Las herramientas de acoplamiento molecular han llegado a ser bastante eficientes en el descubrimiento de fármacos y en el desarrollo de la investigación de la industria farmacéutica. Estas herramientas se utilizan para elucidar la interacción de una pequeña molécula (ligando) y una macro-molécula (diana) a un nivel atómico para determinar cómo el ligando interactúa con el sitio de unión de la proteína diana y las implicaciones que estas interacciones tienen en un proceso bioquímico dado.
En el desarrollo computacional de las herramientas de acoplamiento molecular los investigadores de este área se han centrado en mejorar los componentes que determinan la calidad del software de acoplamiento molecular: 1) la función objetivo y 2) los algoritmos de optimización. La función objetivo de energía se encarga de proporcionar una evaluación de las conformaciones entre el ligando y la proteína calculando la energía de unión, que se mide en kcal/mol.
En esta tesis, se ha usado AutoDock, ya que es una de las herramientas de acoplamiento molecular más citada y usada, y cuyos resultados son muy precisos en términos de energía y valor de RMSD (desviación de la media cuadrática). Además, se ha seleccionado la función de energía de AutoDock versión 4.2, ya que permite realizar una mayor cantidad de simulaciones realistas incluyendo flexibilidad en el ligando y en las cadenas laterales de los aminoácidos del receptor que están en el sitio de unión. Se han utilizado algoritmos de optimización para mejorar los resultados de acoplamiento molecular de AutoDock 4.2, el cual minimiza la energía libre de unión final que es la suma de todos los términos de energía de la función objetivo de energía. Dado que encontrar la solución óptima en el acoplamiento molecular es un problema de gran complejidad y la mayoría de las veces imposible, se suelen utilizar algoritmos no exactos como las metaheurísticas, para así obtener soluciones lo suficientemente buenas en un tiempo razonable.