JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Towards large scale unfitted adaptive finite element simulations

    • Autor
      Badia Rodríguez, Santiago
    • Fecha
      2018-04-23
    • Palabras clave
      Ecuaciones en derivadas parciales
    • Resumen
      The use of unfitted finite element methods (FEMs) is an appealing approach for different reasons. They are interesting in coupled problems or to avoid the generation of body-fitted meshes. One of the bottlenecks of the simulation pipeline is the body-fitted mesh generation step and the unstructured mesh partition. The use of unfitted methods on background octree Cartesian meshes avoids the need to define body-fitted meshes, and can exploit efficient and scalable space-filling curve algorithms. In turn, such schemes complicate the numerical integration, imposition of Dirichlet boundary conditions, and the linear solver phase. The condition number of the resulting linear system does depend on the characteristic size of the cut elements, the so-called small cut cell problem. In this work, we will present an parallel unfitted framework that relies on adaptive octree background meshes and space-filling curve partitioners. In order to solve the small cut cell problem, we will pursue two different lines. The first one is a re-definition of the finite element spaces that solves this issue, leading to condition number bounds as the ones for body-fitted schemes without any kind of perturbation/stabilization of the Galerkin formulation. Another approach will be to define appropriate iterative linear solvers based on domain decomposition preconditioning that are robust with respect to the small cut cell problem. Finally, we will apply the resulting framework to the numerical simulation of metal additive manufacturing.
    • URI
      https://hdl.handle.net/10630/15578
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    sbr.pdf (34.89Kb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA