Muchas aplicaciones en visión por computador necesitan de sistemas de detección precisos y eficientes. Esta demanda coincide con el auge de la aplicación de técnicas de aprendizaje profundo en casi todos las áreas del aprendizaje máquina y la visión artificial. Este trabajo presenta un estudio que engloba diferentes sistemas de detección basados en aprendizaje profundo proporcionando una comparativa unificada entre distintos marcos de trabajo con el objetivo de realizar una comparación técnica de las medidas de rendimiento de los métodos estudiados.