JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem

    Prediction of Protein Oxidation Sites

    • Autor
      Veredas-Navarro, Francisco JavierAutoridad Universidad de Málaga; Cantón, Francisco R.; Aledo-Ramos, Juan CarlosAutoridad Universidad de Málaga
    • Fecha
      2017-05-18
    • Editorial/Editor
      Springer International Publishing AG
    • Palabras clave
      Adenosilmetionina; Simulación por ordenador; Oxidación
    • Resumen
      Although reactive oxygen species are best known as damag- ing agents linked to aerobic metabolism, it is now clear that they can also function as messengers in cellular signalling processes. Methionine, one of the two sulphur containing amino acids in proteins, is liable to be oxidized by a well-known reactive oxygen species: hydrogen perox- ide. The awareness that methionine oxidation may provide a mecha- nism to the modulation of a wide range of protein functions and cellular processes has recently encouraged proteomic approaches. However, these experimental studies are considerably time-consuming, labor-intensive and expensive, thus making the development of in silico methods for predicting methionine oxidation sites highly desirable. In the field of pro- tein phosphorylation, computational prediction of phosphorylation sites has emerged as a popular alternative approach. On the other hand, very few in-silico studies for methionine oxidation prediction exist in the lit- erature. In the current study we have addressed this issue by developing predictive models based on machine learning strategies and models— random forests, support vector machines, neural networks and flexible discriminant analysis—, aimed at accurate prediction of methionine oxi- dation sites.
    • URI
      http://hdl.handle.net/10630/13932
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    chp%3A10.1007%2F978-3-319-59147-6_1.pdf (521.7Kb)
    Colecciones
    • LCC - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA