JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Docencia
    • Trabajos Fin de Grado
    • Ver ítem
    •   RIUMA Principal
    • Docencia
    • Trabajos Fin de Grado
    • Ver ítem

    Deep Neural Networks to find genetics signatures

    • Autor
      Moreno Jabato, Fernando
    • Director/es
      Jerez-Aragonés, José ManuelAutoridad Universidad de Málaga
    • Fecha
      2017-01-26
    • Palabras clave
      Bioinformática; Redes neuronales; Datos masivos; Informática - Trabajos Fin de Grado; Grado en Ingeniería de la Salud - Trabajos Fin de Grado
    • Resumen
      This document contais the final dissertation ot the degree student Fernando Moreno Jabato for the studies Grade in Health Engeneering, speciality on Bioinformatics, of University of Málaga. This dissertation have been performed with the supervision of Dr. José Manuel Jerez Aragonés from the Departament of Lenguajes y Ciencias de la Comunicación. The project title is Deep Neural Networks to find genetics signatures and is focused on the development of a bioinformatic tool oriented to identification of relationships between an attribute set and concret factor of interest on medicine. To do this, a tool was designed with the capacity of handle data sets from microarrays of diferent types. Microarrays was selected as preferent technology because it's the most extended and accessible techonologie on health and biology fields nowadays. Once implemented the tool, an experiment was performed to evaluate the effciency of this tool. The experiment uses prostate cancer related datasets from trascriptomics microarrays containing patients of prostate cancer and some normal individues. The results obtained in the experiment shows an improvement offered by the new Deep Learning algoritms (specifically, Deep Neural Networks) to analyze and obtain knowledgement from microarrays data. Besides, has been observed an improvement of efficiency and the beat of computational barriers that traditional Artifical Neural Networks suffered allowing apply this bioinformatics tools of new generation to masiva data sets.
    • URI
      http://hdl.handle.net/10630/12801
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    FernandoMorenoJabatomemoriaEN.pdf (379.8Kb)
    Colecciones
    • Trabajos Fin de Grado

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA