JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Tecnología Electrónica - (TE)
    • TE - Conferencias Científicas
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Tecnología Electrónica - (TE)
    • TE - Conferencias Científicas
    • Ver ítem

    Online estimation of rollator user condition using spatiotemporal gait parameters

    • Autor
      Ballesteros-Gomez, JoaquinAutoridad Universidad de Málaga; Urdiales, CristinaAutoridad Universidad de Málaga; Martínez, Antonio; Tirado, Marina
    • Fecha
      2016
    • Editorial/Editor
      IEEE
    • Palabras clave
      Asistencia sanitaria
    • Resumen
      Assistance to people during rehabilitation has to be adapted to their needs. Too little help can lead to frustration and stress in the user; an excess of help may lead to low participation and loss of residual skills. Robotic rollators may adapt assistance. The main challenge to cope with this issue is to estimate how much help is needed on the fly, because it depends not only on the person condition, but also on the specific situation that they are negotiating. Clinical scales provide a global condition based estimation, but no local estimator based on punctual needs. Condition also changes in time, so clinical scales need to be recalculated again and again. In this paper we propose a novel approach to estimate users’ condition in a continuous way via a robotic rollator. Our work focuses on predicting the value of the well known Tinetti Mobility test from spatiotemporal gait parameters obtained from our platform while users walk. This prediction provides continuous insight on the condition of the user and could be used to modify the amount of help provided. The proposed method has been validated with 19 volunteers at a local hospital that use a rollator for rehabilitation. All volunteers presented some physical or mental disabilities. Our results sucessfully show a high correlation of spatiotemporal gait parameters with Tinetti Mobility test gait (R2 = 0.7) and Tinetti Mobility test balance (R2 = 0.6).
    • URI
      http://hdl.handle.net/10630/12326
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    IROS2016.pdf (1.349Mb)
    Colecciones
    • TE - Conferencias Científicas

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA