JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Tesis
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Tesis
    • Ver ítem

    Robust optimization of algorithmic trading systems

    • Autor
      Berutich Lindquist, José Manuel
    • Director/es
      López-Valverde, FranciscoAutoridad Universidad de Málaga; Luna Valero, Francisco
    • Fecha
      2017-05-25
    • Editorial/Editor
      UMA Editorial
    • Departamento
      Lenguajes y Ciencias de la Computación
    • Palabras clave
      Algoritmos genéticos - Tesis doctorales
    • Resumen
      GAs (Genetic Algorithms) and GP (Genetic Programming) are investigated for finding robust Technical Trading Strategies (TTSs). TTSs evolved with standard GA/GP techniques tend to suffer from over-fitting as the solutions evolved are very fragile to small disturbances in the data. The main objective of this thesis is to explore optimization techniques for GA/GP which produce robust TTSs that have a similar performance during both optimization and evaluation, and are also able to operate in all market conditions and withstand severe market shocks. In this thesis, two novel techniques that increase the robustness of TTSs and reduce over-fitting are described and compared to standard GA/GP optimization techniques and the traditional investment strategy Buy & Hold. The first technique employed is a robust multi-market optimization methodology using a GA. Robustness is incorporated via the environmental variables of the problem, i.e. variablity in the dataset is introduced by conducting the search for the optimum parameters over several market indices, in the hope of exposing the GA to differing market conditions. This technique shows an increase in the robustness of the solutions produced, with results also showing an improvement in terms of performance when compared to those offered by conducting the optimization over a single market. The second technique is a random sampling method we use to discover robust TTSs using GP. Variability is introduced in the dataset by randomly sampling segments and evaluating each individual on different random samples. This technique has shown promising results, substantially beating Buy & Hold. Overall, this thesis concludes that Evolutionary Computation techniques such as GA and GP combined with robust optimization methods are very suitable for developing trading systems, and that the systems developed using these techniques can be used to provide significant economic profits in all market conditions.
    • URI
      https://hdl.handle.net/10630/15353
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    TD_BERUTICH_ LINDQUIST_Jose_Manuel.pdf (7.184Mb)
    Colecciones
    • LCC - Tesis

    Estadísticas

    Ver Estadísticas de uso
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA