JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónPolítica institucional UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Matemática Aplicada - (MA)
    • MA - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Matemática Aplicada - (MA)
    • MA - Contribuciones a congresos científicos
    • Ver ítem

    Hopfield networks: from optimization to adaptive control

    • Autor
      Atencia-Ruiz, Miguel AlejandroAutoridad Universidad de Málaga; Joya-Caparrós, GonzaloAutoridad Universidad de Málaga
    • Fecha
      2015-07-08
    • Palabras clave
      Redes neuronales (Informática)
    • Resumen
      This paper proposes an adaptative control algorithm, which is designed by adding a parametric identification method to a non-linear controller. The identification module is built upon the Hopfield neural network, resulting in an unconventional network with time-varying weights and biases. The convergence of the estimations of the parameters of a dynamical system was proved in previous work, as long as the system inputs can be freely manipulated to provide persistent excitation. Henceforth the behaviour of the closed-loop system, when the inputs result from the controller equations, is here analyzed in order to assess both the tracking performance of the full adaptive controller and the identification ability of the neural estimator. The algorithm is applied to an idealized robotic system with two joints, whose positions and velocities are required to follow, as closely as possible, a prescribed reference trajectory. The simulation results show a satisfactory control performance, since the demanded trajectory is almost accurately followed. The estimated values also converge to the correct parameters, as long as the controller provides sufficiently rich signals to the system. The results are similar to a conventional least-squares adaptive controller, with a much lower computational cost.
    • URI
      http://hdl.handle.net/10630/10052
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    AtenciaIJCNN_Abstract.pdf (48.33Kb)
    Colecciones
    • MA - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Academic Search
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA