JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Química Inorgánica, Cristalografía y Mineralografía - (QICM)
    • QICM - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Química Inorgánica, Cristalografía y Mineralografía - (QICM)
    • QICM - Contribuciones a congresos científicos
    • Ver ítem

    Compatibility and performance of SOFCs based on lanthanum tungstates

    • Autor
      Dos Santos-Gómez, Lucía; Porras-Vázquez, José Manuel; Zayas-Rey, María José; Ramirez-Losilla, EnriqueAutoridad Universidad de Málaga; Marrero-López, DavidAutoridad Universidad de Málaga
    • Fecha
      2015-07-10
    • Palabras clave
      Pilas de combustible
    • Resumen
      Rare-earth tungstates with general composition “Ln6WO12” have attracted great attention in last few years due to their relatively high mixed proton-electron conductivity [1, 2]. One of the main ad-vantages of these electrolytes, compared to the traditional perovskites based on BaCeO3, is that they exhibit high tolerance towards CO2 and H2S environments. Therefore, this material is a potential electrolyte for proton conducting solid oxide fuel cells (PC-SOFC). In this work, the lanthanum tungstate with com-position La27W4NbO55-δ (LWNO) has been tested as proton conductor electrolyte [3]. For this purpose, different electrodes and composite electrodes have been considered, including: La0.8Sr0.2MnO3-δ, La0.6Sr0.4Co1-xFexO3-δ, La0.5Sr0.5Cr0.5Mn0.5O3-δ, SrFe0.75Nb0.25O3-δ and NiO. Chemical compatibility between the cell compo-nents is investigated by X-ray powder diffraction (XRPD) and energy dispersive spectroscopy (EDS). Furthermore, area specific resistance (ASR) of the different electrodes is determined in symmetrical cells by impedance spectroscopy. XRPD and EDS analysis do not reveal significant bulk reactivity between most of these electrodes and LWNO electrolyte in the typical operating temperature range of a SOFC (600-900 ºC). However, minor interdiffusion of elements at the electrolyte/electrode interface affects both the ohmic losses and electrode polarization of the symmetric cells. ASR values are significantly improved by using a buffer layer of Ce0.8Gd0.2O1.9, between the electrolyte and electrode materials, to prevent reactivity. A single cell with 350 µm thick electrolyte, NiO-Ce0.8Gd0.2O1.9 anode and La0.6Sr0.4Co0.8Fe0.2O3-δ cathode, generates maximum power densities of 140 and 18 mWcm-2 at 900 and 650 ºC, respectively. Hence, lanthanum tungstates could be competitive proton conductors for PC-SOFCs with similar performance to those based on BaZrO3 if thin film electrolytes are used.
    • URI
      http://hdl.handle.net/10630/10066
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2_LuciadosSantosGomez_hyceltec_2015_poster.pdf (69.06Kb)
    Colecciones
    • QICM - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA