Seminario

Simulación numérica en Ingeniería y Ciencias con MATLAB + COMSOL Multiphysics

Benjamin IVORRA

Universidad Complutense de Madrid

Grupo MOMAT ivorra@mat.ucm.es

imee

Máster Universitario en Sistemas Inteligentes en Energía y Transporte por las Universidades de Málaga y Sevilla —Andalucía Tech—

Instituto de Matemática

Interdisciplinar

ON THE MODELLING AND SIMULATION OF HIGH PRESSURE PROCESSES AND INACTIVATION OF ENZYMES IN FOOD ENGINEERING

Juan Antonio Infante, <u>Benjamin Ivorra</u>, Angel Manuel Ramos and Jose Maria Rey

Espuña

La Calidad por Experiencia

Outlines

Outlines

Part I: Introduction

- Part II: Inactivation of enzymes
- Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Conclusions and perspectives

Introduction

-Industrial context

- -Description of HP device
- -Interesting problems

Inactivation of enzymes

- -Kinetic equation
- -Inactivation rate

• Heat and Mass Transfer Modelling

- -System of equations -Physical parameters
- Coupled model

 Sensitivity analysis
 Incomplete models
- Numerical experiments -Considered experiments
 - -Numerical Results

Outlines

Part I: Introduction

- HP in Food industry
- General description of the HP device
- Considered HP device
- Interesting problems

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Conclusions and perspectives

Part I: Introduction

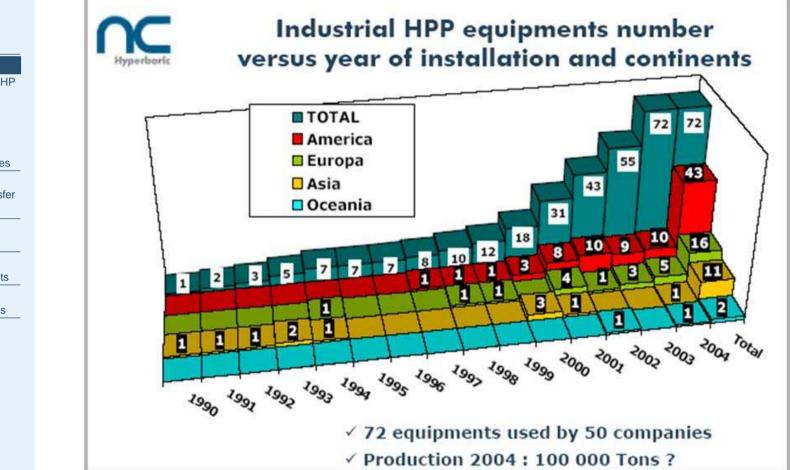
HP in Food industry

Outlines

Part I: Introduction

HP in Food industry

- General description of the HP device
- Considered HP device
- Interesting problems
- Part II: Inactivation of enzymes
- Part III: Heat and Mass Transfer Modelling
- Part IV: Coupled model
- Part V: Numerical experiments
- Conclusions and perspectives


- Industrial context: Increase of the demand of safe and minimally processed food (liquid or solid) prepared for immediate consumption: restaurants, collective dining rooms, domestic consumption, etc.
- Objective of the food treatments: Increase the shelf life of the food by inactivating some biological entities: bacteria, fungus, enzymes ...
 - Most used treatments: Pasteurization (using high temperature), Freezing (Using low temperature), Chemical (using additives), UV treatment, HP treatment (using high pressures)... Hybrid treatments can be considered.
- Advantages of HP treatments:

-Not based on the incorporation of additives -Avoid treatments with low/high temperatures which affect nutritional and organoleptic properties of the food.

HP in Food industry

Evolution of the use of HP device:

Outlines

Part I: Introduction

● HP in Food industry

- General description of the HP device
- Considered HP device
- Interesting problems

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

HP in Food industry

Application of the HP-T treatments:

PRODUCTO

Productos de frutas

PAÍS

Japón

COMPAÑÍA

Meidi-Ya

TRATAMIENTO

400 MPa/10-30'/20°C

Outlines

	Flouucios de Iluias	Japon	Ivieiui-Ta	400 IVIF a/ 10-30/20 C
	Zumos de mandarina	Japón	Wakayama Food Int.	300-400 MPa/2-3'/20°C
	Lunius de mandamia	Japón	Ehime	?
		Japón	Takansi	?
	Zumos de frutas	Francia	Pampryl-Pernod Ricard	400 MPa/1'/20°C
		USA	Frutmost-Avomex	?
		USA	Odwalla Inc.	?
	Zumo de manzana y cítricos	Portugal	Frubaca	450 MPa/20-90"/12°0
		Japón	Pon	?
	-	Reino Unido	Orchard House Foods Ltd.	500 MPa/20°C
	Zumos de naranja	Líbano	K-Sun	500 MPa 2
		Italia Móxico	Ortogel SpA Jumex	20"-1'
	Frutas azucardas	México Japón	Nisshin Fine Foods	50-200 MPa
	Arroces	Japón	Echigo Seika	400-600 MPa/10/45-7
	Sake	Japón	Chiyonosono	400-600 MPa/10/45-7 400 MPa/30/15°C
	Guacamole y Salsas	USA	AvoClassic-Avomex	700 MPa/10-15'/20°
	Hummus	USA	Hannah Internat, Foods	?
	Jamón crudo	Japón	Fuji Chiku Mutterham	250 MPa/3 h/20°C
		España	Esteban Espuña. S.A.	400-500 MPa/20°C
	Productos cárnicos	España	Campofrío Alimentación S.A.	500-600 MPa/10'/ 7
	Froductos camicos	Italia	Vismara/Ferrarini	600 MPa/10/ 7°C
		Alemania	Gebr. Abraham GmbH	600 MPa/2'/ 5°C
	Productos cárnicos de cerdo cocidos, libres de nitritos: salchicas, jamón, bacón "Roast beef" loncheado	Japón	Ito Ham Foods Inc.	600 MPa/5'/ 5°C
	Productos precocinados "listos para consumir" de aves de corral	USA	Perdue Farms Inc.	600 MPa/2
	Pollo loncheado precocinado y Ternera para fajitas	USA	Menu Fresh-Avomex	600 MPa
	Platos preparados de verdura "listos para consumir"	España	?	500 MPa
	Jamón cocido loncheado, productos de cerdo y jamón de Parma	USA	Hormel Foods Corporation	600 MPa
	Productos precocidos de pescado reconstituido: salmón y merluza	España	Campofrío Alimentación S.A.	500 MPa/ 5'
	Elaborados de pescado	Japón	Yaizu Fisheries	400 MPa
	Ostras	USA	Motivatit Seafoods, Inc. Nisbet Oyster Co. Joey Oyster Inc.	200-350 MPa/1-2
	Marisco	USA	Ocean Choice International	275 MPa/1'
	Margarina	Japón	Kaneke Corp.	?

General description of the HP device

Outlines

Part I: Introduction

HP in Food industry

General description of the HP device

• Considered HP device

Interesting problems

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

General description of the HP device

Outlines

Part I: Introduction

• HP in Food industry

 General description of the HP device

• Considered HP device

Interesting problems

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Considered HP device

We consider: ACB GEC Alsthom – Instituto del Frío - CSIC.

Outlines

Part I: Introduction
• HP in Food industry

General description of the HP device

• Considered HP device

Interesting problems

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Interesting problems

We have studied two problems:

Outlines

- Part I: Introduction
- HP in Food industry
- General description of the HP device
- Considered HP device
- Interesting problems
- Part II: Inactivation of enzymes
- Part III: Heat and Mass Transfer Modelling
- Part IV: Coupled model
- Part V: Numerical experiments
- Conclusions and perspectives

1- The control of the **food sample temperature** during a HP-T treatment: Increasing the pressure we also increase the temperature (can lead to **pasteurization**).

L. Otero, Á. M. Ramos, C. de Elvira, C. y P. D. Sanz: 'A Model to Design High-Pressure Processes Towards an Uniform Temperature Distribution'. Journal of Food Engineering (J. Food Eng.), Vol 78 (2007), 1463-1470

2- Today we present: The study of the inactivation of some enzymes in the food sample: useful in future works for optimizing a HP-T treatment.

J. A. Infante, B.Ivorra, Á. M. Ramos y J. M. Rey: 'On the Modelling and Simulation of High Pressure Processes and Inactivation of Enzymes in Food Engineering'. Mathematical Models and Methods in Applied Sciences, Vol. 19 (12) (2009), 2203-2229

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Enzyme

• Kinetic equation

Inactivation rate

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Conclusions and perspectives

Part II: Inactivation of enzymes

Enzyme

Outlines

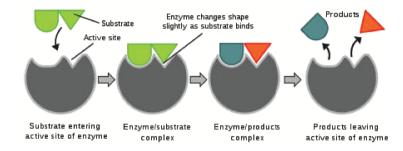
Part I: Introduction

Part II: Inactivation of enzymes

Enzyme

Kinetic equation

Inactivation rate


```
Part III: Heat and Mass Transfer
Modelling
```

Part IV: Coupled model

Part V: Numerical experiments

Conclusions and perspectives

What is an enzyme: Enzymes are molecules (essentially proteins) that **catalyze chemical reactions** essential for microorganisms.

- Interest of inactivating enzymes: block chemical reactions in order to reduce the activity of non-desired microorganism in food (producing fermentation, toxic...).
- Impact of the HP-T treatment on enzyme: Changing the pressure/temperature conditions, the enzyme progressively (in term of concentration) change form a folded state (active) to an unfolded state (inactive): thus the chemical reaction velocity decrease.

Kinetic equation

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Enzyme

Kinetic equation

Inactivation rate

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Conclusions and perspectives

The activity *A* of an enzyme inside a food *'particle'* is defined by the considered experimental protocol of measurement. Mathematically, the time evolution of *A* can be described by the following first–order kinetic equation:

$$\frac{dA(t)}{dt} = -\kappa(P(t), T(t)) A(t),$$

where t is the time (min), P(t) is the pressure (MPa) at time t, T(t) is the temperature (K) at time t and $\kappa(P,T)$ is the inactivation rate (min⁻¹).

The solution at time t is obviously given by

$$A(t) = A(0) \exp\left(-\int_0^t \kappa(P(\sigma), T(\sigma)) \, d\sigma\right).$$

Here $\kappa(P,T)$ is chosen, depending on the considered enzyme.

Inactivation rate

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Enzyme

Kinetic equation

Inactivation rate

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Conclusions and perspectives

1- As a combination of **Arrhenius equation** (modelling the temperature dependence) and **Eyring equation** (modelling the pressure dependence):

$$\kappa(P,T) = \kappa_{\rm r} \exp\left(-B\left(\frac{1}{T} - \frac{1}{T_{\rm r}}\right)\right) \exp\left(-C(P - P_{\rm r})\right),$$

2- A model obtained by considering Eyring's transition state theory:

$$\kappa(P,T) = \kappa_{\rm r} \exp\left[\left(\frac{-\Delta V_{\rm r}}{RT}(P-P_{\rm r})\right) + \left(\frac{\Delta S_{\rm r}}{RT}(T-T_{\rm r})\right) + \left(\frac{\Delta\nu}{2RT}(P-P_{\rm r})^2\right) + \left(\frac{-2\Delta\zeta}{RT}(P-P_{\rm r})(T-T_{\rm r})\right) + \left(\frac{\Delta C_p}{RT}\left(T(\ln\frac{T}{T_{\rm r}}-1)+T_{\rm r}\right)\right)\right]$$

The parameters of the selected equation are estimated using **regression techniques** on experimental data.

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

- Computational domain
- Considered equations
- System of equations
- Numerical scheme
- Determination of physical parameters

Part IV: Coupled model

Part V: Numerical experiments

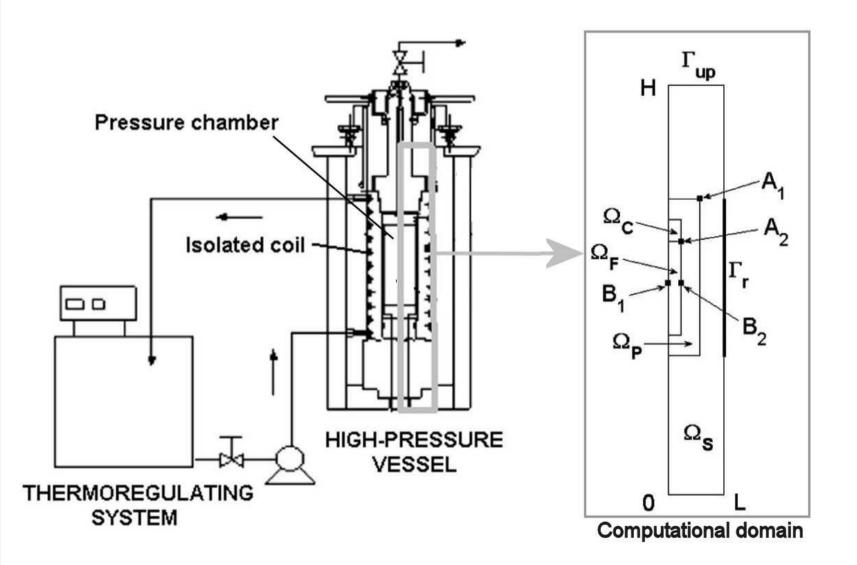
Conclusions and perspectives

Part III: Heat and Mass Transfer Modelling

Computational domain

Outlines

- Part I: Introduction
- Part II: Inactivation of enzymes


Part III: Heat and Mass Transfer Modelling

Computational domain

- Considered equations
- System of equations
- Numerical scheme
- Determination of physical parameters

Part IV: Coupled model

Part V: Numerical experiments

Considered equations

The pressure evolution of the device is given.

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Computational domain

Considered equations

System of equations

Numerical scheme

 Determination of physical parameters

Part IV: Coupled model

Part V: Numerical experiments

Conclusions and perspectives

The pressure evolution of the device is given.

In order to **determine the temperature evolution**, we consider the following model:

In the **full device**:

Energy conservation — Conductive heat transfer Equation.

In the pressurized fluid and liquid food sample:

- Momentum conservation Navier-Stokes Equations. We assume: Fluids are compressible and Newtonian (like water) — Stokes assumption.
- Mass conservation Continuity equation.

Note: Those both equations can be **neglected** in the solid food sample case when food sample **filling ratio is high enough**.

System of equations

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

- Computational domain
- Considered equations
- System of equations
- Numerical scheme
- Determination of physical parameters

Part IV: Coupled model

Part V: Numerical experiments

Conclusions and perspectives

$$\begin{split} \rho C_p \frac{\partial T}{\partial t} &- \nabla \cdot (k \nabla T) + \rho C_p \mathbf{u} \cdot \nabla T = \alpha \frac{dP}{dt} T \ \text{en} \ \Omega^* \times (0, t_{\rm f}), \\ \rho \frac{\partial \mathbf{u_F}}{\partial t} &- \nabla \cdot \eta (\nabla \mathbf{u_F} + \nabla \mathbf{u_F}^t) + \rho (\mathbf{u_F} \cdot \nabla) \mathbf{u_F} \\ &= -\nabla p - \frac{2}{3} \nabla (\eta \nabla \cdot \mathbf{u_F}) - \rho \mathbf{g} \ \text{in} \ \Omega^*_{\rm F} \times (0, t_{\rm f}), \\ \rho \frac{\partial \mathbf{u_P}}{\partial t} &- \nabla \cdot \eta (\nabla \mathbf{u_P} + \nabla \mathbf{u_P}^t) + \rho (\mathbf{u_P} \cdot \nabla) \mathbf{u_P} \\ &= -\nabla p - \frac{2}{3} \nabla (\eta \nabla \cdot \mathbf{u_P}) - \rho \mathbf{g} \ \text{in} \ \Omega^*_{\rm P} \times (0, t_{\rm f}), \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u_F}) = 0 \ \text{in} \ \Omega^*_{\rm F} \times (0, t_{\rm f}), \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u_P}) = 0 \ \text{in} \ \Omega^*_{\rm P} \times (0, t_{\rm f}). \end{split}$$

-

All physical parameters are assumed P-T dependent.

System of equations

We consider the following **boundary conditions**:

Outlines

- Part I: Introduction
- Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

- Computational domain
- Considered equations
- System of equations
- Numerical scheme
- Determination of physical parameters

Part IV: Coupled model

Part V: Numerical experiments

Conclusions and perspectives

 $k\frac{\partial T}{\partial \mathbf{n}} = 0 \text{ in } \Gamma^* \setminus (\Gamma_r^* \cup \Gamma_{up}^*) \times (0, t_f),$ $k\frac{\partial T}{\partial \mathbf{n}} = h(T_{amb} - T) \text{ in } \Gamma_{up}^* \times (0, t_f),$
$$\begin{split} T &= T_{\rm ref} \; \text{ in } \; \Gamma_r^* \times (0, t_{\rm f}), \\ \mathbf{u_F} &= 0 \; \text{ in } \; \Gamma_{\rm F}^* \times (0, t_{\rm f}), \\ \mathbf{u_P} &= 0 \; \text{ in } \; \Gamma_{\rm P}^* \times (0, t_{\rm f}), \end{split}$$

Numerical scheme

Numerical tests computed in cylindrical coordinates using a Finite Element Method.

Outlines

- Part I: Introduction
- Part II: Inactivation of enzymes
- Part III: Heat and Mass Transfer Modelling
- Computational domain
- Considered equations
- System of equations
- Numerical scheme
- Determination of physical parameters
- Part IV: Coupled model
- Part V: Numerical experiments
- Conclusions and perspectives

- Velocity and pressure spatial discretization is based on P2–P1 Lagrange Finite Elements satisfying the Ladyzhenskaya, Babuska and Brezzi (LBB) stability condition.
- The Time integration is performed using the Variable–Step–Variable–Order (VSVO) Backward Differentiation Formula (BDF)–based strategy.
- The nonlinear systems are solved with a damped Newton method.
- The algebraic linear systems are solved using Unsymmetric MultiFrontal Method for sparse linear systems(UMFPACK) combined with the stabilization technique Galerkin Least Squares (GLS).

Determination of physical parameters

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

- Computational domain
- Considered equations
- System of equations
- Numerical scheme
- Determination of physical parameters

Part IV: Coupled model

- Part V: Numerical experiments
- Conclusions and perspectives

Solid food sample (Tylose): We have chosen tylose as an example of solid type food (similar properties to meat). The coefficients are obtained from literature for atmospheric pressure. A rescaling procedure and a piecewise linear interpolation have been applied for other values of pressure.

Liquid medium: The physical parameters are supposed to be equal to those of water:

- ρ, C_p and k are computed through a shifting approach (using phase diagram) from atmospheric pressure.
- α we use a **known expression**.
- η is computed by a piecewise linear interpolation from given data.

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

- Coupling models
- Sensitivity analysis
- Incomplete models

Part V: Numerical experiments

Conclusions and perspectives

Part IV: Coupled model

Coupling models

In order to determine the **time and spatial** evolution of the activity in the food sample:

Solid case:

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Coupling models

Outlines

Part I: Introduction

Sensitivity analysis

Incomplete models

Part V: Numerical experiments

Conclusions and perspectives

The particles of the food are still. The activity *A* of a particle located at the point $x \in \Omega_F$ at time *t*:

$$A(x,t) = A(x,0) \exp\left(-\int_0^t \kappa(P(\sigma),T(x,\sigma)) \, d\sigma\right)$$

Liquid case:

Due to mass transfer, the particles **move** in the food domain Ω_F . In this case, for each point $x \in \Omega_F$ we consider the trajectory X of a food particle that ends at point x.

$$A(x,t) = A(X(0),0) \exp\left(-\int_0^t \kappa(P(\sigma),T(X(\sigma),\sigma)) \, d\sigma\right)$$

Sensitivity analysis

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Coupling models

Sensitivity analysisIncomplete models

.

Part V: Numerical experiments

Conclusions and perspectives

In practice:

- The model coefficients are usually approximated using experimental data with a standard deviation lower than ±5%.
- due to equipment limitations, some experimental discrepancies could occur during the process.

Objective: study the impact of these errors on the temperature and enzymatic activity evolutions.

We generate $N \in \mathbb{N}$ perturbed models from the original one, with coefficients perturbed randomly by $\pm 5\%$.

Then, we compute the **mean error** committed in the temperature and activity.

Outlines

Modelling

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer

Part V: Numerical experiments

Conclusions and perspectives

Part IV: Coupled model

Coupling models
 Sensitivity analysis

Incomplete models

Incomplete models

Objective: reduce the computational complexity of the
model.

We consider 'simplified models', cheaper to evaluate and with results close enough to the full models:

Solid food (SCC): We consider constant coefficients, by setting C_p, k, α, ρ and η to a mean value.

Liquid food (LCC): As previously we consider constant coefficients except ρ.

Liquid food (LB): Boussinesq approximation: considering the incompressible Navier-Stokes equations and constant coefficients except p when combined with the gravitational force.

In all cases, we compute the **error** committed in the temperature and activity.

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

• Considered enzymes

Considered treatments

• Temperature analysis

• Enzymatic analysis

Conclusions and perspectives

Part V: Numerical experiments

Considered enzymes

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

- Part V: Numerical experiments
- Considered enzymes
- Considered treatments
- Temperature analysis
- Enzymatic analysis

Conclusions and perspectives

Bacillus Subtilis α–Amylase (BSAA): It is an enzyme produced by a bacteria called Bacillus Subtilis. This bacteria, present in the ground, can contaminate food and in rare occasions cause intoxications. This enzyme catalyzes the hydrolysis of starch, generating sugars (as maltose) that can modify the taste of the aliment.

 Lipoxygenase (LOX): This enzyme is present in various plants and vegetables such as green beans and green peas. It is responsible of the appearance of undesirable aromas in those products.

Carrot Pectin Methyl–Esterase (CPE): Common in most vegetables. It can be present in vegetable juices producing low–methoxyl pectin. This process reduces juice viscosity and generates cloud loss (affecting juice flavor, color, texture and aroma).

Considered treatments

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

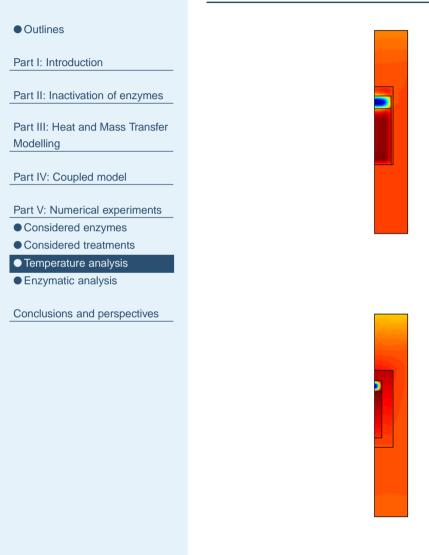
Part IV: Coupled model

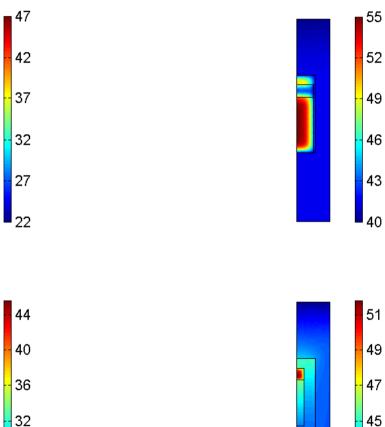
- Part V: Numerical experimentsConsidered enzymes
- Considered treatments
- Temperature analysis

Enzymatic analysis

Conclusions and perspectives

We consider a **big solid and a small liquid** food sample submitted to one of the following treatment:

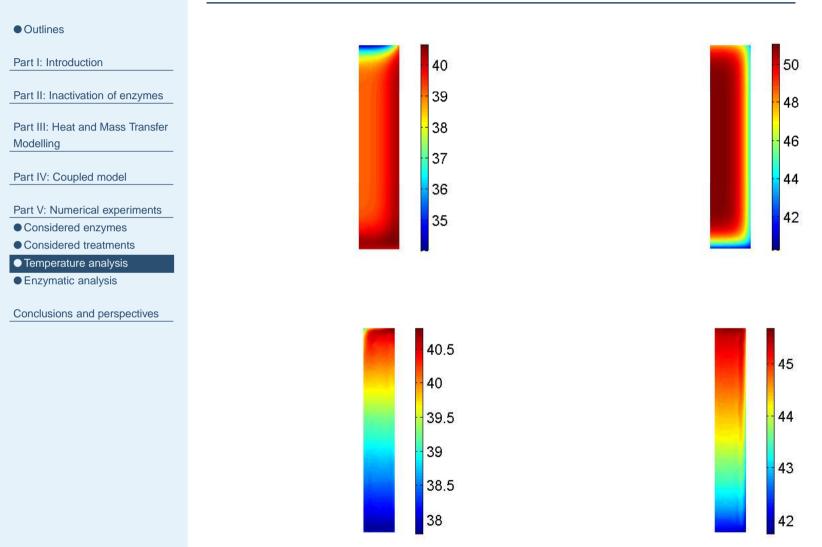

- <u>Process P1</u>: The initial temperature is $T_0 = 40^{\circ}$ C in the device and 22°C in the food sample and the pressure is linearly increased during the first 305 seconds until reaching 600 MPa.
- <u>Process P2</u>: The initial temperature is $T_0 = 40^{\circ}$ C in the whole domain Ω and the pressure is linearly increased (with the same slope as before) during the first 183 seconds until reaching 360 MPa.



28

24

Final temperature distribution in the whole domain:



43

41

Final temperature distribution in the food sample:

Example of temperature distribution (liquid-P1):

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

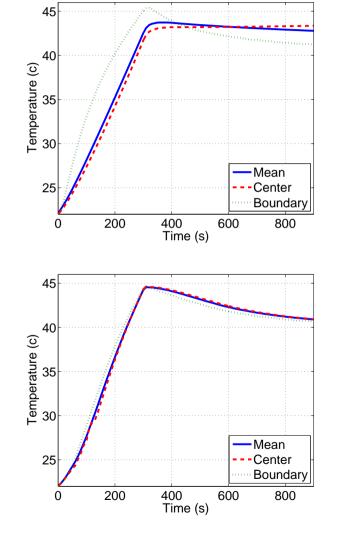
Part IV: Coupled model

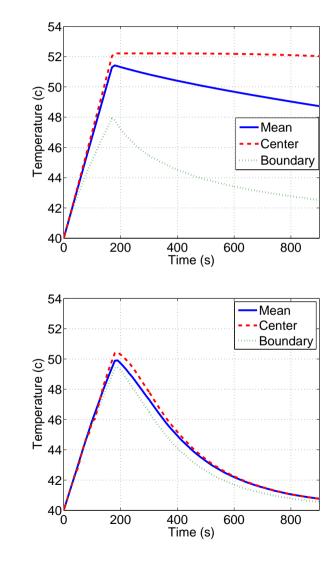
Part V: Numerical experiments

Considered enzymes

Considered treatments

• Temperature analysis


• Enzymatic analysis



Mean temperature evo:

Outlines

- Part I: Introduction
- Part II: Inactivation of enzymes
- Part III: Heat and Mass Transfer Modelling
- Part IV: Coupled model
- Part V: Numerical experiments
- Considered enzymes
- Considered treatments
- Temperature analysis
- Enzymatic analysis
- Conclusions and perspectives

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Considered enzymes

Considered treatments

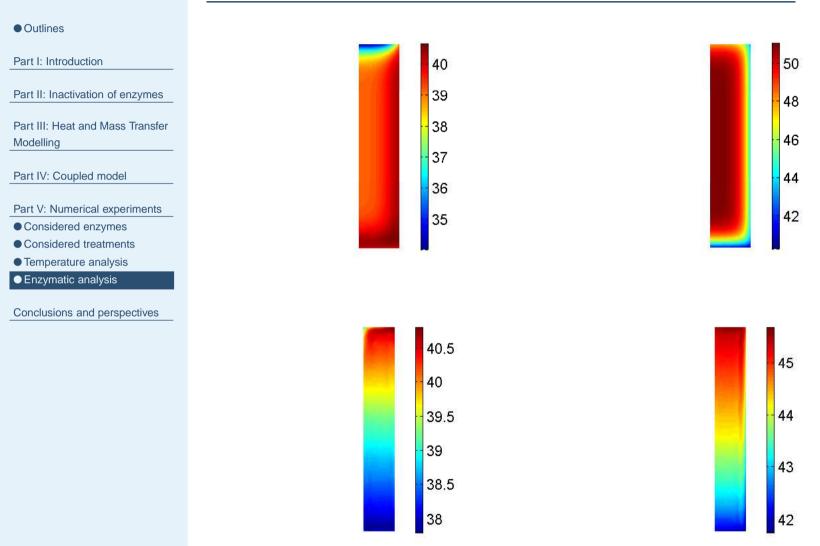
• Temperature analysis

• Enzymatic analysis

Conclusions and perspectives

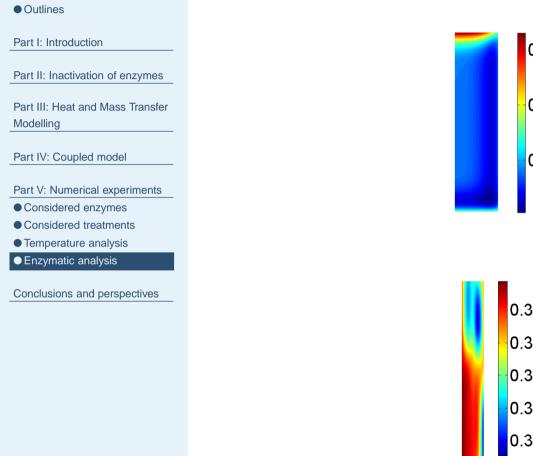
Sensitivity analysis: Mean Relative Temperature Error (in %)

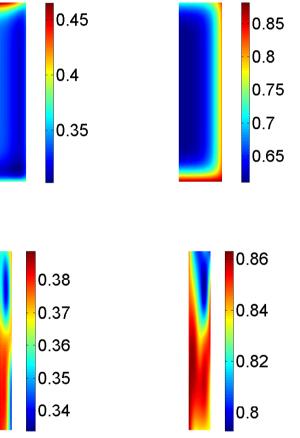
Process	Food	Whole domain	Sample
P1	Solid	2.74	3.34
P2	Solid	2.75	2.93
P1	Liquid	2.68	2.70
P2	Liquid	2.83	2.67


Incomplete models: **Relative Temperature Error** (in %)

Outlines

Part I: Introduction Part II: Inactivation of enzymes	Process	Model	Whole domain	Sample	Comp. Time (s)
Part III: Heat and Mass Transfer	P1	SFull			53
Modelling Part IV: Coupled model	P2	SFull	—		51
Part V: Numerical experiments	P1	SCC	0.77	4.77	4
Considered enzymesConsidered treatments	P2	SCC	0.10	0.52	4
 Temperature analysis Enzymatic analysis 	P1	LFull			3135
Conclusions and perspectives	P2	LFull	—		4141
	P1	LCC	0.41	2.07	2459
	P2	LCC	0.06	0.20	2877
	P1	LB	0.37	1.96	2196
	P2	LB	0.08	0.22	2475




Final temperature distribution in the food sample:

LOX final activity distribution in the food sample:

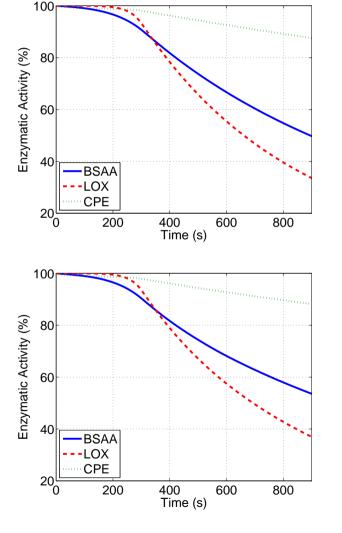
LOX Mean Activity evolution:

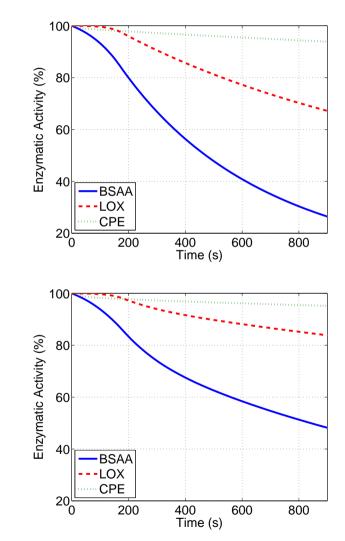
Outlines

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model


Part V: Numerical experiments


Considered enzymes

Considered treatments

• Temperature analysis

Enzymatic analysis

Example of temperature and LOX activity distribution (Solid-P1):

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Considered enzymes

Considered treatments

• Temperature analysis

Enzymatic analysis

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Considered enzymes

Considered treatments

• Temperature analysis

Enzymatic analysis

Conclusions and perspectives

Sensitivity analysis: **Mean Activity Error** (in %)

Process	Food	BSAA	LOX	CPE
P1	Solid	4.60	6.81	2.28
P2	Solid	5.01	6.43	0.52
P1	Liquid	4.02	7.45	2.40
P2	Liquid	3.97	2.51	0.28

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Considered enzymes

Considered treatments

• Temperature analysis

Enzymatic analysis

Conclusions and perspectives

Incomplete models: Activity Error (in %)

Process	Model	BSAA	LOX	CPE
P1	SCC	7.44	5.20	1.33
P2	SCC	0.96	1.11	0.10
P1	LCC	2.81	1.75	0.40
P2	LCC	1.14	0.65	0.06
P1	LB	3.04	2.00	0.45
P2	LB	2.23	1.31	0.12

Outlines

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Conclusions and perspectives

Conclusion and perspectives

Conclusion and perspectives

Outlines

- Part I: Introduction
- Part II: Inactivation of enzymes
- Part III: Heat and Mass Transfer Modelling
- Part IV: Coupled model
- Part V: Numerical experiments
- Conclusions and perspectivesConclusion and perspectives

- The mathematical models described in this paper provide a useful design tool.
- The model is robust.
- Several simplified versions of the full models are proposed and are suitable for optimization procedures.
- Future work:
- New model for enzymatic inactivation.
- Identify the most important enzymes to be inactivated and the organoleptic properties to be preserved.
- Perform optimization techniques in order to reduce the enzymatic activities and preserve organoleptic properties of the food, without using high temperatures.

Conclusion and perspectives

	0	utlines
\mathbf{U}	U	uumes

Part I: Introduction

Part II: Inactivation of enzymes

Part III: Heat and Mass Transfer Modelling

Part IV: Coupled model

Part V: Numerical experiments

Conclusions and perspectivesConclusion and perspectives

!!! Thank You !!!