Mostrar el registro sencillo del ítem

dc.contributor.advisorGomez-Ruiz, Jose Antonio 
dc.contributor.advisorMandow, Anthony 
dc.contributor.authorPlaza Leiva, Victoria
dc.contributor.otherIngeniería de Sistemas y Automáticaen_US
dc.date.accessioned2019-01-31T12:41:31Z
dc.date.available2019-01-31T12:41:31Z
dc.date.issued2018-07
dc.identifier.urihttps://hdl.handle.net/10630/17236
dc.descriptionAdemás, la viabilidad de este enfoque es evaluado mediante la implementación de cuatro tipos de clasificadores de aprendizaje supervisado encontrados en métodos de procesamiento de escenas: red neuronal, máquina de vectores de soporte, procesos gaussianos, y modelos de mezcla gaussiana. La segmentación de objetos es un paso más allá hacia el entendimiento de escena, donde conjuntos de puntos 3D correspondientes al suelo y otros objetos de la escena son aislados. La tesis propone nuevas contribuciones a la segmentación de nubes de puntos basados en mapas de vóxeles caracterizados geométricamente. En concreto, la metodología propuesta se compone de dos pasos: primero, una segmentación del suelo especialmente diseñado para entornos naturales; y segundo, el posterior aislamiento de objetos individuales. Además, el método de segmentación del suelo es integrado en una nueva técnica de mapa de navegabilidad basado en cuadrícula de ocupación el cuál puede ser apropiado para robots móviles en entornos naturales. El diseño y desarrollo de un nuevo y asequible sensor lidar 3D de alta resolución también se ha propuesto en la tesis. Los nuevos MBLs, tales como los desarrollados por Velodyne, están siendo cada vez más un tipo de sensor 3D asequible y popular que ofrece alto ratio de datos en un campo de visión vertical (FOV) limitado. El diseño propuesto consiste en una plataforma giratoria que mejora la resolución y el FOV vertical de un Velodyne VLP-16 de 16 haces. Además, los complejos patrones de escaneo producidos por configuraciones de MBL que rotan se analizan tanto en simulaciones de esfera hueca como en escáneres reales en entornos representativos. Fecha de Lectura de Tesis: 11 de julio 2018.en_US
dc.description.abstractIngeniería de Sistemas y Automática Resumen tesis: Los sensores lidar 3D son una tecnología clave para navegación, localización, mapeo y entendimiento de escenas en vehículos no tripulados y robots móviles. Esta tecnología, que provee nubes de puntos densas, puede ser especialmente adecuada para nuevas aplicaciones en entornos naturales o desestructurados, tales como búsqueda y rescate, exploración planetaria, agricultura, o exploración fuera de carretera. Esto es un desafío como área de investigación que incluye disciplinas que van desde el diseño de sensor a la inteligencia artificial o el aprendizaje automático (machine learning). En este contexto, esta tesis propone contribuciones al entendimiento inteligente de escenas en entornos desestructurados basado en medidas 3D de distancia a nivel del suelo. En concreto, las contribuciones principales incluyen nuevas metodologías para la clasificación de características espaciales, segmentación de objetos, y evaluación de navegabilidad en entornos naturales y urbanos, y también el diseño y desarrollo de un nuevo lidar rotatorio multi-haz (MBL). La clasificación de características espaciales es muy relevante porque es extensamente requerida como un paso fundamental previo a los problemas de entendimiento de alto nivel de una escena. Las contribuciones de la tesis en este respecto tratan de mejorar la eficacia, tanto en carga computacional como en precisión, de clasificación de aprendizaje supervisado de características de forma espacial (forma tubular, plana o difusa) obtenida mediante el análisis de componentes principales (PCA). Esto se ha conseguido proponiendo un concepto eficiente de vecindario basado en vóxel en una contribución original que define los procedimientos de aprendizaje “offline” y clasificación “online” a la vez que cinco definiciones alternativas de vectores de características basados en PCA.en_US
dc.language.isoengen_US
dc.publisherUMA Editorialen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDetectores - Tesis doctoralesen_US
dc.subject.otherAprendizaje supervisadoen_US
dc.subject.otherClasificación 3Den_US
dc.subject.otherEscáner láseren_US
dc.subject.otherNube de puntosen_US
dc.subject.otherVoxelen_US
dc.titleContributions to Intelligent Scene Understanding of Unstructured Environments from 3D lidar sensorsen_US
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US
dc.centroEscuela de Ingenierías Industrialesen_US


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem