JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Álgebra, Geometría y Topología - (AGT)
    • AGT - Conferencias Científicas
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Álgebra, Geometría y Topología - (AGT)
    • AGT - Conferencias Científicas
    • Ver ítem

    Jordan-lie inner ideals of finite dimensional associative algebras

    • Autor
      Baranov, Alexander
    • Fecha
      2017-06-15
    • Palabras clave
      Algebras no asociativas; Lie, Algebras de; Jordan, Algebras de
    • Resumen
      Any associative ring A becomes a Lie ring A(−) under [x, y] = xy−yx. Let A(1) = [A, A] be the derived subalgebra of A(−) and let Z be its center. In the early 1950s Herstein initiated a study of Lie ideals of A in case of a simple ring. In particular, he showed that in that case A(1)/Z is simple, A(1) generates A and A(1) is perfect (i.e. [A(1), A(1)] = A(1)), except if A is of characteristic 2 and is of dimension 4 over its center. Over the years, his work was generalized in various directions, on the one hand, to the setting of prime and semiprime rings, and, on the other hand, to Lie structures other than Lie ideals. However, little is known about the Lie structure of non-semiprime rings. In this work we study Lie structure of finite dimensional associative algebras over an algebraically closed field of characteristic p /= 0. Let A be such an algebra. It is natural to suppose that A is 1-perfect, i.e. has no ideals of codimesnion 1. Indeed, if A has a chain of ideals with 1-dimensional subquotients then A(−) is solvable and there is little correlation between ideals of A(−) and those of A. Suppose that A is 1-perfect. Then we prove that the Lie algebra A(1) is perfect and A = A(1)A(1) + A(1). Moreover, we show that most Lie ideals of A(−) and A(1) are induced by the ideals of A. We also describe Jordan-Lie inner ideals of A(−) and A(1). Recall that a subspace B of a Lie algebra L is an inner ideal of L if [B, [B, L]] ⊆ B. An inner ideal B of A(−) is said to be Jordan-Lie if B2 = 0 (in that case B is also an inner ideal of the Jordan algebra A(+)).
    • URI
      http://hdl.handle.net/10630/13899
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Malaga 2017 talk abstract.pdf (127.0Kb)
    Colecciones
    • AGT - Conferencias Científicas

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA