Mostrar el registro sencillo del ítem

dc.contributor.authorCuesta-García, Ana María
dc.contributor.authorGómez-de-la-Torre, María de los Ángeles 
dc.contributor.authorSantacruz-Cruz, María Isabel 
dc.contributor.authorTrtik, Pavel
dc.contributor.authorDa Silva, Julio C.
dc.contributor.authorCuesta-García, Ana María
dc.contributor.authorHoller, Mirko
dc.contributor.authorGarcía-Aranda, Miguel Ángel 
dc.date.accessioned2017-05-12T06:38:22Z
dc.date.available2017-05-12T06:38:22Z
dc.date.issued2017
dc.identifier.citationProceedings of the Thirty Ninth International Conference on Cement Microscopy, International Cement Microscopy Association, Toronto, 2017, pp. 17-32es_ES
dc.identifier.isbn1-930787-16-2
dc.identifier.urihttp://hdl.handle.net/10630/13628
dc.description.abstractEco-cements are a desirable alternative to ordinary Portland cements because of their lower CO2 footprints. For instance, the manufacture of Calcium SulfoAluminate (CSA) cements is more environmentally friendly than that of Portland cements as their production may decrease CO2 footprint by up to 40%. CSA cements contain ye'elimite, Ca4Al6O12SO4, as main phase. The hydration of ye'elimite leads to hydrated compounds such as crystalline ettringite (AFt), crystalline monosulfoaluminate (AFm) and amorphous aluminum hydroxide gel, Al(OH)3·nH2O. Here, we report the results of a ptychographic X-ray computed tomography (PXCT) study on the in situ hydration of ye'elimite with gypsum at different early ages. PXCT is a nondestructive X-ray imaging technique which provides 3D electron density and attenuation coefficient distributions of cement pastes with an isotropic resolution close to 100 nm allowing distinguishing between component phases with very similar contrast in more conventional absorption-based X-ray tomography. The sample was prepared by hydrating ye'elimite with gypsum. Four datasets were recorded at 48, 53, 58 and 63 hours of hydration. The main aim of this imaging study was to quantify the microstructure evolution, within this time interval, with submicrometer spatial resolution. The different component phases were identified and their mass densities determined. Furthermore, the tomograms were segmented and the volume percentage of each component were determined and compared at the four hydrating ages. The overall porosity content (air and pore solution) decreased from 11.5 to 8.8 vol% and the anhydrous material content (ye'elimite and gypsum) decreased from 14.7 to 7.5 vol% in the studied time interval. Correspondingly, the hydrated content (crystalline ettringite and aluminum hydroxide gel) increased from 73.7 to 83.7 vol%. The time evolution of several anhydrous particles was analyzed to determine the dissolution rate of the ye'elimite particles. Similarly, the pore filling process has also been investigated by quantifying their time evolution. These rates are reported and some insights about the mechanisms of these processes are discussed.es_ES
dc.description.sponsorshipThis work has been supported by MINECO through BIA2014−57658-C2-1-R and BIA2014-57658-C2-2-R, which is cofunded by FEDER, research grants. We thank SLS for providing beamtime at the cSAXS beamline. We also thank the Swiss National Science Foundation SNF for the support to the work of J.C.d.S. (Grant 137772). Instrumentation development was supported by SNF (R’EQUIP, No. 145056,“OMNY”) and the Competence Centre for Materials Science and Technology (CCMX) of the ETH-Board, Switzerland. In addition, the authors would like to thank Dr. Manuel Guizar-Sicairos for his valuable assistance with the ptychography and PXCT data analysis.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectCementoes_ES
dc.titleIn situ hydration imaging study of a ye'elimite paste by ptychographic x-ray computed tomographyes_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.centroFacultad de Cienciases_ES
dc.cclicenseby-nc-ndes_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem