JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Listar por autor 
    •   RIUMA Principal
    • Listar por autor
    •   RIUMA Principal
    • Listar por autor

    Listar por autor "Marín-Jiménez, Manuel J."

    • 0-9
    • A
    • B
    • C
    • D
    • E
    • F
    • G
    • H
    • I
    • J
    • K
    • L
    • M
    • N
    • O
    • P
    • Q
    • R
    • S
    • T
    • U
    • V
    • W
    • X
    • Y
    • Z

    Ordenar por:

    Orden:

    Resultados:

    Mostrando ítems 1-9 de 9

    • título
    • fecha de publicación
    • fecha de envío
    • ascendente
    • descendente
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
      • A cross-dataset deep learning-based classifier for people fall detection and identification 

        Delgado-Escaño, Rubén; Castro, Francisco M.; Ramos-Cózar, JuliánAutoridad Universidad de Málaga; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga; Casilari-Pérez, EduardoAutoridad Universidad de Málaga[et al.] (Elsevier, 2020)
        This paper addresses the issue of fall detection, particularly for elderly individuals who may live alone and be unable to call for help after a fall. The objective is to develop a deep learning-based approach that can ...
      • End-to-end Incremental Learning 

        Castro Payán, Francisco Manuel; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga; Schmid, Cordelia; Alahari, Karteek (2018-07-06)
        Although deep learning approaches have stood out in recent years due to their state-of-the-art results, they continue to suffer from (catastrophic forgetting), a dramatic decrease in overall performance when training with ...
      • Evaluation of CNN architectures for gait recognition based on optical flow maps 

        Castro, Francisco M.; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga; López-Tapia, S.; Pérez de la Blanca, N. (2017)
        This work targets people identification in video based on the way they walk (\ie gait) by using deep learning architectures. We explore the use of convolutional neural networks (CNN) for learning high-level descriptors ...
      • Gait recognition and fall detection with inertial sensors 

        Delgado-Escaño, Rubén; Castro, Francisco M.; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga (2019-11-26)
        In contrast to visual information that is recorded by cameras placed somewhere, inertial information can be obtained from mobile phones that are commonly used in daily life. We present in this talk a general deep learning ...
      • Gait recognition applying Incremental learning 

        Castro, Francisco M.; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga; Schmid, Cordelia; Alahari, Karteek (2019-11-25)
        when new knowledge needs to be included in a classifier, the model is retrained from scratch using a huge training set that contains all available information of both old and new knowledge. However, in this talk, we present ...
      • Multimodal feature fusion for CNN-based gait recognition: an empirical comparison 

        Castro, Francisco M.; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga; Pérez de la Blanca, Nicolás (Springer London, 2020)
        This paper focuses on identifying people based on their gait using a non-invasive approach. Traditional methods rely on gait signatures derived from binary energy maps, which introduce noise. Instead, the authors explore ...
      • Multimodal features fusion for gait, gender and shoes recognition 

        Castro Payán, Francisco Manuel; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga (Springer, 2016)
        This paper evaluates how fusing multimodal features (audio, RGB, and depth) can enhance the task of gait recognition, as well as gender and shoe recognition. While most previous research has focused on visual descriptors ...
      • On how to improve tracklet-based gait recognition systems 

        Marín-Jiménez, Manuel J.; Castro Payán, Francisco Manuel; Carmona-Poyato, Ángel; Guil-Mata, NicolásAutoridad Universidad de Málaga (Elsevier, 2015-12-15)
        Abstract Recently, short-term dense trajectories features (DTF) have shown state-of-the-art results in video recognition and retrieval. However, their use has not been extensively studied on the problem of gait recognition. ...
      • A weakly-supervised approach for discovering common objects in airport video surveillance footage 

        Castro Payán, Francisco Manuel; Delgado-Escaño, Rubén; Guil-Mata, NicolásAutoridad Universidad de Málaga; Marín-Jiménez, Manuel J. (2019-07-22)
        Object detection in video is a relevant task in computer vision. Standard and current detectors are typically trained in a strongly supervised way, what requires a huge amount of labelled data. In contrast, in this paper ...
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
         

         

        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA