JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditoresEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosDepartamentos/InstitutosEditores

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Datos de investigaciónReglamento de ciencia abierta de la UMAPolítica de RIUMAPolitica de datos de investigación en RIUMAOpen Policy Finder (antes Sherpa-Romeo)Dulcinea
    Preguntas frecuentesManual de usoContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ponencias, Comunicaciones a congresos y Pósteres
    • Ver ítem

    Silent speech: restoring the power of speech to people whose larynx has been removed

    • Autor
      Green, Phil D.; Murphy, Damian; Gully, Amelia; Gilbert, James M.; González López, José Andrés
    • Fecha
      2018-10-29
    • Palabras clave
      Lenguaje - Trastornos
    • Resumen
      Every year, some 17,500 people in Europe and North America lose the power of speech after undergoing a laryngectomy, normally as a treatment for throat cancer. Several research groups have recently demonstrated that it is possible to restore speech to these people by using machine learning to learn the transformation from articulator movement to sound. In our project articulator movement is captured by a technique developed by our collaborators at Hull University called Permanent Magnet Articulography (PMA), which senses the changes of magnetic field caused by movements of small magnets attached to the lips and tongue. This solution, however, requires synchronous PMA-and-audio recordings for learning the transformation and, hence, it cannot be applied to people who have already lost their voice. Here we propose to investigate a variant of this technique in which the PMA data are used to drive an articulatory synthesiser, which generates speech acoustics by simulating the airflow through a computational model of the vocal tract. The project goals, participants, current status, and achievements of the project are discussed below.
    • URI
      https://hdl.handle.net/10630/16733
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    Iberspeech2018_paper_49.pdf (3.009Mb)
    Colecciones
    • Ponencias, Comunicaciones a congresos y Pósteres

    Estadísticas

    Buscar en Dimension
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA