In order to obtain nanostructured thin films to be used in biosensor devices, several chemical functionalization methods have been developed, such as Click chemistry or Suzuki carbon-carbon coupling reactions on surfaces.1
With the aim to control the orientation and spacing between grafted functional groups on a surface, tripodal oligo (p-phenylene)s have become the ideal anisotropic adsorbates due to their shape-persistent and self-standing characteristics.2
Here we report the synthesis and characterization of several tripod-shaped oligo(p-phenylene)s molecules with legs composed of five phenylene units, compounds 1, 2 and 3. In these structures, each leg is end-capped with an NH-Boc, NH2 and N3 group, respectively. The functional arm contains an acetylene group. The presented synthesis has as key step the Pd-catalyzed Suzuki cross-coupling reaction. In particular, a iodine derivative from the silicon core molecule reacts with the appropriate tetra(p-phenylene) boron derivative, thus generating the final tripod-shaped structure. The azide end-capped leg in 3 is specifically designed for its covalent incorporation on alkynyl terminated silicon surfaces by an easy and reproducible way. As a preliminary study, we present the alkynyl-functionalized silicon wafers nanostructuration with tripod 3 through the cooper catalyzed alkyne-azide cycloaddition (CuAAC) click reaction.