In this work we present the Object Labeling Toolkit
(OLT), a set of software components publicly available for
helping in the management and labeling of sequential RGB-D
observations collected by a mobile robot. Such a robot can be
equipped with an arbitrary number of RGB-D devices, possibly
integrating other sensors (e.g. odometry, 2D laser scanners,
etc.). OLT first merges the robot observations to generate a
3D reconstruction of the scene from which object segmentation
and labeling is conveniently accomplished. The annotated labels
are automatically propagated by the toolkit to each RGB-D
observation in the collected sequence, providing a dense labeling
of both intensity and depth images. The resulting objects’ labels
can be exploited for many robotic oriented applications, including
high-level decision making, semantic mapping, or contextual
object recognition. Software components within OLT are highly
customizable and expandable, facilitating the integration of
already-developed algorithms. To illustrate the toolkit suitability,
we describe its application to robotic RGB-D sequences taken in
a home environment.