JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Tesis
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Tesis
    • Ver ítem

    Algoritmos Meméticos con Propiedades Self-* para la Optimización de Problemas Complejos

    • Autor
      Nogueras Sánchez, Rafael
    • Director/es
      Cotta, CarlosAutoridad Universidad de Málaga
    • Fecha
      2015
    • Editorial/Editor
      Servicio de Publicaciones y Divulgación Científica
    • Departamento
      Lenguajes y Ciencias de la Computación
    • Palabras clave
      Algoritmos evolutivos -Tesis doctorales
    • Resumen
      Las propiedades self-* de un sistema son aquellas que le permiten controlar de forma autónoma diferentes aspectos de su funcionamiento. En esta tesis doctoral se estudia el diseño y desarrollo de algoritmos meméticos con propiedades self-* a partir de una clase de algoritmo multimemético (MMA) con estructura espacial. En este MMA la población se dispone conforme a una cierta topología que permite restringir las interacciones entre los individuos, y en él los memes se definen como reglas de reescritura. Estos memes están sujetos a un proceso evolutivo propio similar al de la evolución genética mediante el cual pueden variar su estructura y complejidad, auto-optimizando de esta forma el proceso de búsqueda local. En este contexto se estudia la propagación y difusión de los memes a través de la población, proceso en el que la calidad de estos últimos solo se percibe indirectamente por el efecto que producen sobre los genotipos. Considerando el modelo teórico anterior como sustrato se incorporan características adicionales al MMA. Por un lado se crean algoritmos híbridos con el uso de modelos probabilísticos para la generación de la descendencia utilizando algoritmos de estimación de distribuciones (EDAs) y por otro, se consideran MMAs basados en islas. Este último modelo distribuido es objeto de un estudio más detallado, analizándose cómo afecta a su funcionamiento la utilización de diferentes políticas de migración de individuos entre nodos y el impacto que sobre el rendimiento de los mismos tiene la inestabilidad del entorno donde se ejecutan. Para ello se diseñan mecanismos de tolerancia a fallos y se estudia la utilización de redes complejas como topología de interconexión de los nodos. Asimismo, se proporciona al algoritmo la capacidad de escalabilidad automática mediante técnicas de auto-equilibrado de la carga, de forma tal que el propio MMA sea capaz, por sí mismo y sin necesidad de recurrir a un control central, de auto-adaptarse a la volatilidad del entorno. Finalmente se incorporan procedimientos de auto-reparación para compensar el deterioro producido por dicha inestabilidad: (i) auto-muestreo a través de un modelo probabilístico dinámico sobre las poblaciones de los nodos y (ii) auto-adaptación de la topología de interconexión a medida que diferentes nodos de cómputo entran o abandonan el sistema. Los experimentos realizados permiten concluir que la auto-adaptación de los memes contribuye a mejorar el rendimiento del MMA, así como que los modelos híbridos que utilizan EDAs proporcionan resultados notables, preferentemente los basados en distribuciones bivariadas. Con respecto al modelo de islas, las políticas de migración relativas a la selección de los migrantes o la estrategia de reemplazo de estos en la isla receptora son determinantes. Asimismo, las estrategias de gestión de fallos basadas en puntos de restauración mitigan la degradación del rendimiento conforme la red se vuelve más volátil, si bien conllevan sobrecargas computacionales. Como alternativa, la incorporación de propiedades self-* tales como el auto-equilibrado de la carga, el auto-muestreo probabilístico o la auto-adaptación de la topología de la red, tiene un impacto claramente positivo en el sistema, limitando su degradación en escenarios altamente inestables.
    • URI
      http://hdl.handle.net/10630/10664
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    TD_Nogueras_Sanchez.pdf (5.995Mb)
    Colecciones
    • LCC - Tesis

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA