof.

E{f(Uρ(x, y))} = A(0)
x,y +A(1)

x,y(1− 2ρ)

= A(0)
x,y +A(1)

x,y − 2ρA(1)
x,y

= (|x ∧ y|+ |x ∧ y|)− 2ρ

(
−1

2
|x⊕ y|+ |x ∧ y|

)
.

If we take into account that |x⊕ y| = |x∧ y|+ |x∧ y| we obtain (38) after some
manipulation.
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The formula (38) can be also explained as follows. The term |x ∧ y| counts
the bits which are 1 in both x and y, and these bits keep their value in any
child. The term |x∧ y| are the bits which are 1 in x and 0 in y and each one of
these bits will be in the child with probability ρ. For this reason, the expected
number of these bits in the child is ρ|x∧ y|. Finally, the term |x∧ y| counts the
bits which are 1 in y and 0 in x. These bits will be in the child with probability
1− ρ, which explains the contribution of (1− ρ)|x ∧ y| to the expected value.

In the case of ONEMAX the formalism presented in this paper is not required
to find the expectation formula. The argument in the last paragraph is enough
to find an expression. For the MAX-kSAT problem the formalism is helpful,
since it is difficult to reach a formula of the expectation using arguments similar
to the ones in the previous paragraph.

4.2 MAX-kSAT

This is an NP-hard combinatorial optimization problem with the objective of
maximizing the number of satisfied clauses of a Boolean formula in conjuctive
normal form. It is related with the SAT decision problem, since finding the
optimum (maximum) in MAX-kSAT solves the related SAT decision problem.

Let us assume that n Boolean decision variables exist in the Boolean formula
and let C be a set of clauses. In the MAX-kSAT problem each clause c ∈ C
is composed of k literals, each one being a decision variable xi or a negated
decision variable xi. For each clause c ∈ C we define the vectors v(c) ∈ Bn
and u(c) ∈ Bn as follows (see [8]): vi(c) = 1 if xi appears (negated or not) in
c and vi(c) = 0 otherwise, ui(c) = 1 if xi appears negated in c and ui(c) = 0
otherwise. According to this definition u∧v = u. The objective function of this
problem is defined as

f(x) =
∑
c∈C

fc(x); where

fc(x) =

{
1 if c is satisfied with assignment x,
0 otherwise.

(39)

A clause c is satisfied with x if at least one of the literals is 1. Using the
vectors v(c) and u(c) we can say that c is satisfied by x if x∧ u∨ x∧ v ∧ u 6= 0.

Sutton et al. [8] provide the Walsh decomposition for the MAX-kSAT prob-
lem. The Walsh coefficients for fc are:

aw =

 0 if w ∧ v̄ 6= 0,
1− 1

2k
if w = 0,

−1
2k
ψw(u) otherwise.

(40)

The following provides the polynomial coefficients A
(r)
x,y(c) for the function

fc, where we include the clause in the coefficient to distinguish the value of one
clause from another.

12



Lemma 3. Let x, y ∈ Bn be two binary strings and r ≥ 0. Then, the following

identity holds for the polynomial coefficients A
(r)
x,y(c) in the case of the function

fc:

A(r)
x,y(c) = δr0 −

δγ0
2β
K(β)
r,α, (41)

where α = |v(c) ∧ (x ⊕ y) ∧ (u(c) ⊕ y)|, β = |v(c) ∧ (x ⊕ y)| and γ = |v(c) ∧
(x⊕ y) ∧ (u(c)⊕ y)|.

Proof. In the following we will remove the argument c in the vectors v(c) and
u(c) to alleviate the notation. Let us assume that r > 0. The nonzero Walsh
coefficients aw are the ones for which w ∧ v = 0, which are exactly w ∈ Bn ∧ v,
then we can restrict the sum of (33) to these binary strings. We can also assume
that the strings w in the sum are w 6= 0, since r > 0. Then we can write:

A(r)
x,y =

∑
w∈Bn

|(x⊕y)∧w|=r

awψw(y)

=
∑

w∈Bn∧v
|(x⊕y)∧w|=r

−1

2k
ψw(u)ψw(y) by (40)

=
−1

2k

∑
w∈Bn∧v

|(x⊕y)∧w|=r

ψw(u⊕ y) by (7).

We can now write each w as the sum of two strings w′ and w′′ where w′ ∈
Bn ∧ (v ∧ (x⊕ y)) and w′′ ∈ Bn ∧ (v ∧ (x⊕ y)).

A(r)
x,y =

−1

2k

∑
w′∈Bn∧(v∧(x⊕y))

|w′|=r

∑
w′′∈Bn∧(v∧(x⊕y))

ψw′+w′′(u⊕ y)

=
−1

2k

 ∑
w′∈Bn∧(v∧(x⊕y))

|w′|=r

ψw′(u⊕ y)


·

 ∑
w′′∈Bn∧(v∧(x⊕y))

ψw′′(u⊕ y)

 .

Let us now define α = |v(c) ∧ (x ⊕ y) ∧ (u(c) ⊕ y)|, β = |v(c) ∧ (x ⊕ y)| and
γ = |v(c)∧ (x⊕ y)∧ (u(c)⊕y)|. Then, using the results of Proposition 3 we can
write:

A(r)
x,y =

−1

2k
K(β)
r,α

(
2|v∧(x⊕y)|δγ0

)
= − δ

γ
0

2β
K(β)
r,α, (42)

where we used the fact that 2k = 2β · 2|v∧(x⊕y)|. When r = 0 we have to take
into account that w = 0 is one possible string in the sum and a0 = 1 − 1/2k.

13



Then we have:

A(0)
x,y =

∑
w∈Bn

|(x⊕y)∧w|=0

awψw(y)

= a0 −
1

2k

∑
w∈Bn∧v

|(x⊕y)∧w|=0,w 6=0

ψw(u⊕ y)

= a0 −
1

2k

∑
w∈Bn∧(v∧(x⊕y))

w 6=0

ψw(u⊕ y)

= a0 −
1

2k

∑
w∈Bn∧(v∧(x⊕y))

ψw(u⊕ y) +
1

2k

= 1− 1

2k

∑
w∈Bn∧(v∧(x⊕y))

ψw(u⊕ y)

= 1− 1

2k
δγ0 2|v∧(x⊕y)| = 1− δγ0

2β
. (43)

According to the definition of Krawtchouk matrices we have K(β)
0,α = 1, which

allows us to combine (42) and (43) to yield (41).

All the A
(r)
x,y(c) coefficients for each particular clause can be efficiently com-

puted in O(k) time. The bitwise operations required to compute α, β and γ
only need to explore the bits set to one in v(c) (that is, k bits). With the values
of α, β and γ each of the k + 1 coefficients can be computed in O(1). The
coefficients for the MAX-kSAT objective function f are given in the following
theorem.

Theorem 3. Let x, y ∈ Bn be two binary strings and r ≥ 0. Then, the following

identity holds for the polynomial coefficients A
(r)
x,y of the MAX-kSAT problem:

A(r)
x,y =

∑
c∈C

A(r)
x,y(c) (44)

where A
(r)
x,y(c) is given by (41). These coefficient can be computed in O(km)

where m is the number of clauses.

Proof. This is a direct consequence of Lemma 3.

Corollary 2. Let x, y ∈ Bn be two binary strings and f the objective function
for the MAX-kSAT problem, defined in (39). The expected value of the fitness
function after applying UX to solutions x and y with bias ρ = 1/2 is:

E{f(U1/2(x, y))} = m−
∑
c∈C
γ(c)=0

1

2β(c)
(45)

where β(c) = |v(c) ∧ (x⊕ y)| and γ(c) = |v(c) ∧ (x⊕ y) ∧ (u(c)⊕ y)|.

14



Proof. Combining the results of Corollary 1 and Theorem 3 we obtain the de-
sired result after some manipulation.

From these results, we conclude that the expectation curve of the fitness
value after applying UX to two solutions in the MAX-kSAT problem is a poly-
nomial in ρ with degree at most k.

5 Further Analysis

We next analyze some of the consequences of these results. In particular, we
study what is the value of the expected fitness if the second child of the UX is
selected instead of the first one. We also investigate the optimal value for the
crossover bias ρ.

5.1 Expectation of the Sibling

Until now we have only considered one child of UX. But it is common to generate
two children after applying UX to the parent solutions x and y. In this section
we consider the second child generated by UX. This second child is built by
selecting for each gene the allele which was not selected by the first child. If z
is the first child, the second is z ⊕ (x ⊕ y). The following result provides the
expected fitness of this second child.

Theorem 4. Let f be a pseudo-Boolean function defined over Bn, x, y ∈
Bn two binary strings. The expected fitness of the second child in the UX
when it is applied to x and y (in that order) with bias ρ is E{f(Uρ(y, x))} =
E{f(U1−ρ(x, y))}.

Proof. The first child takes the bits of x with probability ρ and the bits of y
with probability 1 − ρ. The second child takes the value of y with probability
ρ and the value of x with probability 1 − ρ. As a consequence to compute the
expected fitness value for the second child we have to commute the order of x
and y in the expectation formula without changing ρ or we have to replace ρ by
1− ρ without changing the order of x and y in the expectation formula.

In Figure 1 we illustrate the result of the previous theorem. We can observe
that the expectation curve (expectation as a function of ρ) of the second child
is just a reflection of the one of the first child using as axis the line ρ = 1/2.

5.2 Optimal Crossover Bias

Given a particular problem and two solutions x and y, we can compute the

coefficients A
(r)
x,y of the polynomial and find the optimal value of ρ to maximize

(or minimize) the expected fitness of the child. This can always be done using
numerical analysis, but we consider here some cases in which a closed-form
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Figure 1: The expectation curve of the second child in the UX is a reflection of
the expectation curve of the first child with respect to the line ρ = 1/2.

formula can be derived, namely, when E{f(Uρ(x, y))} is a polynomial of degree
less than or equal to 3.1

In the order 1 case, the expectation is E{f(Uρ(x, y))} = A
(0)
x,y + (1−2ρ)A

(1)
x,y.

In this case the optimum is one of the extremes: ρ = 0 or ρ = 1. If we consider
maximization and f(x) ≥ f(y), then an optimal bias is ρ∗ = 1, which can be
interpreted as “select x as the child”. One problem having always a degree-1
polynomial is ONEMAX. In fact, if for a particular objective function f the
expectation curves for all the possible solution pairs x, y is linear in ρ, then
the function f(x) has to be a weighed sum of the variables xi. This kind of
functions can always by solved in O(n).

Consider the case in which the expectation is quadratic in ρ. Then the

polynomial has a maximum if A
(2)
x,y < 0. We can find the derivative and solve

the corresponding linear equation to obtain a tentative optimal value for ρ. The
value for this optimum is

ρ =
1

2
+

A
(1)
x,y

4A
(2)
x,y

. (46)

If this value is inside the interval [0, 1] then it is an optimal value for the
bias, otherwise, one optimal value is ρ∗ = 1, since we assume f(x) ≥ f(y). One
interesting observation here is that if (46) gives the value for the optimal bias,
and f(x) > f(y) then ρ > 1/2. That is, the optimal bias would suggest to
increase the probability of selecting the components of the best solution (x).
This scenario is illustrated in Figure 2. This is common sense, since one expects
the best individual to have the best solution components, those that increase the
fitness value of the solution. Problems having a quadratic polynomial are those
with at most two-variable interactions in their fitness function. For example, the
subset sum problem [4] or the 0-1 Unconstrained Quadratic Optimization [5],
both NP-hard problems.

Finally, let us assume that E{f(Uρ(x, y))} is a cubic polynomial. In this
case the derivative polynomial can have zero, one or two roots in the interval
[0, 1]. Their values are:

1Closed-form formulas of the expectation-optimal bias ρ can also be derived for polynomials
of degree up to 5, but we don’t consider them here.
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Figure 2: Shape of the expectation curves depending on the degree of the poly-
nomial.

ρ =
−A(2)

x,y ±
√(

A
(2)
x,y

)2
− 3A

(1)
x,yA

(3)
x,y

3A
(3)
x,y

. (47)

It can happen that one of these values is the optimal bias for UX (it is not
possible that both values are optimal) or it could be that the optimal value is in
one of the extremes (or both). The interesting observation here is that if (47)
computes the optimal bias, then it can happen that ρ < 1/2 (in Figure 2 we
plot a cubic polynomial having this behaviour). In general, if the degree of the
polynomial in ρ is higher than 2, then we can find situations in which increasing
the probability of selecting components of the worst solution (y) the expected
fitness value of the child is higher.

We designed an instance of MAX-3SAT for which we find the optimal bias ρ
is less than 0.5. The instance has n = 7 variables and 18 clauses which are shown
in Table 1. Let x = 1111000 and y = 0000000, then f(x) = 12 and f(y) = 11.
For these two solutions the expectation curve for the uniform crossover is given
by the expression:

E{f(Uρ(x, y))} =
101

8
+

1

8
(1− 2ρ)− 9

8
(1− 2ρ)2 − 5

8
(1− 2ρ)3.

The optimal expected fitness value is 12.6284 and can be found at ρ =
0.473401 < 0.5.

6 Conclusions and Future Work

We have derived an expression for computing the expected fitness value of a
solution which is the result of applying the uniform crossover to two solutions
x and y. Since UX has only one parameter, the bias ρ, this expression is
obviously a function of ρ when x and y are fixed. We prove that this function is
a polynomial in ρ and the degree of the polynomial is bounded by the number of
bits in which x and y differ and the maximum order of the nonzero coefficients
in the Walsh decomposition of the objective function.
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Table 1: Instance of the MAX-3SAT problem with n = 7 for which the optimal
bias ρ is less than 0.5 when x = 1111000 and y = 0000000.

Clauses
x1 ∨ x2 ∨ x3 x5 ∨ x6 ∨ x1 x1 ∨ x2 ∨ x5
x3 ∨ x1 ∨ x2 x5 ∨ x6 ∨ x2 x1 ∨ x3 ∨ x5
x2 ∨ x1 ∨ x3 x5 ∨ x6 ∨ x3 x2 ∨ x3 ∨ x5
x1 ∨ x2 ∨ x4 x5 ∨ x6 ∨ x4 x1 ∨ x4 ∨ x5
x4 ∨ x1 ∨ x2 x5 ∨ x7 ∨ x1 x2 ∨ x4 ∨ x5

x6 ∨ x7 ∨ x2 x3 ∨ x4 ∨ x5
x1 ∨ x2 ∨ x6

We have developed the expression as a closed-form formula for two optimiza-
tion problems: ONEMAX and MAX-kSAT. The complexity of computing the
expectation for these two problems is similar to the complexity of evaluating the
objective function. With the help of these polynomials it is possible to compute
the bias for which the expected fitness is optimal, which could be used to create
new crossover operators exploiting this information. We found that it is not
always the case that the optimal value for ρ is above 0.5 and we have provided
an instance of MAX-3SAT for which the optimal value is less than 0.5.

As future work we plan to extend the results in this paper in order to provide
closed-form formulas for the variance, and other higher order moments. We also
plan to combine the results in this paper with the ones of the mutation operator
previously published by Sutton et al. and Chicano et al. We can also propose
new variation operators or search algorithms based on the expected fitness.
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