JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónPolítica institucional UMAPolítica de RIUMAPolitica de datos de investigación en RIUMASHERPA/RoMEODulcinea
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Lenguajes y Ciencias de la Computación - (LCC)
    • LCC - Contribuciones a congresos científicos
    • Ver ítem

    Blood Cell Classification Using the Hough Transform and Convolutional Neural Networks

    • Autor
      Molina-Cabello, Miguel Ángel; López-Rubio, EzequielAutoridad Universidad de Málaga; Luque-Baena, Rafael Marcos; Rodríguez-Espinosa, María Jesús; Thurnhofer-Hemsi, Karl
    • Fecha
      2018
    • Editorial/Editor
      Springer
    • Palabras clave
      Redes neuronales (Informática); Células sanguíneas - Clasificación
    • Resumen
      The detection of red blood cells in blood samples can be crucial for the disease detection in its early stages. The use of image processing techniques can accelerate and improve the effectiveness and efficiency of this detection. In this work, the use of the Circle Hough transform for cell detection and artificial neural networks for their identification as a red blood cell is proposed. Specifically, the application of neural networks (MLP) as a standard classification technique with (MLP) is compared with new proposals related to deep learning such as convolutional neural networks (CNNs). The different experiments carried out reveal the high classification ratio and show promising results after the application of the CNNs.
    • URI
      https://hdl.handle.net/10630/15526
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    blood-cell-classification.pdf (1.287Mb)
    Colecciones
    • LCC - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    Academic Search
    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA