Mostrar el registro sencillo del ítem

dc.contributor.authorSanna, Simone
dc.date.accessioned2017-04-27T10:50:07Z
dc.date.available2017-04-27T10:50:07Z
dc.date.created2017
dc.date.issued2017-04-27
dc.identifier.urihttp://hdl.handle.net/10630/13505
dc.description.abstractThe charge transport in oxide thin films could be tuned by the lattice strain engineering resulting in a new class of materials that can be considered fundamental bricks of new generation of devices for energy storage, conversion, and information [1-5]. In particular oxide heterostructures are a very promising type of artificial materials owing to possibility to manipulate the ionic and electronic properties at the interfaces by controlling the properties of the different layers, e.g. epitaxial strain. In these heterostructures, size effects of the layers can lead to enhanced conductivity of the charge carries at the interfaces when, for example, the number of interfaces is increased and/or the thickness of the individual layers decrease. High conductivity in thin heterostructures is often attributed either to the presence of a high density of defects, strain at the interface or space charge effects [1-2]. The latter is the case for heterostructure made of alternate layers of doped Ceria (SDC) and stabilized Zirconia (YSZ) where the ionic conductivity can increase about two order of compared to bulk [2]. However we have demonstrated that the heterostructures could be engineered in order to preserve materials with high ionic conductivity but usually, unstable by confining in more stable materials. This is the case for heterostructures based on bismuth-oxide-based materials. Indeed δ-Bi2O3 with the fluorite structure can be confined at room temperature by depositing alternating layers of bismuth-based oxide material stacked between fluorite materials as Gadolinium-doped Ceria (CGO) or YSZ [4-5]. As consequence, the heterostructures based on bismuth-oxide remain stable without degradation under oxidizing and reducing conditions for a wide range of temperatures, and maintain the high ionic conductivity characteristic of the typical bismuth oxide. References [1] N. Sata, K. Eberl, K. Eberman, J. Maier. Nature, 408 (2000) 946-949. [2] S. Sanna, V. Esposito, A. Tebano, S. Licoccia, E. Traversa, G. Balestrino. Small 6, (2010) 1863-1867. [3] E. Dagotto. Science, 318 (2007) 1076-1077. [4] S. Sanna, V. Esposito, J.W. Andreasen, J. Hjelm,W. Zhang, T. Kasama, S. B. Simonsen, M. Christensen, S. Linderoth, N. Pryds, Nat. Mater. 14, (2015) 500-504. [5] S. Sanna, V. Esposito, Mogens Christensen, Nini Pryds. APL Mater. 4, (2016) 121101 1-5.es_ES
dc.description.sponsorshipUniversidad de Málaga. Camppus de Excelencia Internacional Andalucía Teches_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectHeteroestructurases_ES
dc.subjectConductores eléctricoses_ES
dc.subject.otherPulsed Laser Depositiones_ES
dc.subject.otherHeterostructurees_ES
dc.subject.otherIonic conductivityes_ES
dc.titleHigh ionic conductivity in confined heterostructureses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.centroFacultad de Cienciases_ES
dc.relation.eventtitleConferencia Sala multimedia SCAIes_ES
dc.relation.eventplaceMálagaes_ES
dc.relation.eventdate24/04/2017es_ES
dc.rights.ccby-nc-nd


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem