Mostrar el registro sencillo del ítem

dc.contributor.authorLuque-Gallego, Mariano 
dc.contributor.authorGonzalez-Gallardo, Sandra
dc.contributor.authorRuiz, Ana B.
dc.contributor.authorSaborido Infantes, Rubén
dc.date.accessioned2018-10-30T11:40:00Z
dc.date.available2018-10-30T11:40:00Z
dc.date.created2018
dc.date.issued2018-10-30
dc.identifier.urihttps://hdl.handle.net/10630/16764
dc.description.abstractThe convergence and the diversity of the decompositionbased evolutionary algorithm Global WASF-GA (GWASF-GA) relies on a set of weight vectors that determine the search directions for new non-dominated solutions in the objective space. Although using weight vectors whose search directions are widely distributed may lead to a well-diversified approximation of the Pareto front (PF), this may not be enough to obtain a good approximation for complicated PFs (discontinuous, non-convex, etc.). Thus, we propose to dynamically adjust the weight vectors once GWASF-GA has been run for a certain number of generations. This adjustment is aimed at re-calculating some of the weight vectors, so that search directions pointing to overcrowded regions of the PF are redirected toward parts with a lack of solutions that may be hard to be approximated. We test different parameters settings of the dynamic adjustment in optimization problems with three, five, and six objectives, concluding that GWASF-GA performs better when adjusting the weight vectors dynamically than without applying the adjustment.en_US
dc.description.sponsorshipUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectMatemáticasen_US
dc.subject.otherEvolutionary multiobjective optimizationen_US
dc.subject.otherDecomposition-based algorithmen_US
dc.subject.otherGWASF-GAen_US
dc.subject.otherWeight vectoren_US
dc.titleAn Improvement Study of the Decomposition-based Algorithm Global WASF-GA for Evolutionary Multiobjective Optimizationen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.centroFacultad de Ciencias Económicas y Empresarialesen_US
dc.relation.eventtitleXVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA)en_US
dc.relation.eventplaceGranadaen_US
dc.relation.eventdate10/2018en_US
dc.rights.ccAttribution-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NoDerivatives 4.0 Internacional