JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónPolítica institucional UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Física Aplicada II - (FAII)
    • FAII - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Física Aplicada II - (FAII)
    • FAII - Contribuciones a congresos científicos
    • Ver ítem

    Characterisation of hourly temperature of a thin-film module from weather conditions by artificial intelligence techniques

    • Autor
      Piliougine, Michel; Mora-Lopez, LlanosAutoridad Universidad de Málaga; Carretero-Rubio, Jesus EduardoAutoridad Universidad de Málaga; Sidrach-de-Cardona-Ortin, MarianoAutoridad Universidad de Málaga
    • Fecha
      2015-09-21
    • Palabras clave
      Células solares; Termometría
    • Resumen
      The aim of this paper is the use and validation of artificial intelligence techniques to predict the temperature of a thin-film module based on tandem CdS/CdTe technology. The cell temperature of a module is usually tens of degrees above the air temperature, so that the greater the intensity of the received radiation, the greater the difference between these two temperature values. In practice, directly measuring the cell temperature is very complicated, since cells are encapsulated between insulation materials that do not allow direct access. In the literature there are several equations to obtain the cell temperature from the external conditions. However, these models use some coefficients which do not appear in the specification sheets and must be estimated experimentally. In this work, a support vector machine and a multilayer perceptron are proposed as alternative models to predict the cell temperature of a module. These methods allow us to achieve an automatic way to learn only from the underlying information extracted from the measured data, without proposing any previous equation. These proposed methods were validated through an experimental campaign of measurements. From the obtained results, it can be concluded that the proposed models can predict the cell temperature of a module with an error less than 1.5 °C.
    • URI
      http://hdl.handle.net/10630/10280
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    5AV.6.17.pdf (311.4Kb)
    Colecciones
    • FAII - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Academic Search
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA