This space is reserved for the Procedia header, do not use it

Improving Transactional Memory Performance
for Irregular Applications

Manuel Pedrero, Eladio Gutierrez, Sergio Romero, and Oscar Plata

Universidad de Malaga, Andalucia Tech, Dept. Computer Architecture, 29071 Malaga, Spain
{mpedrero,eladio,sromero,oplata}@uma.es

Abstract

Transactional memory (TM) offers optimistic concurrency support in modern multicore archi-
tectures, helping the programmers to extract parallelism in irregular applications when data
dependence information is not available before runtime. In fact, recent research focus on ex-
ploiting thread-level parallelism using TM approaches. However, the proposed techniques are
of general use, valid for any type of application.

This work presents ReduxSTM, a software TM system specially designed to extract maxi-
mum parallelism from irregular applications. Commit management and conflict detection are
tailored to take advantage of both, sequential transaction ordering to assure correct results,
and privatization of reduction patterns, a very frequent memory access pattern in irregular
applications. Both techniques are used to avoid unnecessary transaction aborts.

A function in 300.twolf package from SPEC CPU2000 was taken as a motivating irregular
program. This code was parallelized using ReduxSTM and an ordered version of TinySTM,
a state-of-the-art TM system. Experimental evaluation shows that ReduxTM exploits more
parallelism from the sequential program and obtains better performance than the other system.

Keywords: Irregular application, Transactional memory, Thread-level speculation, Reduction pattern

1 Introduction and Related Work

The availability of multiples cores sharing a global memory in modern commodity computers
is having a strong influence in how applications need to be designed so that they can benefit
from all this available computational power. When decomposing a problem into a number
of concurrent tasks, the achievable performance is subject to the right resolution of data and
control dependencies. In general, dependencies are managed in a conservative way, specially
when they are solved at compilation time. Such is the case for applications exhibiting irregular
memory patterns whose dependences could not be known until execution time. In this context,
transactional memory (TM) [8] can provide an optimistic concurrency support on multicore

architectures, helping programmers to exploit parallelism in irregular applications when data
dependence information is not easily analyzable or even available before runtime.

TM has emerged as an alternative way to coordinate concurrent threads. TM provides
the concept of transaction, a construct that enforces atomicity, consistency and isolation to
the execution of a computation wrapped in the transaction. Transactions are allowed to run
concurrently, but in a way that the results are the same as they were executed serially.

In a TM system, transactions are speculatively executed and their changes are tracked by a
data version manager. If two concurrent transactions conflict (write/write, read/write the same
shared memory location), one of them must abort. After restoring its initial state, the aborted
transaction retries its execution. When a transaction finishes its execution, it commits, making
its changes in memory definitive. The design of the version manager is eager if changes are
immediately translated into memory and a undo-log is used to store the old values (to be used
in case of abort). By contrast, in a lazy version manager, updates are held in a write-buffer and
not written in memory until commit takes place. In a similar way, the conflict manager may
detect the conflict when it occurs (eager), or may postpone the conflict check until commit time
(lazy). Many TM systems have been proposed in the last two decades, implemented either in
software (STM), in hardware (HTM) or in a combination of both (HyTM) [7].

Encouraged by TM benefits, efforts have being devoted to leverage TM for extracting par-
allelism from sequential applications. In fact, many basic operations in a TM system, like de-
tection and solving of memory conflicts, buffering of memory updates, and execution rollbacks,
are also required by speculative multithreading (SpMT), or thread-level speculation (TLS) [13].
These techniques have been shown useful for finding parallelism in single-threaded programs.

In general, extracting thread parallelism from a sequential program requires decomposing
the program into tasks and the correct computation of dependencies between these tasks. Com-
puting such dependencies statically (at compile time) is often not possible for many complex
applications. In these cases, SpMT/TLS could be useful to find parallelism, as no static data
dependence analysis is demanded. In this way, the optimistic concurrency exploited by TM
systems may help parallelizing irregular applications. Tasks, defined as code sections out of
the sequential program, may be executed as concurrent transactions so as the TM system is
in charge of tracking memory accesses at runtime in order to detect and solve conflicts (data
dependencies) between transactions. Note, however, that some ordering constraints amongst
transactions must be fulfilled to avoid violations of data dependencies and assure correct results.
In general, transactions must commit in an order that preserves the sequential semantics.

Research focused on combining or exploiting TLS using TM approaches can be found in
the literature [I7), [T11 [T0L B, 2, O5, M2, B]. Most of these techniques are of general use, not
tailored for specific types of applications. However, speculative techniques are specially useful
for irregular applications, as discussed above. In this work, a transactional memory system,
ReduxSTM, is presented. The system is specifically developed to extract maximum parallelism
from irregular applications, considering that no data dependence information is available before
runtime. To maximize parallelism between tasks, the system is designed to take advantage of
both, the sequential transaction ordering and the privatization of irregular reduction patterns,
to avoid unnecessary aborts and rollbacks (only true dependencies are really enforced).

A code from SPEC CPU2000 was selected as a motivating application. This code exhibits an
irregular memory behavior that makes it suitable for being sped up by TLS, as dependencies are
not easily analyzable. This type of applications demands an important effort from the parallel
programmer to develop an optimized parallel version of the code. The aim of this paper is to
show how ReduxSTM may help to simplify greatly the work of the programmer in parallelizing
the code, extracting more parallelism than other (ordered) TM systems.

1 new.dbox-a(...) {
2
3 for (termptr=antrmptr; termptr; termptr=termptr—>nextterm) {
4
5 new_mean = dimptr—>new_total / dimptr— >numpins;
6 old_mean = dimptr—>old_total / dimptr—>numpins;
7 for (netptr=dimptr— >netptr; netptr; netptr=netptr— >nterm) {
8 oldx = netptr—>xpos;
9 if (netptr—>flag==1) {
10 newx = netptr— >newx;
11 netptr —>flag = 0;
12 } else { newx = oldx; }
13/ (1) Potential reduction sentence
14 *costptr += ABS(newx — new_mean) — ABS(oldx — old_mean);
15 }
16
17 tmp-num_feeds[net] = f; // Potential alias with *costptr and delta_vert.cost
18
19 tmp_missing_rows[net] = —m; / Potential alias with *costptr and delta_vert_cost
20 // (2) Potential reduction sentence
21 delta_vert_cost += ((tmp-num_feeds[net] — num_feeds[net]) + (tmp-missing_rows[net] — missing-rows[net])) * 2 * rowHeight;
22
23 return;
24}

Figure 1: new_dbox_a() function in 300.twolf code from SPEC CPU2000

2 Motivating Irregular Application

As case study and motivating application, the TimberWolfSC placement and global routing
package (300.twolf) was selected from the SPEC CPU2000 suite. This package determines the
placement and global connections for standard cells in a microchip, using simulated annealing
to speed-up the exploration of the state space.

Our focus is on the new_dbox_a() function included in dimbox. c, one of the files in 300.twolf.
This function is shown in Figure[ll The code has an outer loop that includes two sentences with
a reduction pattern, using costptr and delta_vert_cost as reduction variables. However, as
costptr is a pointer, it may alias with the other reduction variable or with other global variables
in the loop, like tmp_num_feeds[] or tmpmissing rows[]. As a consequence, the compiler is
not able to analyze dependences and extract parallelism from this loop.

Although no conventional parallelization techniques can be applied to the reduction sen-
tences, the reduction condition may be valid for some of the accesses to the reduction variable
(this is called a partial reduction [I4] [6]). If this fraction of accesses is high enough a wealth of
parallelism can be exploited.

3 ReduxSTM Design

The main objective in the design of ReduxSTM is to leverage the TM basic mechanisms to ex-
ploit speculative parallelism from sequential applications (specially, irregular ones), considering
that no data dependence information is statically available.

Ordered transactions. A feature that must have ReduxSTM is to keep ordering constraints
between transactions. The concurrent execution of the speculative tasks in which the application
has been decomposed must preserve the sequential semantics to ensure the correctness of the

final results. Because of that, ReduxSTM must commit transactions in accordance with the
sequential execution order. This ordering constraint is added to the commit manager but it
may cause performance degradation due to delays in committing transactions that finish out of
order. To cope with this problem, conflict detection uses the ordering knowledge to filter some
conflicts and avoid unnecessary aborts and rollbacks [I3] [5].

Reduction patterns. A second feature added to ReduxSTM is a privatization mechanism.
This is not mandatory for speculative parallelization but it is useful to remove a fraction of
accesses to shared memory and hence reduce contention between transactions. Privatization
allows to eliminate unnecessary transaction conflicts, improving parallelism exploitation. In
fact, privatization has been found as a key technique to enable parallelism [I6] [9].

In particular, privatization is implemented in ReduxSTM to extract parallelism from re-
duction memory patterns. Scientific applications present these patterns frequently and, in the
case of irregular problems, with abundance of parallelism exploitable using privatization tech-
niques. A reduction pattern is characterized by a reduction sentence in the program of the
form A[] = A[] ® £, where A[] is the reduction variable (array, in general), £ is an expression
not including A[], and @ is a commutative and associative operation. This sentence is located
in the body of a loop.

Reduction patterns are usually hard to parallelize when occurring in irregular programs
because the reduction variable (array) is often subscripted and/or some locations comprised by
such array are used (read or write) outside the reduction sentence. This is the case of a partial
reduction, where the reduction definition is fulfilled in a portion of the reduction variable.

To support privatization of reductions in ReduxSTM, a primitive for memory reduction was
defined. This primitive is handled by the conflict, version and commit managers as a third basic
memory operation: read (R), write (W) and reduction (Rdx). Rdx represents a combination of
two operations, a read followed by a write on the same memory location of the reduced value,
Rdx(add, val, ®) := W(add, R(add) & val).

Version management. In order to support privatization of reduction operations, version
management in ReduxSTM is lazy, that is, updates to memory are held in a private buffer during
the execution of the transaction. The write buffer, used to hold new values from transactional
writes, was extended to privatize transactional reduction values. The extension consists in a
state tag associated to each entry of the buffer, that specifies if such entry holds a written value
or a reduced value (and the corresponding reduction operation).

Every time a transactional reduction is issued, the write buffer is searched for the memory
address. If it is found and the state tag corresponds to a write, the value specified in the
reduction operation is reduced with the value stored in the buffer. However, the state tag is
kept as a write because the reduction condition is not fulfilled. Otherwise, if the state tag is a
reduction, a similar operation is carried out and the state tag remains as a reduction. Similarly,
a transactional write fires a searching of the address in the write buffer. If it is found, the entry
is updated and the state tag is set to write, independently on the original state.

Conflict management. Conflict detection in ReduxSTM is also lazy, that is, at commit
time, as this allows to filter out most of the conflicts, improving concurrency between trans-
actions. Table [I| shows which conflicts are avoided thanks to the ordering of transactions and
the privatization of reduction operations. The first column specifies two memory operations
executed by two different transactions where the first one must commit before the second one
(in sequential order). For instance, R—W represents an anti-dependence. The second column

Table 1: Transactional conflicts in different scenarios

[[T™M [TM + Order [TM + Order + Reduction

R—-W abort no conflict no conflict
W-R abort abort abort
W-W abort no conflict no conflict
Rdx—R — — abort
R—Rdx — — no conflict
Rdx—W — — no conflict
W-Rdx — — no conflict
Rdx—Rdx — — no conflict

corresponds to the behavior of a standard TM system, while the last two columns consider
additional support for order and reductions. Conflict manager uses read and write sets to de-
tect conflicts (note that some ordered TM systems do not filter out conflicts). These sets were
implemented as signatures based on Bloom filters.

Commit management. In order to minimize the overhead of the transactional memory op-
erations and to support a lazy-lazy behavior, ReduxSTM is based on a full commit invalidation
algorithm, that is, conflicts are resolved at commit time.

The commit phase is in charge of the three following tasks: (1) Check if the ordering
condition is fulfilled (otherwise, wait for that); (2) check if the transaction was aborted (killed)
by a previously committed one; (3) update main memory with the values stored in the write
buffer, reducing in memory the corresponding ones; (4) compare the write Bloom filter with
the read Bloom filter of all subsequent (in the established order) active transactions, marking
as killed those conflicting ones.

4 Experimental Evaluation

In this section, we evaluate the performance of ReduxSTM system when used to parallelize the
new_dbox_a() function from 330.twolf. The goal is to show how ReduxSTM allows to extract
more parallelism from the sequential code than other state-of-the-art (ordered) STM system,
thanks to the design of our conflict manager that avoids unnecessary aborts.

4.1 Experimental Setup

Experiments were conducted on a server with 8 GB RAM and one quad-core Intel Core i7-3770
processor at 3.4GHz that supports 8 concurrent threads. The server runs Linux kernel 3.2.0-75
(64 bits) and all programs were compiled using GNU GCC (optimization option -02). The
ordered version of TinySTM (v.1.0.5) [4] was used as the baseline state-of-the-art STM system.

The following two-step methodology was used for the evaluation. First, the original sequen-
tial program was instrumented to obtain a trace of the relevant memory accesses, those that can
cause a conflict (shared accesses). Figure[2|shows the instrumented version of the new_dbox_a ()
function. Macros MARKREAD (), MARKWRITE () and MARKREDUX () specify which memory addresses
must appear in the trace and what type of operation is made (read, write or reduction). Re-
duction points out a memory location subjected to a potential reduction operation. It is a
”potential” reduction because the conflict manager in ReduxTM will determine at runtime if it
is the case or not. In a second step, a simulator is fed with the resulting memory trace which
simulates the original new_dbox_a() function recreating the instrumented memory pattern, as

1 new.dbox-a(...) {
2
3 for (termptr=antrmptr; termptr; termptr=termptr—>nextterm) {
4
5 MARKREAD (&dimptr—>new_total);
6 MARKREAD (&dimptr—>numpins);
7 MARKREAD(&dimptr— >old_total);
8 new_mean = dimptr—>new_total / dimptr—>numpins;
9 old_mean = dimptr—>old_total / dimptr—>numpins;
10 MARKREAD (&dimptr— > netptr);
11 for (netptr=dimptr— >netptr; netptr; netptr=netptr— >nterm) {
12 MARKREAD (&netptr— >xpos);
13 oldx = netptr—>xpos;
14 MARKREAD (&netptr— >flag);
15 if (netptr—>flag ==1) {
16 MARKREAD (&netptr— >newx);
17 newx = netptr— >newx;
18 netptr —>flag = 0;
19 MARKWRITE (&netptr— >flag,0);
20 } else { newx = oldx; }
21 // (1) Potential reduction sentence
22 *costptr += ABS(newx — new_mean) — ABS(oldx — old-mean);
23 MARKREDUX(&(*costptr),ABS(newx — new_mean) — ABS(oldx — old_mean));
24 MARKREAD(&netptr—>nterm);
25 }
26
27 tmp-num_feeds[net] = f; // Potential alias with *costptr and delta_vert.cost
28 MARKWRITE (&tmp_-num_feeds[net],f);
29
30 tmp_missing-rows[net] = —m; // Potential alias with *costptr and delta_vert_cost
31 MARKWRITE(&tmp_missing_rows[net],—m);
32 MARKREAD (&tmp_num_feeds[net]);
33 MARKREAD (&num_feeds[net]);
34 MARKREAD (&tmp_missing-rows[net]);
35 MARKREAD(&missing-rows[net]);
36 // (2) Potential reduction sentence
37 delta_vert_cost += ((tmp_-num_feeds[net] — num_feeds[net]) + (tmp_-missing_rows[net] — missing-rows[net])) * 2 * rowHeight;
38 MARKREDUX(&(delta-vert_cost),((tmp-num_feeds[net] — num_feeds[net]) + (tmp-missing_rows[net] — missing-rows[net]))...);
39 MARKREAD (&termptr— >nextterm);
40}
41 return;
42}

Figure 2: Instrumented new_dbox_a() function

well as the original workload. This simulation is carried out in parallel and in a transactional
way. This is accomplished by partitioning the outer loop of the simulated function into blocks
of consecutive iterations. Each one of these blocks is executed as a transaction. Transactions
are mapped to threads in a round-robin way.

Experiments were executed using a medium-sized workload (the training workload included
in 300.twolf). The complete execution of the application is long. In particular, the outer loop in
the new_dbox_a() function executed almost 12 million iterations. The resulting memory trace
contained almost 550M reads, 46M writes and 70M reductions. The results shown in this paper,
however, are obtained from a section of 500K iterations taken from the middle of the execution
trace. That represents around 24M reads, 2M writes and 3M reductions in the memory trace.
An important observation is that in all 20M memory accesses in the selected trace there are
only about 43K different memory locations (less than 0.15% of the total memory references are
different). That means a high contented transactional execution. In addition, the benchmark

Relative Speedup (best execution) Transaction Commit Rate

@@ ReduxSTM impl. vs. TinySTM-Ord. / 1. Il TinySTM-Ord. (no rdx. support)
I ReduxSTM (rdx. disabled)

A=A ReduxSTM expl. vs. TinySTM-Ord.
B8 ReduxSTM impl. vs. Sequential B ReduxSTM (rdx. enabled)
V=¥ ReduxSTM expl. vs. Sequential | .

G /

~

(2]

w

N

Relative Speedup
w

\g

4
Threads Threads

Figure 3: Speedup of ReduxSTM over TinySTM and sequential version (left), transaction
commit rate (TCR) of ReduxSTM and TinySTM (right)

code is memory-bound, that also limits the amount of exploitable parallelism.

Experiments include the following versions of the application: (1) The original sequential
version (executed in one thread); (2) a parallel version based on the ordered TinySTM system,
where the commit order is given by the starting time of the transaction (first to start, first
to commit); (3) a parallel version based on ReduxSTM with implicit order given when the
transaction reaches the commit phase (first to finish execution, first to commit); (4) a parallel
version based on ReduxSTM with explicit order given by an ordinal number specified by the
programmer (this order is the same as the sequential order). ReduxSTM with explicit order is
the only version that assure correct results (identical to the sequential version). The other two
TM versions, with a more relaxed ordering, are used for comparison.

4.2 Relative Speedup

The speedup obtained with both versions of ReduxSTM (implicit and explicit order) related
to the speedup when using ordered TinySTM and regarding the sequential version is shown in
Figure[3] (left). As the performance of the transactional codes depend on the size of transactions,
experiments were conducted for different sizes (from 1 to 8 iterations), selecting the best result.

Speedup for ReduxSTM is significantly better than that for TinySTM thanks to the ability
of the former system to avoid unnecessary aborts and rollbacks. Implicit order is better that
explicit one, as expected, as it is more relaxed. ReduxSTM is also able to exploit parallelism
from the sequential version, despite it is memory bound.

The number of transactional conflicts increases with the number of threads. However,
ReduxSTM improves its performance better than TinySTM thanks to its ability to filter out
many of the conflicts. With 8 threads, ReduxSTM is 6.5 (implicit order) or 4.8 (explicit order)
times faster than ordered TinySTM.

4.3 Transaction Commit Rate (TCR)

A comparison of both TM systems in terms of the transaction commit rate (TCR) [I] is depicted
in Figure [3[(right). TCR is defined as the percentage of committed transactions out of all
executed ones, and it is a suitable parameter to measure the exploited concurrency. In the figure
two versions of ReduxSTM are shown, one with the support for privatizing reductions and the
other with such feature disabled. Note that for our application such feature allows to exploit
much more parallelism, specially if the thread count increases. For instance, for 8 threads,

Sensitivity to Xact. Size Sensitivity to Comp. Load

~ 2.0,
g 25
8
X —

~ o
=z 3 2.0
- 1. o 4
b <
g I
£ <
Z10 s
;: 2 1.0
z 05 I 1 iteration per xact. ® I No extra load
2 . [2 iterations per xact. g 0.5 +10 float op./mem. op.
g [4 iterations per xact. n = +50 float op./mem. op.
(% [l 8 iterations per xact. ~+100 float op./mem. op.

0.0 0.0
2 4 8 2 4 8

Threads Threads

Figure 4: Sensitivity of ReduxSTM to transaction size (left), and to computational load (right)

the complete ReduxSTM obtains a TCR of almost 70% (almost 70% of the transactions were
executed and committed without rollbacks). Without reduction support, however, TCR, drops
below 20%, while TCR for ordered TinySTM is almost zero (basically, most of the transactions
execute serially, one after another).

From the results it can be seen that, in a speculative context, when order between trans-
actions is mandatory, the potential to filter out conflicts thanks to such order is beneficial,
allowing to keep a high TCR while increasing the number of threads. In addition, the extra
conflict elimination allowed by the privatization of reduction patterns is also very relevant. Be-
sides, by design, ReduxSTM limits the number of rollbacks that a transaction can suffer to the
thread count minus one.

4.4 Sensitivity to Transaction Size

The impact of the transaction size (in terms of the number of iterations of the outer loop
in new_dbox_a()) on performance for ReduxSTM is depicted in Figure {4| (left). The graph
shows the speedup obtained using ReduxSTM with respect to the execution in 1 thread with
1-iteration transactions.

With one thread, speedup increases with the transaction size, as the number of transactions
reduces and so the overhead to manage them. When the number of threads increases, the prob-
ability of conflicts increases with the size of transactions, decreasing the obtained performance.
The figure shows modest speedups due to the memory bound nature of the application.

4.5 Sensitivity to Computational Workload

In order to test the ability of ReduxSTM to extract parallelism from situations where there is a
more balanced combination of computation and memory accesses, experiments were conducted
for different workloads added to the transactions. This extra load was specified in terms of a
number of floating-point operations per memory access. Figure El (right) shows the obtained
results, measured as the speedup with respect to the execution using 1 thread.

As expected, the performance of ReduxSTM for 4 and 8 threads improves significantly
with the increase in the computational workload, as the relative performance impact of the
transaction management overheads drop.

Sensitivity to Bloom Filter Size Sensitivity to Bloom Filter Size

1.2 @@ 1 iteration per xact. 2 threads 1.2-| @=@ 1 iteration per xact. 4 threads
A-A 2 iterations per xact. /\ AA ‘21 I{eratlons per xac:. /\
. N @@ 4 iterations per xact.
1.0|E-E 4 iterations per xact. 1.0 ! "
V-V 8 iterations per xact. V=¥ 8 iterations per xact. A

0.8 {

. /L

i, 2N\ N
NN /) X\
NN\ O;E-='“<¢’ W

TCR/execution time
TCR/execution time

B,

8 10 12 14 16 18 20 22 6 8 10 12 14 16 18 20 22
Bloom filter size (2" bits) Bloom filter size (2" bits)

Figure 5: Sensitivity of ReduxSTM to Bloom filters size

4.6 Sensitivity to Bloom Filters Size

ReduxSTM uses Bloom filters (signatures) as the data structures to store the read and write sets
of a transaction. These hash structures allow fast insert and test operations for an unbounded
set of addresses, but at the cost of some probability of false positives (due to aliasing). Increasing
their size reduces such probability but at the expense of occupying more cache space (for
fast accesses) and increasing reset time (required after an abort or a commit). We need to
find a tradeoff between the filters size and the probability of false positives that maximizes
performance.

Figure |5| shows the performance of ReduxSTM for different Bloom filter sizes (both, read
and write filters, are of the same size). Performance is measured as the ratio between TCR
and execution time, because maximizing this ratio means maximum concurrency exploitation
at minimum execution time.

From the figure it can be concluded that the best filters size is in the range between 24
and 2'® bits, for different transaction sizes and thread counts. For smaller Bloom filters, the
performance remains constant as the number of aborts for a given transaction in ReduxSTM
is limited by the number of threads. For larger Bloom filters, on the other hand, performance
drops fast due to the overhead of storing the filters out of the first levels of the cache hierarchy,
as well as the overhead of resetting them.

5 Conclusions

It is known that many applications that exhibit irregular memory access patterns are very hard
to parallelize. In fact, it is usual that no data dependence information is available. In this
context, the optimistic concurrency support provided by transactional memory (TM) may be
useful to extract parallelism from such applications. TM can be leveraged to exploit thread level
parallelism. This work presented ReduxSTM, a software TM (STM) system specially designed
to extract maximum parallelism from irregular applications. Commit/version management and
conflict detection were tailored to take advantage of both, transaction sequential ordering to
assure correct results and the privatization of reduction patterns. Both facts were used to avoid
unnecessary transaction rollbacks. Experimental results using a motivating benchmark from the
SPEC CPU2000 suite prove that ReduxSTM allows important improvements in performance
regarding a state-of-the-art STM system.

Acknowledgements

The authors want to aknowledge Universidad de Malaga, Campus de Excelencia Internacional
Andalucia Tech, for its support.

References

(1]

2l

3]

(4]

[10]

(11]

[12]

[13]

[14]

[15]

M. Ansari, C. Kotselidis, K. Jarvis, M. Lujan, C. Kirkham, and I. Watson. Advanced concurrency
control for transactional memory using transaction commit rate. In 14th Int’l. Euro-Par Conference
(Euro-Par’2008), pages 719-728, 2008.

J. Barreto, A. Dragojevic, P. Ferreira, R. Filipe, and R. Guerraoui. Unifying thread-level spec-
ulation and transactional memory. In ACM/IFIP/USENIX 13th Int’l. Middleware Conf., pages
187-207, 2012.

Matthew DeVuyst, Dean M. Tullsen, and Seon Wook Kim. Runtime parallelization of legacy
code on a transactional memory system. In 6th Int’l. Conf. on High Performance and Embedded
Architectures and Compilers (HiPEAC’11), pages 127-136, 2011.

Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. Time-based software transac-
tional memory. IEEE Trans. on Parallel and Distributed Systems, 21(12):1793-1807, 2010.

M.A. Gonzalez-Mesa, E. Gutierrez, E.L. Zapata, and O. Plata. Effective transactional memory
execution management for improved concurrency. ACM Transactions on Architecture and Code
Optimization, 11(3), 2014.

Liang Han, Wei Liu, and James M. Tuck. Speculative parallelization of partial reduction variables.
In 8th Annual IEEE/ACM Int’l. Symp. on Code Generation and Optimization (CGO’10), pages
141-150, 2010.

Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd. Morgan & Claypool
Publishers, USA, 2010.

M. Herlihy and J. Moss. Transactional Memory: Architectural support for lock-free data struc-
tures. In 20 Ann. Int’l. Symp. on Computer Architecture (ISCA’93), pages 289-300, 1993.

Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I. August. Speculative
separation for privatization and reductions. In 83rd ACM Conf. on Programming Language Design
and Implementation (PLDI’12), pages 359-370, 2012.

Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing sequential applications
on commodity hardware using a low-cost software transactional memory. In ACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLDI’09), pages 166-176, 2009.

K. Nikas, N. Anastopoulos, G. Goumas, and N. Koziris. Employing transactional memory and
helper threads to speedup Dijkstra’s algorithm. In 38th Int’l. Conf. on Parallel Processing
(ICPP’2009), pages 388-395, 2009.

Rei Odaira and Takuya Nakaike. Thread-level speculation on off-the-self hardware transactional
memory. In IEEE Int’l. Symp. on Workload Characterization (IISWC’2014), pages 212-221, 2014.
Leo Porter, Bumyong Choi, and Dean M. Tullsen. Mapping out a path from hardware transac-
tional memory to speculative multithreading. In 18th Int’l. Conf. on Parallel Architectures and
Compilation Techniques (PACT’09), pages 313-324, 2009.

L. Rauchwerger and D. Padua. The LRPD test: Speculative run-time parallelization of loops
with privatization and reduction parallelization. IFEFE Transactions on Parallel and Distributed
Systems, 10(2), 1999.

M.M. Saad, M. Mohamedin, and B. Ravindran. HydraVM: Extracting parallelism from legacy
sequential code using STM. In 4th USENIX Workshop on Hot Topics in Parallelism (HotPar’12),
pages 1-7, 2012.

[16] Peng Tu and David Padua. Automatic array privatization. In 6th Int’l. Workshop on Languages
and Compilers for Parallel Computing (LCPC’94), pages 500-521, 1994.

[17] C. von Praun, C. Ceze, and C. Cascaval. Implicit parallelism with ordered transactions. In 12th
ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming (PPoPP’2007), pages
79-89, 2007.

	Introduction and Related Work
	Motivating Irregular Application
	ReduxSTM Design
	Experimental Evaluation
	Experimental Setup
	Relative Speedup
	Transaction Commit Rate (TCR)
	Sensitivity to Transaction Size
	Sensitivity to Computational Workload
	Sensitivity to Bloom Filters Size

	Conclusions

