JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ingeniería de Sistemas y Automática - (ISA)
    • ISA - Conferencias Científicas
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ingeniería de Sistemas y Automática - (ISA)
    • ISA - Conferencias Científicas
    • Ver ítem

    Initialization of 3D Pose Graph Optimization using Lagrangian duality

    • Autor
      Briales, Jesus; Gonzalez-Jimenez, Antonio JavierAutoridad Universidad de Málaga
    • Fecha
      2017-05
    • Editorial/Editor
      IEEE
    • Palabras clave
      Programación (Matemáticas)
    • Resumen
      Pose Graph Optimization (PGO) is the de facto choice to solve the trajectory of an agent in Simultaneous Localization and Mapping (SLAM). The Maximum Likelihood Estimation (MLE) for PGO is a non-convex problem for which no known technique is able to guarantee a globally optimal solution under general conditions. In recent years, Lagrangian duality has proved suitable to provide good, frequently tight relaxations of the hard PGO problem through convex Semidefinite Programming (SDP). In this work, we build from the state-of-the-art Lagrangian relaxation [1] and contribute a complete recovery procedure that, given the (tractable) optimal solution of the relaxation, provides either the optimal MLE solution if the relaxation is tight, or a remarkably good feasible guess if the relaxation is non-tight, which occurs in specially challenging PGO problems (very noisy observations, low graph connectivity, etc.). In the latter case, when used for initialization of local iterative methods, our approach outperforms other state-ofthe- art approaches converging to better solutions. We support our claims with extensive experiments.
    • URI
      http://hdl.handle.net/10630/14454
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    ICRA17 (3).pdf (745.6Kb)
    Colecciones
    • ISA - Conferencias Científicas

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA