JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ingeniería Mecánica, Térmica y de Fluidos - (IMTF)
    • IMTF - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ingeniería Mecánica, Térmica y de Fluidos - (IMTF)
    • IMTF - Contribuciones a congresos científicos
    • Ver ítem

    An Intelligent Traction Control for Motorcycles

    • Autor
      Cabrera-Carrillo, Juan AntonioAutoridad Universidad de Málaga; Urda Gómez, Pedro; Castillo-Aguilar, Juan JesusAutoridad Universidad de Málaga; Guerra-Fernandez, Antonio JesusAutoridad Universidad de Málaga
    • Fecha
      2015-09-03
    • Palabras clave
      Ingeniería mecánica
    • Resumen
      The appearance of anti-lock braking systems (ABS) and traction control systems (TCS) have been some of the most major developments in vehicle safety. These systems have been evolving since their origin, always keeping the same objective, by using increasingly sophisticated algorithms and complex brake and torque control architectures. The aim of this work is to develop and implement a new control model of a traction control system to be installed on a motorcycle, regulating the slip in traction and improving dynamic performance of two-wheeled vehicles. This paper presents a novel traction control algorithm based on the use of Artificial Neural Networks (ANN) and Fuzzy Logic. An ANN is used to estimate the optimal slip of the surface the vehicle is moving on. A fuzzy logic control block, which makes use of the optimal slip provided by the ANN, is developed to control the throttle position. Two control blocks have been tuned. The first control block has been tuned according to the experience of an expert operator. The second one has been optimized using Evolutionary Computation (EC). Simulation shows that the use of EC can improve the fuzzy logic based control algorithm, obtaining better results than those produced with the control tuned only by experience.
    • URI
      http://hdl.handle.net/10630/10207
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    presentacion-poster__IAVSD.pdf (2.502Mb)
    Colecciones
    • IMTF - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA