ROLE OF PHARMACOGENETICS IN PERSONALISED MEDICINE IN HEPATOLOGY

Ann Daly
Newcastle University
UK
To be described

• Introduction to pharmacogenetic studies
 • Candidate gene case-control studies
 • Genome-wide association studies
 • Genome-wide sequencing
 • Exome sequencing
 • Whole genome sequencing

• Application of pharmacogenetics to hepatology
 • Drug-induced liver injury
 • Other liver diseases
Pharmacogenetics, Pharmacogenomics and Personalised Medicine

• Pharmacogenetics
 * Study of unusual responses to drugs and other foreign compounds that have a hereditary basis
 * Typically involves genes relevant to drug disposition, drug response or immune responses

• Pharmacogenomics
 * Individualization of drug therapy using genomic information
 * Can use existing drugs or develop new ones
 * Up to now emphasis is on existing drugs
 * Includes Pharmacogenetics

• Personalised medicine
 * Includes application of pharmacogenetics/genomics to treatment but other factors also relevant
Candidate gene case-control studies

• Need to select biologically plausible candidate gene and compare frequency of selected genetic polymorphism between cases and controls
 • Less obvious candidates not considered
• Easy and cheap to perform
• May work well if the obvious genes contribute with large effect size
• Successful pharmacogenetic examples
 • CYP2C9 and VKORC1 in relation to warfarin dosing
 • HLA gene associations with adverse drug reactions e.g. B*57:01 and abacavir toxicity
Genome-wide association studies

- Genotyping for many (500,000 to 1 million) genetic polymorphisms (SNPs) using array-based technology
 - These polymorphisms occur throughout the genome on all genes and account for most common genetic variability
- Open nature of method means most possible genetic associations screened for
- Successful implementation usually requires large numbers of samples (cases and controls)
- Pharmacogenetic applications
 - Adverse drug reactions
 - Response to drugs such as warfarin and clopidogrel
Genome sequencing

• Exome sequencing
 • Sequencing of all exons in human genome
 • Allows analysis of rarer variants
 • Up to now most useful in study of rare genetic diseases

• Whole-genome sequencing
 • Entire genome including introns, regulatory regions and areas of unknown function sequenced
 • Expensive and difficult data analysis but great potential to understand genetic variability
Drug-induced liver injury (DILI)

• Rare but serious idiosyncratic toxicity
• Aims of current studies
 • Develop strategies to prevent DILI reactions by genotyping patients prior to treatment and individualizing drug prescription
 • Develop screening approaches for use during drug development to screen out hepatotoxic compounds
Genetic studies on DILI susceptibility

- **DILIGEN (UK-based)**
 - Primarily concerned with DILI due to amoxicillin-clavulanate, flucloxacillin, anti-TB agents
 - Now complete

- **iDILIC (worldwide)**
 - Any hepatotoxic licensed drug
 - Sample collection and data analysis ongoing

- **DILIN (US-based), Eudragene, Spanish DILI**
 - Collaboration with DILIGEN and iDILIC
UK-wide study on genetics of drug-induced liver injury

- Drugs
 - Anti-TB medication or Flucloxacillin or Co-amoxiclav
 - Others included later in study

- Final recruitment
 - 76 flucloxacillin, 78 co-amoxiclav, 26 anti-TB medication, >50 others
 - Retrospective and prospective enrolment
Worldwide study on DILI genetics - Ann Daly and Guru Aithal - co-chairs
Successfully adjudicated new cases in iDILIC

- 1053 cases recruited with 862 passing adjudication (82%)
- Cases mainly of European ethnicity
- GWAS-exome chip analysis on 747 of these cases
HLA genes—common thread in DILI genetics

- HLA class I genes expressed on most cells
 - A, B and C genes
- HLA class II genes expressed on antigen presenting cells
 - DR, DQ, DP genes
- HLA proteins normally present peptide antigens to T cells
 - May inappropriately present drug-peptide complexes
GWAS on liver injury due to flucloxacillin

- 51 UK cases (DILIGEN study) and population control group (n=282)
 - POPRES controls
- Illumina 1M bead chip
Flucloxacillin DILI GWAS study - strong effect for \textit{HLA B*57:01}

Strongest signal with SNP in HCP5 gene which tags HLA-B*57:01

Daly et al., \textit{Nature Genetics} 2009; 41:816-822.
HLA-B*57:01 genotypes of flucloxacillin cases and controls

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
<th>Odds ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls (n=64)</td>
<td>4 (6.3)</td>
<td>60 (93.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases (n=51)</td>
<td>43 (84.3)</td>
<td>8 (15.7)</td>
<td>80.6 (22.8 - 284.9)</td>
<td>8.97x10^-19</td>
</tr>
<tr>
<td>Replication cases (n=23)</td>
<td>20 (87.0)</td>
<td>3 (13.0)</td>
<td>100.0 (20.6-485.8)</td>
<td>6.62x10^-13</td>
</tr>
</tbody>
</table>

- 84% of all cases positive, with 4 homozygous mutant
GWAS on flucloxacillin DILI: 197 cases

<table>
<thead>
<tr>
<th>SNP</th>
<th>ODDS</th>
<th>UCI</th>
<th>LCI</th>
<th>P-value</th>
<th>FreqCases</th>
<th>FreqControls</th>
<th>hwe2</th>
<th>ALL1 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-B*57:01</td>
<td>30.96</td>
<td>43.66</td>
<td>21.96</td>
<td>2.30E-8</td>
<td>0.4239</td>
<td>0.04181</td>
<td>1</td>
<td>0.0423</td>
</tr>
</tbody>
</table>

- No convincing signals other than for B*57:01
Flucloxacillin DILI and $B^*57:01$

- Association with HLA $B^*57:01$ similar to that for abacavir hypersensitivity but may involve different mechanism
 - 84% of 197 cases now studied are $B^*57:01$-positive

- Sensitivity of $B^*57:01$ genotyping as predictor of flucloxacillin DILI lower
 - Only 1 in 500 patients positive for $B^*57:01$ treated with flucloxacillin develop DILI
 - Non-genetic risk factors likely to contribute to susceptibility?
"Omnibus" DILI study

- 1021 Caucasian cases (iDILIC, DILIGEN, DILIN, Eudragene, Spanish DILI)
- Excludes all Flucloxacillin and Co-amoxiclav cases

- HLA and other additional genotypes assigned statistically by imputation
- \(HLA-A*33:01 \) (OR \(~2\), p-value \(10^{-7}\)) possibly associated with DILI more generally
Omnibus study: 290 cases cholestatic and mixed only

<table>
<thead>
<tr>
<th>SNP</th>
<th>CHR</th>
<th>BP</th>
<th>ODDS</th>
<th>Pvalue</th>
<th>L95</th>
<th>U95</th>
<th>FreqCases</th>
<th>FreqControls</th>
<th>Freq1kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs115651142</td>
<td>6</td>
<td>30115320</td>
<td>5.485</td>
<td>9.28E-14</td>
<td>3.505</td>
<td>8.582</td>
<td>0.04114</td>
<td>0.01089</td>
<td>0.014</td>
</tr>
<tr>
<td>rs114577328</td>
<td>6</td>
<td>29927282</td>
<td>5.469</td>
<td>2.81E-13</td>
<td>3.467</td>
<td>8.63</td>
<td>0.03956</td>
<td>0.01061</td>
<td>0.014</td>
</tr>
<tr>
<td>rs72610705</td>
<td>2</td>
<td>5254575</td>
<td>2.376</td>
<td>6.98E-08</td>
<td>1.735</td>
<td>3.254</td>
<td>0.07803</td>
<td>0.03767</td>
<td>0.052</td>
</tr>
</tbody>
</table>

- See stronger A*33:01 signal \((p=10^{-14}) \)
- Don't see genome-wide significance for hepatocellular only
"Omnibus" cases relating to specific drugs: A*33:01 frequency

<table>
<thead>
<tr>
<th>DRUG</th>
<th>MAF</th>
<th>NCHR</th>
<th>MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TICLOPIDINE</td>
<td>0.4</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>FENOFIBRATE</td>
<td>0.3</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>ENALAPRIL</td>
<td>0.25</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>METHYLDOPA</td>
<td>0.25</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>TERBINAFINE</td>
<td>0.2</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>SERTRALINE</td>
<td>0.1667</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>CONTROLS</td>
<td>0.012</td>
<td>18270</td>
<td>213</td>
</tr>
<tr>
<td>FLUCLOXACILLIN</td>
<td>0.007</td>
<td>402</td>
<td>3</td>
</tr>
<tr>
<td>CO-AMOXICLAV</td>
<td>0.002</td>
<td>526</td>
<td>1</td>
</tr>
</tbody>
</table>

- *HLA-A*33:01 possibly associated with DILI due to various drugs
- Terbinafine has the highest number of positive cases (6 heterozygotes out of 15 cases)
Terbinafine only

- 15 Caucasian cases
- HLA-A*33:01 risk factor (OR >76, p-value 10^{-10}) is genome-wide significantly associated with Terbinafine-DILI

<table>
<thead>
<tr>
<th>SNP</th>
<th>ODDS</th>
<th>UCI</th>
<th>LCI</th>
<th>Pvalue</th>
<th>PvalueFit</th>
<th>FreqCases</th>
<th>FreqContrmissing</th>
<th>hwe2</th>
<th>ALLIM</th>
<th>ALLHCE</th>
<th>ALLOEX</th>
<th>ITAIM</th>
<th>ITAOEX</th>
<th>SPAIM</th>
<th>SPAHCE</th>
<th>NEUIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-B*14:02</td>
<td>17.58</td>
<td>49.97</td>
<td>6.186</td>
<td>7.48E-08</td>
<td>4.81E-05</td>
<td>0.2333</td>
<td>0.03323</td>
<td>1</td>
<td>1</td>
<td>0.03286</td>
<td>0.03769</td>
<td>0.04221</td>
<td>0.01973</td>
<td>0.01433</td>
<td>0.05273</td>
<td>0.04065</td>
</tr>
<tr>
<td>HLA-A*33:01</td>
<td>76.53</td>
<td>288.9</td>
<td>20.27</td>
<td>1.56E-10</td>
<td>1.28E-06</td>
<td>0.2</td>
<td>0.01165</td>
<td>1</td>
<td>0.2144</td>
<td>0.01136</td>
<td>0.01759</td>
<td>0.01299</td>
<td>0.01038</td>
<td>0.04221</td>
<td>0.02773</td>
<td>0.01897</td>
</tr>
<tr>
<td>HLA-C*08:02</td>
<td>12.43</td>
<td>34.08</td>
<td>4.533</td>
<td>9.75E-07</td>
<td>0.00094</td>
<td>0.2333</td>
<td>0.04566</td>
<td>1</td>
<td>0.7323</td>
<td>0.04527</td>
<td>0.05653</td>
<td>0.03896</td>
<td>0.02648</td>
<td>0.001165</td>
<td>0.06659</td>
<td>0.06998</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r2/D</th>
<th>HLA-B*14:02</th>
<th>HLA-C*08:02</th>
<th>rs190865297</th>
<th>rs116076476</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-A*33:01</td>
<td>0.2/0.7</td>
<td>0.176/0.7</td>
<td>0.538/0.840</td>
<td>0.302/1</td>
</tr>
</tbody>
</table>
Summary of data on A*33:01

- Significant association with this allele predicted from "omnibus" GWAS especially for cholestatic and mixed DILI
- Involves terbinafine and other drugs
 - No structural similarities
 - Finding for ticlopidine consistent with previous report from Japan
- HLA genotypes assigned by imputation of GWAS data
 - Confirmation by direct typing achieved for subset of samples
HLA associations with DILI: summary

<table>
<thead>
<tr>
<th>Compound</th>
<th>No of cases</th>
<th>HLA allele</th>
<th>Odds ratio (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flucloxacillin</td>
<td>51</td>
<td>B*57:01</td>
<td>80.6(22.8-284.9)</td>
<td>9x10^{-19}</td>
</tr>
<tr>
<td>Amoxicillin-clavulanate</td>
<td>201</td>
<td>A*02:01</td>
<td>2.3(1.8-2.9)</td>
<td>1.8x10^{-10}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DRB115:01-DQB106:02</td>
<td>2.8(2.1-3.8)</td>
<td>3.5x10^{-11}</td>
</tr>
<tr>
<td>Lumiracoxib</td>
<td>41</td>
<td>DRB115:01-DQB106:02</td>
<td>5.0(3.6-7.0)</td>
<td>6.8x10^{-25}</td>
</tr>
<tr>
<td>Lapatinib</td>
<td>35</td>
<td>DRB107:01-DQA102:01</td>
<td>2.9(1.3-6.6)</td>
<td>0.007</td>
</tr>
<tr>
<td>Ximelagatran</td>
<td>74</td>
<td>DRB107:01-DQA102:01</td>
<td>4.4(2.2-8.9)</td>
<td>6x10^{-6}</td>
</tr>
<tr>
<td>Ticlopidine</td>
<td>22</td>
<td>A*33:03</td>
<td>13.0 (4.4-38.6)</td>
<td>1.2 x 10^{-5}</td>
</tr>
</tbody>
</table>

Mainly based on GWAS but also some direct HLA typing
HLA and related gene associations with DILI-underlying mechanism

- Specific HLA protein interacts with drug or metabolite inappropriately
- Triggers T-cell response
- Local cellular damage
Non-HLA risk factors

- Some relatively important forms of DILI not HLA-associated e.g.
 - Isoniazid
 - Diclofenac

- Where HLA association shown, non-HLA risk factors may also contribute e.g.
 - Amoxicillin-clavulanate
Finding non-HLA genetic risk factors for DILI

- Genome-wide significance on GWAS
 - Challenging unless relatively large effect size (e.g. OR>3) and number of cases
- Candidate-gene approaches using GWAS or other data
 - PTPN22
 - UGT2B7
- Exome sequencing
Amoxicillin-clavulanate DILI and non-HLA genes

- Autoimmune disease gene subset from GWAS (QQ plot)

- **PTPN22** codes for lymphoid-specific protein tyrosine phosphatase, nonreceptor type 22
 - Involved in T-cell signalling
 - Risk factor for diabetes and rheumatoid arthritis
 - Overall risk OR 2.1 (1.5 – 3.2) p=1.3x10^{-4}

Lucena et al; Gastroenterology 2011; 141:338-347
ADME genes as candidates for diclofenac DILI using GWAS data

Based on 30 diclofenac DILI cases
In agreement with our earlier UGT2B7 finding but PXR an interesting additional candidate
UGT2B7 may affect levels of reactive acyl glucuronides

Urban et al., 2012 *Pharmacogenetics and Genomics* 22:784-95
Exome sequencing and exome chip studies on DILI

- Exome sequencing performed on 125 amoxicillin-clavulanate DILI cases
 - 66 from UK and 59 from Spain
 - All from previous GWAS

- Exome chip studies
 - 233 further amoxicillin-clavulanate DILI cases from iDILIC study and from DILIN network for replication of exome sequencing
Sequencing + Exome Chip + Additional Genotyping

<table>
<thead>
<tr>
<th>SNP</th>
<th>F_A</th>
<th>F_U</th>
<th>P_FISHER</th>
<th>OR</th>
<th>GENE</th>
<th>FUNCT</th>
<th>ESP MAF</th>
<th>ESP P</th>
</tr>
</thead>
<tbody>
<tr>
<td>exm1381768</td>
<td>0.013</td>
<td>0.0000</td>
<td>4.03E-07</td>
<td>NA</td>
<td>FAM59A</td>
<td>Missense</td>
<td>0</td>
<td>1.30E-09</td>
</tr>
<tr>
<td>exm1621613</td>
<td>0.009</td>
<td>0.0000</td>
<td>4.60E-05</td>
<td>NA</td>
<td>HDAC10</td>
<td>SPLICE_REGION</td>
<td>0</td>
<td>1.13E-06</td>
</tr>
<tr>
<td>exm1611079</td>
<td>0.009</td>
<td>0.0007</td>
<td>1.77E-04</td>
<td>13.07</td>
<td>SGSM3</td>
<td>Missense</td>
<td>0.0001</td>
<td>3.40E-06</td>
</tr>
<tr>
<td>var_chr19_3767610_2_CA_C</td>
<td>0.025</td>
<td>0.0022</td>
<td>1.39E-03</td>
<td>11.84</td>
<td>ZNF585B</td>
<td>3' UTR</td>
<td>0.0012</td>
<td>3.54E-06</td>
</tr>
<tr>
<td>rs112786048</td>
<td>0.017</td>
<td>0.0000</td>
<td>1.83E-03</td>
<td>NA</td>
<td>FMNL1</td>
<td>INTRON</td>
<td>0.0005</td>
<td>2.18E-05</td>
</tr>
<tr>
<td>exm526375</td>
<td>0.034</td>
<td>0.0107</td>
<td>7.32E-06</td>
<td>3.274</td>
<td>ZFP57</td>
<td>Missense</td>
<td>0.0143</td>
<td>2.75E-05</td>
</tr>
<tr>
<td>rs73271560</td>
<td>0.025</td>
<td>0.0077</td>
<td>6.06E-03</td>
<td>3.324</td>
<td>IK</td>
<td>INTRON</td>
<td>0.00708</td>
<td>3.67E-05</td>
</tr>
<tr>
<td>rs11575960</td>
<td>0.030</td>
<td>0.0033</td>
<td>2.08E-04</td>
<td>9.431</td>
<td>PCDHGA9</td>
<td>Missense</td>
<td>0.00577</td>
<td>4.13E-05</td>
</tr>
</tbody>
</table>

- SGSM3: Small G Protein Signaling Modulator 3
 - 6 cases heterozygous for this variant
- Extremely rare in all control groups
Sequencing and exome chip studies on DILI: progress so far and where next?

- No consistent evidence that rare coding variants are contributing to risk of DILI due to amoxicillin-clavulanate
 - SGSM3 result of some interest in small minority of samples
- Moving towards whole genome sequencing could be valuable
Pharmacogenetics and DILI: summary

• No finding up to present strong enough for clinical implementation
 • Flucloxacillin-B*57:01 association may be helpful for diagnostic purposes
• May be valuable to develop more general risk algorithms involving age, gender, genetics and concurrent drugs
Pharmacogenetics and other liver diseases

- Drugs and xenobiotics suggested to be important triggers for other liver diseases
 - e.g. alcoholic liver disease, primary biliary cirrhosis

- Primary biliary cirrhosis (PBC)
 - Immune system polymorphisms (including HLA) main predictors of risk
 - No genetic evidence for xenobiotic role
 - Risk genotypes may be relevant to ursodeoxycholate response?

- Alcoholic liver disease (ALD)
 - Our early candidate gene studies suggested roles for alcohol metabolism-related genes (CYP2E1, ADH3) and innate immune system (TNF-alpha, IL10)
 - Recent European GWAS suggests these are not big risk factors
 - PNPLA3, TM6SF2 show significance as alcoholic cirrhosis genes
 - Lipids important with results very similar to our NAFLD GWAS
Manhattan plot: risk of NAFLD

-\log_{10}(p-value)

Chromosome

PNPLA3

GCKR
Manhattan plots for steatosis and fibrosis

Steatosis

- \log_{10}(p\text{-value})

Chromosome

PNPLA3

GCKR

Fibrosis

- \log_{10}(p\text{-value})

Chromosome

Steatosis/fibrosis ≥2 against 0+1 including controls
TM6SF2 rs58542926 INFLUENCES HEPATIC FIBROSIS PROGRESSION IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE

Table 1 | Multivariate analysis of association between TM6SF2 rs58542926 genotype and fibrosis stage F0-1 (mild) versus F2-4 (advanced).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Discovery cohort (n = 349)</th>
<th>Validation cohort (n = 725)</th>
<th>Combined cohort (n = 1,074)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95%CI)</td>
<td>P-value</td>
<td>OR (95%CI)</td>
</tr>
<tr>
<td>TM6SF2 genotype</td>
<td>2.94 (1.76-4.89)</td>
<td>3.44 × 10^-5</td>
<td>1.46 (1.03-2.09)</td>
</tr>
<tr>
<td>PNPLA3 genotype</td>
<td>1.57 (1.21-2.19)</td>
<td>0.0086</td>
<td>1.32 (1.05-1.66)</td>
</tr>
<tr>
<td>Age</td>
<td>1.03 (1.01-1.06)</td>
<td>0.0045</td>
<td>1.02 (1.01-1.04)</td>
</tr>
<tr>
<td>Gender (female)</td>
<td>0.94 (0.57-1.56)</td>
<td>0.8297</td>
<td>1.18 (1.03-2.50)</td>
</tr>
<tr>
<td>BMI</td>
<td>1.05 (1.00-1.10)</td>
<td>0.0368</td>
<td>1.03 (1.01-1.05)</td>
</tr>
<tr>
<td>T2DM</td>
<td>2.39 (1.49-3.84)</td>
<td>0.0003</td>
<td>2.73 (1.93-3.88)</td>
</tr>
</tbody>
</table>

BMI, body mass index; CI, confidence interval; OR, odds ratio; T2DM, type 2 diabetes mellitus.
Additive model including age, gender, BMI, T2DM and PNPLA3 rs738409 genotype as covariates. Discovery/validation/combined cohorts: stage F0-1 (mild) n = 198/439/637, stage F2-4 (advanced) n = 151/286/437.

- TM6SF2 is a significant predictor for risk of advanced fibrosis development (OR>PNPLA3)
- Lesser effect as steatosis predictor
PNPLA3: risk factor for HCC

- PNPLA3 I148M (rs738409) gives odds ratio of 2.26 (95% CI 1.23-4.14; p=0.0082) for risk of hepatocellular carcinoma development in multivariate analysis with cirrhosis as co-variante
 - Liu et al. *J Hepatol* 2014; 61:75–81
- Genotype may be useful in evaluating risk for progression to HCC relating to a variety of liver diseases
Conclusions

• HLA alleles are key predictors for susceptibility to some forms of DILI but also other liver diseases e.g. PBC

• Overall role for pharmacogenetic polymorphisms (e.g. those in CYP genes) as predictors of disease risk limited

• Immune system and lipid-related genes appear to be key risk factors across a range of different diseases
 • May be helpful in future in personalising treatment
Acknowledgements

Newcastle
Chris Day
Pete Donaldson
Julian Leathart
Julia Patch
Ruth Wake
Heather Cordell
Sally Coulthard
Quentin Anstee
Yang-Lin Liu

Guru Aithal (Nottingham)
Munir Pirmohamed (Liverpool)
Yufeng Shen (Columbia)
Aris Floratos (Columbia)
Paola Nicoletti (Columbia)
Mark Daly (Broad Institute)
Jackie Goldstein (Broad Institute)
Matt Nelson (GSK)
Paul Watkins (North Carolina)
Tom Urban (North Carolina)
Maribel Lucena (Malaga)
Raul Andrade (Malaga)
Camilla Stephens (Malaga)
Mariam Molokhia (London)
iDILIC collaborators
FLIP collaborators