JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem

    Deep Learning to Analyze RNA-Seq Gene Expression Data

    • Autor
      Urda, Daniel; Montes-Torres, JulioAutoridad Universidad de Málaga; Moreno, Fernando; Franco, LeonardoAutoridad Universidad de Málaga; Jerez-Aragonés, José ManuelAutoridad Universidad de Málaga
    • Fecha
      2017
    • Editorial/Editor
      Springer
    • Palabras clave
      Expresión génica - Proceso electrónico de datos
    • Resumen
      Deep learning models are currently being applied in several areas with great success. However, their application for the analysis of high-throughput sequencing data remains a challenge for the research community due to the fact that this family of models are known to work very well in big datasets with lots of samples available, just the opposite scenario typically found in biomedical areas. In this work, a first approximation on the use of deep learning for the analysis of RNA-Seq gene expression profiles data is provided. Three public cancer-related databases are analyzed using a regularized linear model (standard LASSO) as baseline model, and two deep learning models that differ on the feature selection technique used prior to the application of a deep neural net model. The results indicate that a straightforward application of deep nets implementations available in public scientific tools and under the conditions described within this work is not enough to outperform simpler models like LASSO. Therefore, smarter and more complex ways that incorporate prior biological knowledge into the estimation procedure of deep learning models may be necessary in order to obtain better results in terms of predictive performance.
    • URI
      http://hdl.handle.net/10630/13942
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    103060005.pdf (217.5Kb)
    Colecciones
    • LCC - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA