JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Listar por autor 
    •   RIUMA Principal
    • Listar por autor
    •   RIUMA Principal
    • Listar por autor

    Listar por autor "Stoean, Ruxandra"

    • 0-9
    • A
    • B
    • C
    • D
    • E
    • F
    • G
    • H
    • I
    • J
    • K
    • L
    • M
    • N
    • O
    • P
    • Q
    • R
    • S
    • T
    • U
    • V
    • W
    • X
    • Y
    • Z

    Ordenar por:

    Orden:

    Resultados:

    Mostrando ítems 1-8 de 8

    • título
    • fecha de publicación
    • fecha de envío
    • ascendente
    • descendente
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
      • Combined Machine Learning Techniques for Decision Making Support in Medicine 

        Stoean, Ruxandra (2016-05-16)
        Computational intelligent support for decision making is becoming increasingly popular and essential among medical professionals. Also, with the modern medical devices being capable to communicate with ICT, created models ...
      • Dynamic clustering of time series with Echo State Networks 

        Atencia-Ruiz, Miguel AlejandroAutoridad Universidad de Málaga; Stoean, Catalin; Stoean, Ruxandra; Rodriguez Labrada, Roberto; Joya-Caparrós, GonzaloAutoridad Universidad de Málaga (2019-06-05)
        In this paper we introduce a novel methodology for unsupervised analysis of time series, based upon the iterative implementation of a clustering algorithm embedded into the evolution of a recurrent Echo State Network. The ...
      • Hybridization and optimization of machine learning techniques for improved forecasting in real-world scenarios 

        Stoean, Ruxandra (2017-02-14)
        Different and powerful machine learning paradigms are constantly in a race for delivering the lowest error and/or the highest comprehensibility. But what can certainly lead to better forecasting is model inter-cooperation ...
      • Non-negative matrix factorization for medical imaging 

        Stoean, Ruxandra; Atencia-Ruiz, Miguel AlejandroAutoridad Universidad de Málaga (i6doc.com, 2018)
        A non-negative matrix factorization approach to dimensionality reduction is proposed to aid classification of images. The original images can be stored as lower-dimensional columns of a matrix that hold degrees of belonging ...
      • On building LSTM and CNN architectures for modeling time series data 

        Stoean, Ruxandra (2019-04-18)
        Stock price prediction is one very challenging and desirable real-world task. The challenge comes from the very dynamic nature of stock movement that is triggered by many different known and unknown factors. An accurate ...
      • On the Prospective Use of Deep Learning Systems for Earthquake Forecasting over Schumann Resonances Signals 

        Cano-Domingo, Carlos; Stoean, Ruxandra; Novas-Castellano, Nuria; Fernandez-Ros, Manuel; Joya-Caparrós, GonzaloAutoridad Universidad de Málaga; Gázquez-Parra, Jose A.[et al.] (IOAP-MPDI, 2022-06-21)
        La relación entre las resonancias de Schumann y los terremotos fue propuesta hace más de 50 años; sin embargo, el apoyo experimental no se ha establecido completamente. Una cantidad considerable de estudios recientes se ...
      • On Using Perceptual Loss within the U-Net Architecture for the Semantic Inpainting of Textile Artefacts with Traditional Motifs 

        Stoean, Catalin; Bacanin, Nebojsa; Stoean, Ruxandra; Ionescu, Leonard; Alecsa, Cristian; Hotoleanu, Mircea; Atencia, Miguel; Joya, Goznalo[et al.] (SYNACS Conference Publishing Service (CPS), 2022)
        It is impressive when one gets to see a hundreds or thousands years old artefact exhibited in the museum, whose appearance seems to have been untouched by centuries. Its restoration had been in the hands of a multidisciplinary ...
      • Unsupervised learning as a complement to convolutional neural network classification in the analysis of saccadic eye movement in spino-cerebellar ataxia type 2 

        Stoean, Catalin; Stoean, Ruxandra; Becerra-García, Roberto Antonio; Atencia-Ruiz, Miguel AlejandroAutoridad Universidad de Málaga; García-Lagos, FranciscoAutoridad Universidad de Málaga; Velázquez-Pérez, Luis; Joya-Caparrós, GonzaloAutoridad Universidad de Málaga; García-Bermúdez, Rodolfo[et al.] (2019-06-17)
        This paper aims at assessing spino-cerebellar type 2 ataxiaby classifying electrooculography records into registers corresponding to healthy, presymptomatic and ill individuals. The primary used technique is the convolutional ...
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
         

         

        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA