[P1.238]

Proton conductivity of multifunctional metal phosphonate frameworks

A. Cabeza*¹, M. Bazaga-García¹, R.M.P. Colodrero¹, M. Papadaki², P. Olivera-Pastor¹, E.R. Losilla¹, L. León-Reina¹, L. Moreno-Real¹, M.A.G. Aranda^{1,3}, K. Demadis²

¹University of Malaga, Spain, ²University of Crete, Greece, ³CELLS-ALBA Synchrotron, Spain

Metal phosphonates exhibit attractive characteristics for proton conductivity, such as tunable functionality, chemical and thermal stability and the existence of H-bond networks with acidic protons within their structure.¹

In the present work, we examine the relationship between crystal structure and proton conductivity for several metal (mono-, di- and tri-valent) phosphonates containing rigid: (5-(dihydroxyphosphoryl)isophthalic acid, PiPhtA and 2-hydroxyphosphonoacetic acid, HPAA) or flexible: (hexa- or octamethylenediamine-N,N,N',N'-tetrakis(methylenephosphonic acid, H₈HDTMP or H₈ODTMP) multifunctional ligands. The crystalline hybrid derivatives prepared show a great structural diversity, from 1D to 3D open-frameworks possessing hydrogen-bonded water molecules and phosphonic and carboxylic acid groups. The rigid 3D framework of Ca-PiPhtA, that exhibits a proton conductivity of $5.7 \cdot 10^{-4}$ S/cm as synthesized, transforms into a layered compound upon exposure to ammonia vapors² with increased proton conductivity ($6.6 \cdot 10^{-3}$ S/cm). The flexible frameworks of magnesium or lanthanide phosphonates, with 1D channels, present conductivities higher than 10^{-3} S/cm. Their activation energies fall in the range corresponding to a Grotthuss mechanism.^{3,4} For M(I)-HPAA solids conductivities up to $5.6 \cdot 10^{-3}$ S/cm were measured.

References

- 1. P. Ramaswamy, N.E. Wong, G.K.H. Shimizu, Chem. Soc. Rev. 43 (2014) 5913.
- 2. M. Bazaga-García, R.M.P. Colodrero, M. Papadaki, P. Garczarek, J. Zoń, P. Olivera-Pastor, E.R. Losilla, L. León-Reina, M.A.G. Aranda, D. Choquesillo-Lazarte, K.D. Demadis, A. Cabeza, *J. Amer. Chem. Soc.* 136 (2014) 5731.
- 3. R.M.P. Colodrero, P. Olivera-Pastor, E.R. Losilla, D. Hernández-Alonso, M.A.G. Aranda, L. Leon-Reina, J. Rius, K.D. Demadis, B. Moreau, D. Villemin, M. Palomino, F. Rey, A. Cabeza, *Inorg. Chem.* 51 (2012) 7689.
- 4. R.M.P. Colodrero, P. Olivera-Pastor, E.R. Losilla, M.A.G. Aranda, L. Leon-Reina, M. Papadaki, A.C. McKinlay, R.E. Morris, K.D. Demadis, A. Cabeza, *Dalton Trans.* 41 (2012) 4045.

Keywords: metal phosphonate, proton conductivity, fuel cells, functional materials