
- RIUMA Principal
- Listar por autor
Listar por autor "Sánchez-Ortega, Juana"
Mostrando ítems 1-5 de 5
-
Associative and Lie algebras of quotients. Zero product determined matrix algebras
Sánchez-Ortega, Juana(Universidad de Málaga, Servicio de Publicaciones, 2007)
La tesis aborda en sus primeras tres cuartas partes el estudio de álgebras de cocientes en diversos ambientes (asociativos, Lie y Jordan). En el caso Lie, la noción de álgebra maximal de cocientes fue introducida por ... -
Commutative algebras with one-dimensional square
Martín-Barquero, Dolores; Martín-González, Cándido
; Sánchez-Ortega, Juana
(Springer Nature, 2025-02-26)
In this paper, we classify and study commutative algebras having a one-dimensional square. In finite dimension (see Theorem 3.9) besides some cases (which are all associative and nilpotent with nilpotency index 3), the ... -
Graded contractions of the [formula omitted]-grading on [formula omitted]
Draper-Fontanals, Cristina; Meyer, Thomas Leenen; Sánchez-Ortega, Juana
(Elsevier, 2024)
Graded contractions of the -grading on the complex exceptional Lie algebra are classified up to equivalence and up to strong equivalence. The non-toral fine -grading is highly symmetric, with all the homogeneous components ... -
Sigma-maps on triangular algebras
Sánchez-Ortega, Juana; Repka, Joe; Martín-González, Cándido
(2018-01-30)
Triangular algebras were introduced by Chase in the early 1960s. He ended up with these structures in the course of his study of the asymmetric behavior of semi-hereditary rings. Since their introduction, triangular ... -
Ternary mappings of triangular algebras
Martín-Barquero, Dolores; Martín-González, Cándido
; Sánchez-Ortega, Juana
; Vandeyar, Morgan (SpringerLink, Aequationes Mathematicae, 2021-03)
We take acategorical approach to describe ternary derivations and ternary automorphisms of triangular algebras. New classes of automorphisms and derivations of triangular algebras are also introduced and studied.