Mostrar el registro sencillo del ítem

dc.contributor.authorKrídlo, Ondrej
dc.contributor.authorOjeda-Aciego, Manuel 
dc.date.accessioned2018-06-04T12:01:52Z
dc.date.available2018-06-04T12:01:52Z
dc.date.created2018
dc.date.issued2018-06-04
dc.identifier.urihttps://hdl.handle.net/10630/15902
dc.description.abstractA Hilbert space $H$ induces a formal context, the Hilbert formal context $\overline H$, whose associated concept lattice is isomorphic to the lattice of closed subspaces of $H$. This set of closed subspaces, denoted $\mathcal C(H)$, is important in the development of quantum logic and, as an algebraic structure, corresponds to a so-called ``propositional system'', that is, a complete, atomistic, orthomodular lattice which satisfies the covering law. In this paper, we continue with our study of the Chu construction by introducing the Chu correspondences between Hilbert contexts, and showing that the category of Propositional Systems, PropSys, is equivalent to the category of $\text{ChuCors}_{\mathcal H}$ of Chu correspondences between Hilbert contextsen_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLógica simbólica y matemáticaen_US
dc.subject.otherFormal Concept Analysisen_US
dc.subject.otherChu Correspondenceen_US
dc.subject.otherQuantum Logicen_US
dc.titleFormal concept analysis and structures underlying quantum logicsen_US
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.centroE.T.S.I. Informáticaen_US
dc.relation.eventtitleInformation Processing and Management of Uncertainty in Knowledge-based systemsen_US
dc.relation.eventplaceCádiz, Españaen_US
dc.relation.eventdate11 junio 2018en_US
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem