JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Listar por autor 
    •   RIUMA Principal
    • Listar por autor
    •   RIUMA Principal
    • Listar por autor

    Listar por autor "Castro, Francisco M."

    • 0-9
    • A
    • B
    • C
    • D
    • E
    • F
    • G
    • H
    • I
    • J
    • K
    • L
    • M
    • N
    • O
    • P
    • Q
    • R
    • S
    • T
    • U
    • V
    • W
    • X
    • Y
    • Z

    Ordenar por:

    Orden:

    Resultados:

    Mostrando ítems 1-14 de 14

    • título
    • fecha de publicación
    • fecha de envío
    • ascendente
    • descendente
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100
      • A cross-dataset deep learning-based classifier for people fall detection and identification 

        Delgado-Escaño, Rubén; Castro, Francisco M.; Ramos-Cózar, JuliánAutoridad Universidad de Málaga; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga; Casilari-Pérez, EduardoAutoridad Universidad de Málaga[et al.] (Elsevier, 2020)
        This paper addresses the issue of fall detection, particularly for elderly individuals who may live alone and be unable to call for help after a fall. The objective is to develop a deep learning-based approach that can ...
      • A Hybrid Piece-Wise Slowdown Model for Concurrent Kernel Execution on GPU 

        López Albelda, Bernabé; Castro, Francisco M.; González-Linares, José MaríaAutoridad Universidad de Málaga; Guil-Mata, NicolásAutoridad Universidad de Málaga (José Cano, Phil Trinder, 2022-08)
        Current execution of kernels on GPUs allows improving the use of hardware resources and reducing the execution time of co-executed kernels. In addition, efficient kernel-oriented scheduling policies pursuing criteria based ...
      • An End-to-End Multi-Task and Fusion CNN for Inertial-Based Gait Recognition. 

        Delgado-Escaño, Rubén; Castro, Francisco M.; Ramos-Cózar, JuliánAutoridad Universidad de Málaga; Marín Jiménez, Manuel Jesús; Guil-Mata, NicolásAutoridad Universidad de Málaga (IEEE, 2019)
        People identification using gait information (i.e., the way a person walks) obtained from inertial sensors is a robust approach that can be used in multiple situations where vision-based systems are not applicable. Typically, ...
      • Deep multi-task learning for gait-based biometrics. 

        Marín Jiménez, Manuel Jesús; Castro, Francisco M.; Guil-Mata, NicolásAutoridad Universidad de Málaga; de la Torre, Fernando; Medina-Carnicer, Rafael (IEEE, 2017)
        The task of identifying people by the way they walk is known as `gait recognition'. Although gait is mainly used for identification, additional tasks as gender recognition or age estimation may be addressed based on gait ...
      • Deep Neural Network to Remove Motion Artifacts from Heart Rate Sensor Embedded on Handle Cane. 

        Villalba-Bravo, Rafael; Ruiz Barroso, Paula; Castro, Francisco M.; Trujillo-León, AndrésAutoridad Universidad de Málaga; Guil-Mata, NicolásAutoridad Universidad de Málaga; Vidal-Verdú, FernandoAutoridad Universidad de Málaga[et al.] (IEEE, 2024)
        Devices worn on the body that track physiological metrics, such as heart rate (HR) and skin conductance, have gained popularity and are typically found in items like smart-watches and bracelets. However, these measurements ...
      • Empirical study of human pose representations for gait recognition 

        Cubero Torres, Nicolás; Castro, Francisco M.; Ramos-Cózar, JuliánAutoridad Universidad de Málaga; Guil-Mata, NicolásAutoridad Universidad de Málaga; Marín-Jiménez, Manuel José (Elsevier, 2025-02-28)
        Gait recognition has gained attention for its ability to identify individuals from afar. Current state-of-the-art approaches predominantly utilize visual information, such as silhouettes, or a combination of visual data ...
      • Evaluation of CNN architectures for gait recognition based on optical flow maps 

        Castro, Francisco M.; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga; López-Tapia, S.; Pérez de la Blanca, N. (2017)
        This work targets people identification in video based on the way they walk (\ie gait) by using deep learning architectures. We explore the use of convolutional neural networks (CNN) for learning high-level descriptors ...
      • FADE: Forecasting for anomaly detection on ECG 

        Ruiz Barroso, Paula; Castro, Francisco M.; Miranda-Calero, José Ángel; Constantinescu, Denisa-Andreea; Atienza, David A.; Guil-Mata, NicolásAutoridad Universidad de Málaga[et al.] (Elsevier, 2025-04-22)
        Background and Objective: Cardiovascular diseases, a leading cause of noncommunicable disease-related deaths, require early and accurate detection to improve patient outcomes. Taking advantage of advances in machine learning ...
      • Fisher Motion Descriptor for Multiview Gait Recognition. 

        Castro, Francisco M.; Marín Jiménez, Manuel Jesús; Guil-Mata, NicolásAutoridad Universidad de Málaga; Muñoz-Salinas, Rafael (World Scientific, 2017)
        This paper aims to identify individuals by analyzing their gait using motion descriptors based on densely sampled short-term trajectories, instead of traditional binary silhouettes. The approach leverages advanced people ...
      • FlexSched: Efficient scheduling techniques for concurrent kernel execution on GPUs 

        López Albelda, Bernabé; Castro, Francisco M.; González-Linares, José MaríaAutoridad Universidad de Málaga; Guil-Mata, NicolásAutoridad Universidad de Málaga (Springer Nature, 2022)
        Nowadays, GPU clusters are available in almost every data processing center. Their GPUs are typically shared by different applications that might have different processing needs and/or different levels of priority. In this ...
      • Gait recognition and fall detection with inertial sensors 

        Delgado-Escaño, Rubén; Castro, Francisco M.; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga (2019-11-26)
        In contrast to visual information that is recorded by cameras placed somewhere, inertial information can be obtained from mobile phones that are commonly used in daily life. We present in this talk a general deep learning ...
      • Gait recognition applying Incremental learning 

        Castro, Francisco M.; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga; Schmid, Cordelia; Alahari, Karteek (2019-11-25)
        when new knowledge needs to be included in a classifier, the model is retrained from scratch using a huge training set that contains all available information of both old and new knowledge. However, in this talk, we present ...
      • High performance inference of gait recognition models on embedded systems. 

        Ruiz Barroso, Paula; Castro, Francisco M.; Delgado-Escaño, Rubén; Ramos-Cózar, JuliánAutoridad Universidad de Málaga; Guil-Mata, NicolásAutoridad Universidad de Málaga (Elsevier, 2022)
        Edge computing is gaining importance in the realm of Deep Learning, particularly after powerful devices such as recent heterogeneous embedded systems have demonstrated remarkable skills for accelerating their challenging ...
      • Multimodal feature fusion for CNN-based gait recognition: an empirical comparison 

        Castro, Francisco M.; Marín-Jiménez, Manuel J.; Guil-Mata, NicolásAutoridad Universidad de Málaga; Pérez de la Blanca, Nicolás (Springer London, 2020)
        This paper focuses on identifying people based on their gait using a non-invasive approach. Traditional methods rely on gait signatures derived from binary energy maps, which introduce noise. Instead, the authors explore ...
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
         

         

        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
        REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA