JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUMAComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentrosEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasTipo de publicaciónCentros

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    DE INTERÉS

    Política institucional UMAPolítica de RIUMASHERPA/RoMEODulcineaHéloïse
    Preguntas frecuentesManual de usoDerechos de autorContacto/Sugerencias
    Ver ítem 
    •   RIUMA Principal
    • Investigación
    • Ingeniería de Sistemas y Automática - (ISA)
    • ISA - Contribuciones a congresos científicos
    • Ver ítem
    •   RIUMA Principal
    • Investigación
    • Ingeniería de Sistemas y Automática - (ISA)
    • ISA - Contribuciones a congresos científicos
    • Ver ítem

    Methods for autonomous wristband placement with a search-and-rescue aerial manipulator

    • Autor
      Pérez-Maldonado, Francisco; García-Núñez, Francisco; Fernández-García, Emilio; Gómez-de-Gabriel, Jesús ManuelAutoridad Universidad de Málaga; Garcia-Cerezo, Alfonso J.Autoridad Universidad de Málaga; [et al.]
    • Fecha
      2018-11-12
    • Palabras clave
      Robótica
    • Resumen
      A new robotic system for Search And Rescue (SAR) operations based on the automatic wristband placement on the victims’ arm, which may provide identification, beaconing and remote sensor readings for continuous health monitoring. This paper focuses on the development of the automatic target localization and the device placement using an unmanned aerial manipulator. The automatic wrist detection and localization system uses an RGB-D camera and a convolutional neural network based on the region faster method (Faster R-CNN). A lightweight parallel delta manipulator with a large workspace has been built, and a new design of a wristband in the form of a passive detachable gripper, is presented, which under contact, automatically attaches to the human, while disengages from the manipulator. A new trajectory planning method has been used to minimize the torques caused by the external forces during contact, which cause attitude perturbations. Experiments have been done to evaluate the machine learning method for detection and location, and for the assessment of the performance of the trajectory planning method. The results show how the VGG-16 neural network provides a detection accuracy of 67.99%. Moreover, simulation experiments have been done to show that the new trajectories minimize the perturbations to the aerial platform.
    • URI
      https://hdl.handle.net/10630/16852
    • Compartir
      RefworksMendeley
    Mostrar el registro completo del ítem
    Ficheros
    _LARGE__bf_Methods_for_Autonomous_Wristband_Placement_with_a_Search_and_Rescue_Aerial_Manipulator(1) (1).pdf (2.537Mb)
    Colecciones
    • ISA - Contribuciones a congresos científicos

    Estadísticas

    Ver Estadísticas de uso
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
     

     

    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA
    REPOSITORIO INSTITUCIONAL UNIVERSIDAD DE MÁLAGA