JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem

    Predicting Car Park Occupancy Rates in Smart Cities

    • Autor
      Stolfi, Daniel H.; Alba-Torres, EnriqueAutoridad Universidad de Málaga; Yao, Xin
    • Fecha
      2017
    • Editorial/Editor
      Springer
    • Palabras clave
      Análisis de series temporales; Aparcamientos
    • Resumen
      In this article we address the study of parking occupancy data published by the Birmingham city council with the aim of testing several prediction strategies (polynomial fitting, Fourier series, k-means clustering, and time series) and analyzing their results. We have used cross validation to train the predictors and then tested them on unseen occupancy data. Additionally, we present a web page prototype to visualize the current and historical parking data on a map, allowing users to consult the occupancy rate forecast to satisfy their parking needs up to one day in advance. We think that the combination of accurate intelligent techniques plus final user services for citizens is the direction to follow for knowledge-based real smart cities.
    • URI
      http://hdl.handle.net/10630/13975
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    2017_smartct.pdf (3.370Mb)
    Colecciones
    • LCC - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA